F. Barigelletti, L. De-cola, L. Flamigni, and M. A. Electrochemical, Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis

R. J. Forster, T. E. Keyes, A. Winter, S. Hoeppener, G. R. Newkome et al., Photonic interfacial supramolecular assemblies incorporating transition metals, Terpyridine-Functionalized Surfaces: Redox-Active, Switchable, and Electroactive Nanoarchitecturesgland, pp.1833-18533484, 2009.
DOI : 10.1016/j.ccr.2009.02.009

G. Xu, J. R. Deschamps, S. K. Pollack, and R. Shashidhar, Ru2(ap)4(?oligo(phenyleneethynyl )) Molecular Wires: Synthesis and Electronic Characterization, J. Am. Chem. Soc, vol.1275, pp.10010-10011, 2005.

G. Grelaud, N. Gauthier, Y. Luo, F. Paul, B. Fabre et al., Redox-Active Molecular Wires Derived from Dinuclear Ferrocenyl/Ruthenium(II) Alkynyl Complexes: Covalent Attachment to Hydrogen-Terminated Silicon Surfaces, The Journal of Physical Chemistry C, vol.118, issue.7, pp.3680-3695, 2014.
DOI : 10.1021/jp412498t

URL : https://hal.archives-ouvertes.fr/hal-01151705

A. Mulas, Y. Hervault, X. He, E. Di-piazza, L. Norel et al., Fast Electron Transfer Exchange at Self-Assembled Monolayers of Organometallic Ruthenium(II) ??-Arylacetylide Complexes, Aminophosphine ligands R2P(CH2)nNH2 and ruthenium hydrogenation catalysts RuCl2(R2P(CH2)nNH2)2, pp.7138-7147, 2015.
DOI : 10.1021/acs.langmuir.5b01629

URL : https://hal.archives-ouvertes.fr/hal-01169304

D. Trans, W. Doi-liao, J. Zhang, Y. Hou, H. Wang et al., Visible-light-driven CO2 photo-catalytic reduction of Ru(II) and Ir(III) coordination complexes Characteristics and reactivity of ruthenium-oxo complexes, Inorg. Chem. Commun, vol.73, pp.10-1039, 2009.

L. Tong and R. P. Thummel, Mononuclear ruthenium polypyridine complexes that catalyze water oxidation, Chemical Science, vol.53, issue.11, pp.6591-6603, 2016.
DOI : 10.1002/anie.201408795

URL : http://pubs.rsc.org/en/content/articlepdf/2016/sc/c6sc02766k

F. W. Vergeer, X. Chen, F. Lafolet, L. De-cola, H. Fuchs et al., Ultrathin Luminescent Films of Rigid Dinuclear Ruthenium(II) Trisbipyridine Complexes, Advanced Functional Materials, vol.62, issue.5, pp.16625-632, 2006.
DOI : 10.1002/adfm.200500446

J. Zhang, B. W. Chu, -. Zhu, N. Yam, and V. W. , Synthesis, Characterization, Langmuir???Blodgett Film-Forming Property, and Second-Order Nonlinear Optical Study of Rhenium(I) and Ruthenium(II) Diimine Complexes, Organometallics, vol.26, issue.22, pp.265423-5429, 2007.
DOI : 10.1021/om070030b

B. J. Coe, Switchable Nonlinear Optical Metallochromophores with Pyridinium Electron Acceptor Groups, Accounts of Chemical Research, vol.39, issue.6, pp.383-393, 2006.
DOI : 10.1021/ar050225k

D. Astruc, Electron transfer and radical processes in transition-metal chemistry, 1995.

F. G. Gao and A. J. Bard, Solid-State Organic Light-Emitting Diodes Based on Tris(2,2???-bipyridine)ruthenium(II) Complexes, Journal of the American Chemical Society, vol.122, issue.30, pp.1227426-7427, 2000.
DOI : 10.1021/ja000666t

T. Nagashima, T. Suzuki, H. Ozawa, T. Nakabayashi, and M. Oyama, Electrochemical Behavior of Sequentially Assembled Homo and Heterolayer Molecular Films Based on Dinuclear Ruthenium Complexes, Electrochimica Acta, vol.204, pp.235-244, 2016.
DOI : 10.1016/j.electacta.2016.04.059

B. Cui, H. Nie, C. Yao, J. Shao, S. Wu et al., Reductive electropolymerization of bis-tridentate ruthenium complexes with 5, 5??-divinyl-4?-tolyl-2, Dalton Trans, pp.6-8, 2013.

