F. F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. Diaz-de-la-rubia et al., Simulating materials failure by using up to one billion atoms and the world's fastest computer: Brittle fracture, Proceedings of the National Academy of Sciences, vol.99, issue.9, pp.995777-5782, 2002.
DOI : 10.1073/pnas.062054999

N. C. Admal and E. B. Tadmor, A Unified Interpretation of Stress in Molecular Systems, Journal of Elasticity, vol.12, issue.22, pp.63-143, 2010.
DOI : 10.1007/978-3-642-46015-9_1

B. J. Alder and T. E. Wainwright, Phase Transition for a Hard Sphere System, The Journal of Chemical Physics, vol.27, issue.5, pp.1208-1209, 1957.
DOI : 10.1063/1.1743956

B. J. Alder and T. E. Wainwright, Studies in Molecular Dynamics. I. General Method, The Journal of Chemical Physics, vol.9, issue.2, pp.459-466, 1959.
DOI : 10.1063/1.1743957

D. André, Modélisation parélémentspar´paréléments discrets des phases d'´ ebauchage et de doucissage de la silice, 2012.

D. André, J. L. Charles, and I. Iordanoff, 3D Discrete Element Workbench for Highly Dynamic Thermo-mechanical Analysis: Gran00, ISTE, 2015.
DOI : 10.1002/9781119116356

D. André, I. Iordanoff, J. L. Charles, and J. Néauport, Discrete element method to simulate continuous material by using the cohesive beam model, Computer Methods in Applied Mechanics and Engineering, vol.213, issue.216, pp.213-216113, 2012.
DOI : 10.1016/j.cma.2011.12.002

D. André, M. Jebahi, I. Iordanoff, J. L. Charles, and J. Néauport, Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter, Computer Methods in Applied Mechanics and Engineering, vol.265, pp.136-147, 2013.
DOI : 10.1016/j.cma.2013.06.008

A. Arora, D. B. Marshall, B. R. Lawn, and M. V. Swain, Indentation deformation/fracture of normal and anomalous glasses, Journal of Non-Crystalline Solids, vol.31, issue.3, pp.415-428, 1979.
DOI : 10.1016/0022-3093(79)90154-6

M. Born and K. Huang, Dynamical Theory of Crystal Lattices, American Journal of Physics, vol.23, issue.7, 1954.
DOI : 10.1119/1.1934059

P. W. Bridgman and I. Simon, Effects of Very High Pressures on Glass, Journal of applied physics, vol.24, issue.405, 1953.

R. Brückner, Properties and structure of vitreous silica. I, Journal of Non-Crystalline Solids, vol.5, issue.2, pp.123-175, 1970.
DOI : 10.1016/0022-3093(70)90190-0

R. Brückner, Properties and structure of vitreous silica. I, Journal of Non-Crystalline Solids, vol.5, issue.2, pp.177-216, 1971.
DOI : 10.1016/0022-3093(70)90190-0

E. B. Christiansen, S. S. Kistler, and W. B. Gogarty, Irreversible Compressibility of Silica Glass as a Means of Determining the Distribution of Force in High-pressure Cells, Journal of the American Ceramic Society, vol.84, issue.1, pp.172-177, 1962.
DOI : 10.1063/1.1721294

H. M. Cohen and R. Roy, Effects of Ultra high Pressures on Glass, Journal of the American Ceramic Society, vol.111, issue.36, pp.523-524, 1961.
DOI : 10.1063/1.1721294

H. M. Cohen and R. Roy, Reply to "Comments on'Effects of Ultrahigh Pressures on Glass'", Journal of the American Ceramic Society, vol.44, issue.10, pp.398-399, 1962.
DOI : 10.1063/1.1722519

P. A. Cundall and O. D. Strack, A discrete numerical model for granular assemblies, G??otechnique, vol.29, issue.1, pp.47-65, 1979.
DOI : 10.1680/geot.1979.29.1.47

F. Dachille and R. Roy, High-pressure region of the silica isotypes, Zeitschrift f??r Kristallographie, vol.111, issue.1-6, pp.451-461, 1959.
DOI : 10.1524/zkri.1959.111.1-6.451

T. Deschamps, A. Kassir-bodon, C. Sonneville, J. Margueritat, C. Martinet et al., Permanent densification of compressed silica glass: a Raman-density calibration curve, Journal of Physics: Condensed Matter, vol.25, issue.2, pp.25402-25405, 2013.
DOI : 10.1088/0953-8984/25/2/025402

J. L. Finney, Random packings and the structure of simple liquids. i. the geometry of randomclose packing, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp.319479-493, 1539.

