]. J. Marcum3-]-e, J. Silbergeld, L. B. Graham, J. Price, K. L. Kwon et al., The Antibiotic Resistance Crisis: Part 1: Causes and Threats Industrial Food Animal Production, Antimicrobial Resistance, and Human Health Laboratory persistence and fate of fluoxetine in aquatic environments Kasprzyk-hordern, A review on emerging contaminants in wastewaters and the environment : Current knowledge , understudied areas and recommendations for future monitoring, Pharmaceuticals in the Environment, pp.277-283, 2006.

G. Lofrano, R. Pedrazzani, G. L. , and M. Carotenuto, Advanced Oxidation Processes for Antibiotics Removal: A Review, Current Organic Chemistry, vol.21, issue.12, pp.1054-1067, 2017.
DOI : 10.2174/1385272821666170103162813

M. Feng, L. Cizmas, Z. Wang, and V. K. Sharma, Activation of ferrate(VI) by ammonia in oxidation of flumequine: Kinetics, transformation products, and antibacterial activity assessment, Chemical Engineering Journal, vol.323, 2017.
DOI : 10.1016/j.cej.2017.04.123

F. Tamtam, F. Mercier, B. L. Bot, J. Eurin, Q. Tuc-dinh et al., Occurrence and fate of antibiotics in the Seine River in various hydrological conditions, Science of The Total Environment, vol.393, issue.1
DOI : 10.1016/j.scitotenv.2007.12.009

Z. Ye, H. S. Weinberg, and M. T. Meyer, Trace Analysis of Trimethoprim and Sulfonamide, Macrolide, Quinolone, and Tetracycline Antibiotics in Chlorinated Drinking Water Using Liquid Chromatography Electrospray Tandem Mass Spectrometry, Analytical Chemistry, vol.79, issue.3, pp.1135-1144, 2007.
DOI : 10.1021/ac060972a

O. J. Pozo, C. Guerrero, J. Sancho, M. Ibáñez, E. Pitarch et al., Efficient approach for the reliable quantification and confirmation of antibiotics in water using on-line solid-phase extraction liquid chromatography/tandem mass spectrometry, Journal of Chromatography A, vol.1103, issue.1, pp.83-93, 2006.
DOI : 10.1016/j.chroma.2005.10.073

E. Zuccato, S. Castiglioni, R. Bagnati, M. Melis, and R. Fanelli, Source, occurrence and fate of antibiotics in the Italian aquatic environment, Journal of Hazardous Materials, vol.179, issue.1-3, pp.1042-1048, 2010.
DOI : 10.1016/j.jhazmat.2010.03.110

N. Collado, S. Rodriguez-mozaz, M. Gros, A. Rubirola, D. Barceló et al., Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system, Environmental Pollution, vol.185, pp.202-212, 2014.
DOI : 10.1016/j.envpol.2013.10.040

P. Verlicchi, M. Aukidy, A. Jelic, M. Petrovi?, and D. Barceló, Comparison of measured and predicted concentrations of selected pharmaceuticals in wastewater and surface water: A case study of a catchment area in the Po Valley (Italy), Science of The Total Environment, vol.470, issue.471, pp.844-854, 2014.
DOI : 10.1016/j.scitotenv.2013.10.026

R. López-serna, S. Pérez, A. Ginebreda, M. Petrovi?, and D. Barceló, Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction???liquid chromatography-electrospray???tandem mass spectrometry, Talanta, vol.83, issue.2, pp.410-424, 2010.
DOI : 10.1016/j.talanta.2010.09.046

J. Siemens, G. Huschek, C. Siebe, and M. Kaupenjohann, Concentrations and mobility of human pharmaceuticals in the world's largest wastewater irrigation system, Mexico City???Mezquital Valley, Water Research, vol.42, issue.8-9, 2008.
DOI : 10.1016/j.watres.2007.11.019

R. H. Lindberg, P. Wennberg, M. I. Johansson, M. Tysklind, and B. A. Andersson, Screening of Human Antibiotic Substances and Determination of Weekly Mass Flows in Five Sewage Treatment Plants in Sweden, Environmental Science & Technology, vol.39, issue.10, pp.39-3421, 2005.
DOI : 10.1021/es048143z

M. Carballa, F. Omil, J. M. Lema, M. Llompart, C. Garcia et al., Behaviour of pharmaceuticals and personal care products in a sewage treatment plant of northwest Spain, Water Sci. Technol, pp.52-81, 2005.