X. J. Zhu and B. J. Holliday, Electropolymerization of a Ruthenium(II) Bis(pyrazolyl)pyridine Complex to Form a Novel Ru-Containing Conducting Metallopolymer, Macromolecular Rapid Communications, vol.3, issue.9-10, pp.31904-909, 2010.
DOI : 10.1002/marc.200900902

C. Friebe, H. Görls, M. Jäger, and U. S. Schubert, Linear Metallopolymers from Ruthenium(II)-2,6-di(quinolin-8-yl)pyridine Complexes by Electropolymerization - Formation of Redox-Stable and Emissive Films, European Journal of Inorganic Chemistry, vol.29, issue.24, pp.20134191-4202, 2013.
DOI : 10.1002/jcc.20823

C. Friebe, B. Schulze, H. Görls, M. Jäger, and U. S. Schubert, Designing Cyclometalated Ruthenium(II) Complexes for Anodic Electropolymerization, Chemistry - A European Journal, vol.14, issue.8, pp.2357-2366, 2014.
DOI : 10.1021/cm020433w

H. Zhang, S. G. Yan, P. Subramanian, L. M. Skeens-jones, C. Stern et al., On the mechanism of oxidative electropolymerization and film formation for phenanthroline-containing complexes of ruthenium, Journal of Electroanalytical Chemistry, vol.414, issue.1, pp.41423-41452, 1996.
DOI : 10.1016/0022-0728(96)04680-3

Z. Fang, S. Keinan, L. Alibabaei, H. Luo, A. Ito et al., Controlled electropolymerization of ruthenium (II) vinylbipyridyl complexes in mesoporous nanoparticle films of TiO2, Angew. Chem. Int. Ed, pp.534872-4876, 2014.

A. L. Eckermann, D. J. Feld, J. A. Shaw, and T. J. Meade, Electrochemistry of redox-active self-assembled monolayers, Coordination Chemistry Reviews, vol.254, issue.15-16, pp.2541769-1802, 2010.
DOI : 10.1016/j.ccr.2009.12.023

J. F. Smalley, H. O. Finklea, C. E. Chidsey, M. R. Linford, S. E. Creager et al., Heterogeneous Electron-Transfer Kinetics for Ruthenium and Ferrocene Redox Moieties through Alkanethiol Monolayers on Gold, Journal of the American Chemical Society, vol.125, issue.7, pp.1252004-2013, 2003.
DOI : 10.1021/ja028458j

C. Vericat, M. Vela, G. Benitez, P. Carro, and R. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system, Chem. Soc. Rev, pp.391805-1834, 2010.

D. Bélanger and J. Pinson, Electrografting: a powerful method for surface modification, Chemical Society Reviews, vol.31, issue.551, pp.3995-4048, 2011.
DOI : 10.1016/j.irbm.2010.02.010

B. Jousselme, G. Bidan, M. Billon, C. Goyer, Y. Kervella et al., One-step electrochemical modification of carbon nanotubes by ruthenium complexes via new diazonium salts, Journal of Electroanalytical Chemistry, vol.621, issue.2, pp.621277-285, 2008.
DOI : 10.1016/j.jelechem.2008.01.026

URL : https://hal.archives-ouvertes.fr/hal-00396678

M. Sandroni, G. Volpi, J. Fiedler, R. Buscaino, G. Viscardi et al., Iridium and ruthenium complexes covalently bonded to carbon surfaces by means of electrochemical oxidation of aromatic amines, Catalysis Today, vol.158, issue.1-2, pp.22-28, 2010.
DOI : 10.1016/j.cattod.2010.06.025