W. M. Foulkes, L. Mitas, R. J. Needs, and G. , Quantum Monte Carlo simulations of solids, Reviews of Modern Physics, vol.58, issue.1, 2001.
DOI : 10.1103/PhysRevE.58.5123

K. Gotoh and J. L. Finney, Statistical geometrical approach to random packing density of equal spheres, Nature, vol.40, issue.5480, pp.202-205, 1974.
DOI : 10.1515/crll.1908.134.198

S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, Journal of Computational Chemistry, vol.101, issue.12, pp.1463-1473, 2004.
DOI : 10.1021/jp001766o

T. M. Gross, Deformation and cracking behavior of glasses indented with diamond tips of various sharpness, Journal of Non-Crystalline Solids, vol.358, issue.24, pp.3445-3452, 2012.
DOI : 10.1016/j.jnoncrysol.2012.01.052

H. Haddad, W. Leclerc, M. Guessasma, C. Pélegris, N. Ferguen et al., Application of DEM to predict the elastic behavior of particulate composite materials, Granular Matter, vol.13, issue.3, pp.459-473, 2015.
DOI : 10.1016/0022-5096(65)90015-3

W. J. Hehre, A Guide to Molecular Mechanics and Quantum Chemical Calculations, 2003.

A. and I. Murdoch, A Critique of Atomistic Definitions of the Stress Tensor, Journal of Elasticity, vol.48, issue.2, pp.113-140, 2007.
DOI : 10.1098/rspa.1955.0064

M. Jebahi, Discrete-continuum coupling method for simulation of laser-inducced damage in silica glass, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00952023

M. Jebahi, D. André, F. Dau, J. L. Charles, and I. Iordanoff, Simulation of Vickers indentation of silica glass, Journal of Non-Crystalline Solids, vol.378, pp.15-24, 2013.
DOI : 10.1016/j.jnoncrysol.2013.06.007

URL : https://hal.archives-ouvertes.fr/hal-00909724

M. Jebahi, F. Dau, J. L. Charles, and I. Iordanoff, Discrete-continuum Coupling Method to Simulate Highly Dynamic Multi-scale Problems: Simulation of Laser-induced Damage in Silica Glass, 2015.
DOI : 10.1002/9781119115274

M. Jebahi, A. Gakwaya, J. Lévesque, O. Mechri, and K. Ba, Robust methodology to simulate real shot peening process using discrete-continuum coupling method, International Journal of Mechanical Sciences, vol.107, pp.21-33, 2016.
DOI : 10.1016/j.ijmecsci.2016.01.005

H. Ji, Mécanique et physique de l'indentation du verre, 2007.

L. Jing and O. Stephansson, Fundamentals o f Discrete Element Methods for Rock Engineering: Theory and Applications, 2007.

V. Keryvin, ContributionàContribution`Contributionà l'´ etude des mécanismes de déformation et de fissuration des verres, Habilitationà Habilitation`Habilitationà diriger des recherches, 2008.

V. Keryvin, S. Gicquel, L. Charleux, J. P. Guin, M. Nivard et al., Densification as the Only Mechanism at Stake during Indentation of Silica Glass?, Key Engineering Materials, vol.606, pp.53-60, 2014.
DOI : 10.4028/www.scientific.net/KEM.606.53

URL : https://hal.archives-ouvertes.fr/hal-00977298

V. Keryvin, J. X. Meng, S. Gicquel, J. P. Guin, L. Charleux et al., Constitutive modeling of the densification process in silica glass under hydrostatic compression, Acta Materialia, vol.62, pp.250-257, 2014.
DOI : 10.1016/j.actamat.2013.07.067

A. Lisjak and G. Grasselli, A review of discrete modeling techniques for fracturing processes in discontinuous rock masses, Journal of Rock Mechanics and Geotechnical Engineering, vol.6, issue.4, pp.301-314, 2014.
DOI : 10.1016/j.jrmge.2013.12.007

G. R. Liu and M. B. Liu, Smoothed particle hydrodynamics : a meshfree particle method, 2003.
DOI : 10.1142/5340

URL : http://www.worldscientific.com/doi/pdf/10.1142/9789812564405_fmatter

M. B. Liu and G. R. Liu, Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments. Archives of computational methods in engineering, pp.25-76, 2010.
DOI : 10.1007/s11831-010-9040-7

URL : http://dspace.imech.ac.cn/bitstream/311007/42434/1/2010_SPH_Overview_ArCME.pdf

G. Lu and E. Kaxiras, Handbook of Theoretical and Computational Nanotechnology, chapter Overview of Multiscale Simulations of Materials, 2005.