F. Yu, Y. Li, S. Han, and J. Ma, Adsorptive removal of antibiotics from aqueous solution using carbon materials, Chemosphere, vol.153, pp.365-385, 2016.
DOI : 10.1016/j.chemosphere.2016.03.083

K. Zare, V. K. Gupta, O. Moradi, A. S. Makhlouf, M. Sillanpää et al., A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review, Journal of Nanostructure in Chemistry, vol.102, issue.21, pp.227-236, 2015.
DOI : 10.1016/j.jenvman.2012.02.021

R. Daghrir, P. Drogui, and D. Robert, Photoelectrocatalytic technologies for environmental applications, Journal of Photochemistry and Photobiology A: Chemistry, vol.238, pp.41-52, 2012.
DOI : 10.1016/j.jphotochem.2012.04.009

V. Homem and L. Santos, Degradation and removal methods of antibiotics from aqueous matrices ??? A review, Journal of Environmental Management, vol.92, issue.10, pp.2304-2347, 2011.
DOI : 10.1016/j.jenvman.2011.05.023

M. N. Chong, B. Jin, C. W. Chow, and C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Research, vol.44, issue.10, pp.2997-3027, 2010.
DOI : 10.1016/j.watres.2010.02.039

A. A. Assadi, J. Palau, A. Bouzaza, and D. , Wolbert: A continuous air reactor for photocatalytic degradation of Isovaleraldehyde: Effect of different operating parameters and Chemical degradation pathway, Chemical Engineering Research and Design, pp.91-1307, 2013.

H. De-lasa and B. Serrano-rosales, Advances in Chemical Engineering: Photocatalytic Technologies, 2009.

R. P. Hesketh and M. A. Abraham, Reaction engineering for pollution prevention, 2000.

N. Serpone, Klnetlc Studies In Heterogeneous Photocatalysis . 1, Photocatalytic Degradatlon of Matrix, pp.5726-5731, 2015.

A. A. Assadi, A. Bouzaza, and D. Wolbert, Photocatalytic oxidation of trimethylamine and isovaleraldehyde in an annular reactor: Influence of the mass transfer and the relative humidity, Journal of Photochemistry and Photobiology A: Chemistry, vol.236, pp.61-69, 2012.
DOI : 10.1016/j.jphotochem.2012.03.020

URL : https://hal.archives-ouvertes.fr/hal-00867221

F. J. Beltran, A. Aguinaco, J. F. García-araya, and A. Oropesa, Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water, Water Research, vol.42, issue.14, pp.3799-3808, 2008.
DOI : 10.1016/j.watres.2008.07.019

K. Ikehata, N. J. Naghashkar, and M. , Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review, Ozone: Science & Engineering, vol.44, issue.6, pp.353-414, 2006.
DOI : 10.1016/S0043-1354(99)00338-3

M. Mehrjouei, S. Müller, and D. Möller, A review on photocatalytic ozonation used for the treatment of water and wastewater, Chemical Engineering Journal, vol.263, 2015.
DOI : 10.1016/j.cej.2014.10.112

C. Rodrigues-silva, M. Guedes, S. Rath, and J. Roberto, Degradation of flumequine by the Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity, Science of The Total Environment, vol.445, issue.446, pp.445-446, 2013.
DOI : 10.1016/j.scitotenv.2012.12.079

M. Feng, L. Yan, X. Zhang, P. Sun, S. Yang et al., Fast removal of the antibiotic flumequine from aqueous solution by ozonation: Influencing factors, reaction pathways, and toxicity evaluation, Science of The Total Environment, vol.541, pp.167-175, 2016.
DOI : 10.1016/j.scitotenv.2015.09.048

M. Feng, R. Qu, X. Zhang, P. Sun, Y. Sui et al., Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts, Water Research, vol.85, 2015.
DOI : 10.1016/j.watres.2015.08.011

C. Rodrigues-silva, M. G. Maniero, S. Rath, and J. R. Guimarães, Degradation of flumequine by photocatalysis and evaluation of antimicrobial activity, Chemical Engineering Journal, vol.224, pp.46-52, 2013.
DOI : 10.1016/j.cej.2012.11.002

J. Nieto, J. Freer, D. Contreras, R. J. Candal, E. E. Sileo et al., Photocatalyzed degradation of flumequine by doped TiO 2 and simulated solar light, 2008.