V. Q. Nguyen, X. Sun, F. Lafolet, J. Audibert, F. Miomandre et al., Unprecedented Self-Organized Monolayer of a Ru(II) Complex by Diazonium Electroreduction, Journal of the American Chemical Society, vol.138, issue.30, pp.9381-9384, 2016.
DOI : 10.1021/jacs.6b04827

URL : https://hal.archives-ouvertes.fr/hal-01644784

C. Agnès, J. Arnault, F. Omnès, B. Jousselme, M. Billon et al., XPS study of ruthenium tris-bipyridine electrografted from diazonium salt derivative on microcrystalline boron doped diamond, Physical Chemistry Chemical Physics, vol.6, issue.48, pp.11647-11654, 2009.
DOI : 10.1039/b912468c

O. Buriez, E. Labbé, P. Pigeon, G. Jaouen, and C. Amatore, Electrochemical attachment of a conjugated amino???ferrocifen complex onto carbon and metal surfaces, Journal of Electroanalytical Chemistry, vol.619, issue.620, pp.619169-175, 2008.
DOI : 10.1016/j.jelechem.2008.04.012

URL : https://hal.archives-ouvertes.fr/hal-01230398

R. Kumar and D. Leech, Immobilisation of Alkylamine-Functionalised Osmium Redox Complex on Glassy Carbon using Electrochemical Oxidation, Electrochimica Acta, vol.140, pp.209-216, 2014.
DOI : 10.1016/j.electacta.2014.03.090

Q. T. Tran, J. Bergamini, C. Mangeney, C. Lagrost, and P. Pellon, Grafting of boraneprotected aliphatic and aromatic aminophosphine ligands to glassy carbon electrodes, Electrochem. Commun, pp.13844-847, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00615290

E. M. Sussuchi, A. A. De-lima, and W. De-giovani, Synthesis and electrochemical, spectral and catalytic properties of diphosphine???polypyridyl ruthenium complexes, Polyhedron, vol.25, issue.6, pp.1457-1463, 2006.
DOI : 10.1016/j.poly.2005.10.009

I. M. Dixon, E. Lebon, and P. Sutra, Igau, A. Luminescent ruthenium?polypyridine complexes & phosphorus ligands: anything but a simple story, Chem. Soc. Rev, pp.381621-1634, 2009.

P. Kumar, A. K. Singh, R. Pandey, and D. S. Pandey, Bio-catalysts and catalysts based on ruthenium (II) polypyridyl complexes imparting diphenyl-(2-pyridyl)-phosphine as a coligand, J. Organomet. Chem, pp.6963454-3464, 2011.

R. A. Leising, J. J. Grzybowski, and K. J. Takeuchi, Synthesis and characterization of sixcoordinate ruthenium (II) complexes that contain trans spanning diphosphine ligands, Inorg. Chem, pp.271020-1025, 1988.

E. M. Sussuchi, A. A. De-lima, and W. De-giovani, Effect of the cis- and trans-[1,2-bis(diphenylphosphino)ethylene] ligands in the properties of diphosphine???polypyridyl complexes of ruthenium(II), Journal of Molecular Catalysis A: Chemical, vol.259, issue.1-2, pp.302-308, 2006.
DOI : 10.1016/j.molcata.2006.05.059

H. Brisset, Y. Gourdel, P. Pellon, and M. Le-corre, Phosphine-borane complexes; direct use in asymmetric catalysis, Tetrahedron Letters, vol.34, issue.28, pp.4523-4526, 1993.
DOI : 10.1016/0040-4039(93)88075-T

B. P. Sullivan, J. M. Calvert, and T. J. Meyer, Cis-trans isomerism in (trpy)(PPh3)RuC12. Comparisons between the chemical and physical properties of a cis-trans isomeric pair, Inorganic Chemistry, vol.19, issue.5, pp.191404-1407, 1980.
DOI : 10.1021/ic50207a066

A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo et al., 97: a new tool for crystal structure determination and refinement, Journal of Applied Crystallography, vol.32, issue.1, pp.32115-119, 1999.
DOI : 10.1107/S0021889898007717

L. J. Farrugia, suite for small-molecule single-crystal crystallography, Journal of Applied Crystallography, vol.32, issue.4, pp.837-838, 1999.
DOI : 10.1107/S0021889899006020

S. Baranton and D. Bélanger, In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface, Electrochimica Acta, vol.53, issue.23, pp.6961-6967, 2008.
DOI : 10.1016/j.electacta.2008.02.105

J. M. Chrétien, M. A. Ghanem, P. N. Bartlett, and J. Kilburn, Covalent Tethering of Organic Functionality to the Surface of Glassy Carbon Electrodes by Using Electrochemical and Solid-Phase Synthesis Methodologies, Chemistry - A European Journal, vol.17, issue.8, pp.142548-2556, 2008.
DOI : 10.1002/9780470772119.ch12

B. Barbier, J. Pinson, G. Desarmot, and M. Sanchez, Electrochemical Bonding of Amines to Carbon Fiber Surfaces Toward Improved Carbon-Epoxy Composites, Journal of The Electrochemical Society, vol.137, issue.6, pp.1371757-1764, 1990.
DOI : 10.1149/1.2086794

R. S. Deinhammer, M. Ho, J. W. Anderegg, and M. D. Porter, Electrochemical oxidation of amine-containing compounds: a route to the surface modification of glassy carbon electrodes, Langmuir, vol.10, issue.4, pp.1306-1313, 1994.
DOI : 10.1021/la00016a054

A. Adenier, M. M. Chehimi, I. Gallardo, J. Pinson, and N. Vila, Electrochemical Oxidation of Aliphatic Amines and Their Attachment to Carbon and Metal Surfaces, Langmuir, vol.20, issue.19, pp.8243-8253, 2004.
DOI : 10.1021/la049194c

J. Liu and S. Dong, Grafting of diaminoalkane on glassy carbon surface and its functionalization, Electrochemistry Communications, vol.2, issue.10, pp.707-712, 2000.
DOI : 10.1016/S1388-2481(00)00105-3

F. Geneste and C. Moinet, Electrochemically linking TEMPO to carbon via amine bridges, New Journal of Chemistry, vol.4, issue.2, pp.269-271, 2005.
DOI : 10.1039/b413627f

J. Ghilane, P. Martin, H. Randriamahazaka, and J. Lacroix, Electrochemical oxidation of primary amine in ionic liquid media: Formation of organic layer attached to electrode surface, Electrochemistry Communications, vol.12, issue.2, pp.12246-249, 2010.
DOI : 10.1016/j.elecom.2009.12.005

J. Liu, L. Cheng, B. Liu, and S. Dong, Covalent Modification of a Glassy Carbon Surface by 4-Aminobenzoic Acid and Its Application in Fabrication of a Polyoxometalates-Consisting Monolayer and Multilayer Films, Langmuir, vol.16, issue.19, pp.7471-7476, 2000.
DOI : 10.1021/la9913506

G. Yang, Y. Shen, M. Wang, H. Chen, B. Liu et al., Copper hexacyanoferrate multilayer films on glassy carbon electrode modified with 4-aminobenzoic acid in aqueous solution, Talanta, vol.68, issue.3, pp.741-747, 2006.
DOI : 10.1016/j.talanta.2005.05.017

X. Li, Y. Wan, and C. Sun, Covalent modification of a glassy carbon surface by electrochemical oxidation of r-aminobenzene sulfonic acid in aqueous solution, Journal of Electroanalytical Chemistry, vol.569, issue.1, pp.56979-87, 2004.
DOI : 10.1016/j.jelechem.2004.01.036