N. Miranda-garcía, M. I. Maldonado, J. M. Coronado, and S. Malato, Degradation study of 15 emerging contaminants at low concentration by immobilized TiO 2 in a pilot plant, 2010.

N. Miranda-garcía, S. Suárez, B. Sánchez, J. M. Coronado, S. Malato et al., Applied Catalysis B : Environmental Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO 2 in a solar pilot plant, pp.294-301, 2011.

R. Palominos, J. Freer, M. A. Mondaca, and H. D. Mansilla, Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine, Journal of Photochemistry and Photobiology A: Chemistry, vol.193, issue.2-3, 2008.
DOI : 10.1016/j.jphotochem.2007.06.017

M. Canle, M. I. Pérez, and J. A. Santaballa, ScienceDirect Photocatalyzed degradation / abatement of endocrine disruptors, Curr. Opin. Green Sustain. Chem, vol.6, 2017.
DOI : 10.1016/j.cogsc.2017.06.008

S. Babi?, L. ?urkovi?, D. Ljubas, and M. ?izmi?, TiO 2 assisted photocatalytic degradation of macrolide antibiotics, Current Opinion in Green and Sustainable Chemistry, vol.6, pp.34-41, 2017.
DOI : 10.1016/j.cogsc.2017.05.004

N. F. Moreira, J. M. Sousa, G. Macedo, A. R. Ribeiro, L. Barreiros et al., Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity, Water Res, vol.94, 2016.

L. Prieto-rodriguez, S. Miralles-cuevas, I. Oller, A. Agüera, G. L. Puma et al., Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations, Journal of Hazardous Materials, vol.211, issue.212, pp.131-137, 2012.
DOI : 10.1016/j.jhazmat.2011.09.008

A. Bernabeu, R. F. Vercher, L. Santos-juanes, P. J. Simón, C. Lardín et al., Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents, Catalysis Today, vol.161, issue.1, pp.235-240, 2011.
DOI : 10.1016/j.cattod.2010.09.025

S. Yahiat, F. Fourcade, S. Brosillon, and A. Amrane, Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment ??? Case of tetracycline and tylosin, International Biodeterioration & Biodegradation, vol.65, issue.7, pp.997-1003, 2011.
DOI : 10.1016/j.ibiod.2011.07.009

URL : https://hal.archives-ouvertes.fr/hal-00921057

L. Lhomme, S. Brosillon, and D. Wolbert, Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO 2 coated media, pp.381-386, 2008.

B. Stephan, L. Ludovic, and W. Dominique, Modelling of a falling thin film deposited photocatalytic step reactor for water purification: Pesticide treatment, Chemical Engineering Journal, vol.169, issue.1-3, pp.216-225, 2011.
DOI : 10.1016/j.cej.2011.03.016

A. A. Assadi, A. Bouzaza, and D. Wolbert, Study of synergetic effect by surface discharge plasma/TiO 2 combination for indoor air treatment: sequential and continuous configurations at pilot scale, Journal of Photochemistry and Photobiology A, pp.310148-154, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01158449

G. Malekshoar and A. K. Ray, In-situ grown molybdenum sulfide on TiO 2 for dye-sensitized solar photocatalytic hydrogen generation, Chemical Engineering Science, vol.152, pp.35-44, 2016.
DOI : 10.1016/j.ces.2016.05.029

A. Brucato, A. E. Cassano, F. Grisafi, G. Montante, L. Rizzuti et al., Estimating radiant fields in flat heterogeneous photoreactors by the six-flux model, AIChE Journal, vol.22, issue.11, pp.3882-3890, 2006.
DOI : 10.1007/978-94-015-7725-0_24

B. Toepfer, A. Gora, and G. L. Puma, Photocatalytic oxidation of multicomponent solutions of herbicides: Reaction kinetics analysis with explicit photon absorption effects, Applied Catalysis B: Environmental, vol.68, issue.3-4, pp.171-180, 2006.
DOI : 10.1016/j.apcatb.2006.06.020