G. Yang, B. Liu, and S. Dong, Covalent modification of glassy carbon electrode during electrochemical oxidation process of 4-aminobenzylphosphonic acid in aqueous solution, Journal of Electroanalytical Chemistry, vol.585, issue.2, pp.585301-305, 2005.
DOI : 10.1016/j.jelechem.2005.09.017

C. Cougnon, J. Mauzeroll, and D. Bélanger, Patterning of Surfaces by Oxidation of Amine? Containing Compounds Using Scanning Electrochemical Microscopy, Angew. Chem. Int. Ed, pp.487395-7397, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00420470

A. Volkov, G. Tourillon, P. Lacaze, and J. Dubois, Electrochemical polymerization of aromatic amines, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.115, issue.2, pp.115279-291, 1980.
DOI : 10.1016/S0022-0728(80)80332-9

G. Wnek and T. Skotheim, Handbook of Conducting Polymers, 1986.

C. D. Ellis, L. D. Margerum, R. W. Murray, and T. J. Meyer, Oxidative electropolymerization of polypyridyl complexes of ruthenium, Inorganic Chemistry, vol.22, issue.9, pp.221283-1291, 1983.
DOI : 10.1021/ic00151a005

M. Breitenbach and K. Heckner, Untersuchungen zur Kinetik der anodischen Oxydation von Anilin in Azetonitril an der rotierenden Platinelektrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.29, issue.2, pp.29309-323, 1971.
DOI : 10.1016/S0022-0728(71)80093-1

M. Mazloum?ardakani, M. Sheikh?mohseni, and A. Benvidi, Electropolymerization of Thin Film Conducting Polymer and Its Application for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid, Electroanalysis, vol.10, issue.12, pp.2822-2831, 2011.
DOI : 10.1016/j.elecom.2008.07.020

S. Sayyah, S. Abd-el?rehim, M. El?deeb, S. Kamal, and R. Azooz, -phenylenediamine on Pt-electrode from aqueous acidic solution: Kinetics, mechanism, electrochemical studies, and characterization of the polymer obtained, Journal of Applied Polymer Science, vol.25, issue.2, pp.943-952, 2010.
DOI : 10.1021/cr010423z

B. Lakard, G. Herlem, S. Lakard, and B. Fahys, Ab initio study of the polymerization mechanism of poly(p-phenylenediamine), Journal of Molecular Structure: THEOCHEM, vol.638, issue.1-3, pp.638177-187, 2003.
DOI : 10.1016/S0166-1280(03)00567-0

F. Geneste, C. Moinet, and G. Jezequel, First covalent attachment of a polypyridyl ruthenium complex on a graphite felt electrode, New Journal of Chemistry, vol.26, issue.11, pp.1539-1541, 2002.
DOI : 10.1039/b206414f

L. K. Stultz, M. H. Huynh, R. A. Binstead, M. Curry, and T. J. Meyer, Allylic Oxidation of Cyclohexene and Indene by cis-[RuIV (bpy) 2 (py)(O)] 2+, J. Am. Chem. Soc, pp.1225984-5996, 2000.

B. T. Farrer and H. H. Thorp, Redox Pathways in DNA Oxidation:?? Kinetic Studies of Guanine and Sugar Oxidation by Para-Substituted Derivatives of Oxoruthenium(IV), Inorganic Chemistry, vol.39, issue.1, pp.3944-3993, 2000.
DOI : 10.1021/ic990833u

F. Geneste and C. Moinet, Electrocatalytic oxidation of alcohols by a [Ru(tpy)(phen)(OH2)]2+-modified electrode, Journal of Electroanalytical Chemistry, vol.594, issue.2, pp.105-110, 2006.
DOI : 10.1016/j.jelechem.2006.05.032

URL : https://hal.archives-ouvertes.fr/hal-00323942

F. Geneste, C. Moinet, S. Ababou-girard, and F. Solal, -Modified Graphite Electrodes during Indirect Electrolyses, Inorganic Chemistry, vol.44, issue.12, pp.444366-4371, 2005.
DOI : 10.1021/ic048231k