B. Sheidaei and M. A. Behnajady, Efficiency of a Photoreactor Packed with Immobilized Titanium Dioxide Nanoparticles in the Removal of Acid Orange 7, Water Environment Research, vol.88, issue.5, pp.449-457, 2016.
DOI : 10.2175/106143016X14504669768651

X. Hao, H. Li, Z. Zhang, C. Fan, S. Liu et al., Modeling and experimentation of a novel labyrinth bubble photoreactor for degradation of organic pollutant, Chemical Engineering Research and Design, vol.87, issue.12, pp.1604-1611, 2009.
DOI : 10.1016/j.cherd.2009.06.002

A. A. Assadi, J. Palau, A. Bouzaza, and D. Wolbert, Modeling of a continuous photocatalytic reactor for isovaleraldehyde oxidation: Effect of different operating parameters and chemical degradation pathway, Chemical Engineering Research and Design, vol.91, issue.7, pp.1307-1316, 2013.
DOI : 10.1016/j.cherd.2013.02.020

URL : https://hal.archives-ouvertes.fr/hal-00912627

J. Herrmann, Active Agents in Heterogeneous Photocatalysis: Atomic Oxygen Species vs. OH. Radicals: Related Quantum Yields, Helvetica Chimica Acta, vol.84, issue.9, pp.2731-2750, 2001.
DOI : 10.1002/1522-2675(20010919)84:9<2731::AID-HLCA2731>3.0.CO;2-L

V. Despotovic, B. Abramovic, and N. Finc, Mechanism of clomazone photocatalytic degradation : hydroxyl radical , electron and hole scavengers, pp.67-79, 2015.

A. Shet and V. Shetty, Photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@TiO2) nanoparticles under UV light irradiation, Environmental Science and Pollution Research, vol.11, issue.1, pp.1-10, 2015.
DOI : 10.3923/jas.2011.2320.2326

Y. Nakabayashi and Y. Nosaka, Crystal in the Procedure of Photoelectrochemical Water Oxidation, The Journal of Physical Chemistry C, vol.117, issue.45, pp.23832-23839, 2013.
DOI : 10.1021/jp408244h

J. Wang, Y. Sun, J. Feng, L. Xin, and J. Ma, Degradation of triclocarban in water by dielectric barrier discharge plasma combined with TiO2/activated carbon fibers: Effect of operating parameters and byproducts identification, Chemical Engineering Journal, vol.300, pp.36-46, 2016.
DOI : 10.1016/j.cej.2016.04.041

C. Rodrigues-silva, M. Guedes, S. Rath, and J. Roberto, Degradation of flumequine by photocatalysis and evaluation of antimicrobial activity, Chemical Engineering Journal, vol.224, 2013.
DOI : 10.1016/j.cej.2012.11.002

H. D. Mansilla, A. Mora, C. Pincheira, and M. A. Mondaca, New photocatalytic reactor with TiO 2 coating on sintered glass cylinders, 2007.
DOI : 10.1016/j.apcatb.2007.04.025

S. Rtimi, C. Pulgarin, R. Sanjines, and J. Kiwi, Innovative semi-transparent nanocomposite films presenting photo-switchable behavior and leading to a reduction of the risk of infection under sunlight, RSC Advances, vol.181, issue.37, pp.16345-16348, 2013.
DOI : 10.1016/j.jphotochem.2005.12.028

J. Nesic, S. Rtimi, D. Laub, G. M. Roglic, C. Pulgarin et al., New evidence for TiO 2 uniform surfaces leading to complete bacterial reduction in the dark: Critical issues, Colloids and Surfaces B: Biointerfaces, vol.123, pp.593-599, 2014.
DOI : 10.1016/j.colsurfb.2014.09.060

A. Fujishima, X. Zhang, and D. Tryk, TiO2 photocatalysis and related surface phenomena, Surface Science Reports, vol.63, issue.12, pp.515-582, 2008.
DOI : 10.1016/j.surfrep.2008.10.001

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environmental, vol.125, pp.331-349, 2012.
DOI : 10.1016/j.apcatb.2012.05.036