J. D. Mackenzie, High-Pressure Effects on Oxide Glasses: I, Densification in Rigid State, Journal of the American Ceramic Society, vol.43, issue.3, pp.461-470, 1963.
DOI : 10.1107/S0365110X61003284

O. K. Mahabadi, A. Lisjak, A. Munjiza, and G. Grasselli, Y-Geo: New Combined Finite-Discrete Element Numerical Code for Geomechanical Applications, International Journal of Geomechanics, vol.12, issue.6, pp.676-688, 2012.
DOI : 10.1061/(ASCE)GM.1943-5622.0000216

C. L. Martin, D. Bouvard, and S. Shima, Study of particle rearrangement during powder compaction by the Discrete Element Method, Journal of the Mechanics and Physics of Solids, vol.51, issue.4, pp.667-693, 2003.
DOI : 10.1016/S0022-5096(02)00101-1

A. G. Mclellan, Virial Theorem Generalized, American Journal of Physics, vol.42, issue.3, 1974.
DOI : 10.1119/1.1987655

T. A. Michalske and S. W. Freiman, A Molecular Mechanism for Stress Corrosion in Vitreous Silica, Journal of the American Ceramic Society, vol.28, issue.3, pp.284-288, 1983.
DOI : 10.1016/0001-6160(80)90009-7

A. Munjiza, The combined Finite-Discrete Element Methode, 2004.
DOI : 10.1002/0470020180

K. Muralidharan, J. H. Simmons, P. A. Deymier, and K. Runge, Molecular dynamics studies of brittle fracture in vitreous silica: Review and recent progress, Journal of Non-Crystalline Solids, vol.351, issue.18, pp.1532-1542, 2005.
DOI : 10.1016/j.jnoncrysol.2005.03.026

T. Pöschel and T. Schwager, Computational Granular Dynamics: Models and Algorithms, 2005.

D. O. Potyondy, Bonded-particle modeling of fracture and flow, Frontiers in Particle Science and Technology: Mitigation and Application of Particle Attrition, pp.65-120, 2016.

D. O. Potyondy and P. A. , A bonded-particle model for rock, International Journal of Rock Mechanics and Mining Sciences, vol.41, issue.8, pp.1329-1364, 2004.
DOI : 10.1016/j.ijrmms.2004.09.011

D. O. Potyondy, The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions, Geosystem Engineering, vol.118, issue.1, pp.1-28
DOI : 10.1016/j.ijrmms.2011.11.004

P. W. Randles and L. D. Libersky, Smoothed Particle Hydrodynamics: Some recent improvements and applications, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.375-408, 1996.
DOI : 10.1016/S0045-7825(96)01090-0

E. Rougier, E. E. Knight, A. J. Sussman, R. P. Swift, and C. R. Bradley, The combined finite-discrete element method applied to the study of rock fracturing behaviour in 3D, Proceedings of the 45th US Rock Mechanics/Geomechanics Symposium, 2011.

E. Rougier, A. Munjiza, and N. W. John, Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics, International Journal for Numerical Methods in Engineering, vol.61, issue.6, pp.856-879, 2004.
DOI : 10.1002/nme.1092

T. Rouxel, H. Ji, F. Augereau, and B. Rufflé, Indentation deformation mechanism in glass: Densification versus shear flow, Journal of Applied Physics, vol.43, issue.9, 2010.
DOI : 10.1111/j.1551-2916.2007.01945.x

URL : https://hal.archives-ouvertes.fr/hal-00497135

T. Rouxel, H. Ji, T. Hammouda, and A. Moréac, Poisson???s Ratio and the Densification of Glass under High Pressure, Physical Review Letters, vol.13, issue.22, 2008.
DOI : 10.1111/j.1551-2916.2006.01374.x

E. Schlangen and J. G. Van-mier, Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cement and Concrete Composites, pp.105-118, 1992.

E. Schlangen and J. G. Van-mier, Simple lattice model for numerical simulation of fracture of concrete materials and structures, Materials and Structures, vol.23, issue.3, pp.534-542, 1992.
DOI : 10.1016/B978-0-444-88551-7.50016-1

C. Sonneville, T. Deschamps, C. Martinet, D. De-ligny, A. Mermet et al., Polyamorphic transitions in silica glass, Journal of Non-Crystalline Solids, vol.382, pp.133-136, 2013.
DOI : 10.1016/j.jnoncrysol.2012.12.002

I. Terreros, Modélisation DEM thermo-mécanique d'un milieu continu. Vers la simulation du procédé FSW, 2013.

S. P. Timoshenko, History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structure, 1983.

P. Viot, I. Iordanoff, and D. Bernard, Multiscale description of polymeric foam behavior: A new approach based on discrete element modeling, Polymer Science Series A, vol.50, issue.6, pp.679-689, 2008.
DOI : 10.1134/S0965545X08060114

URL : https://hal.archives-ouvertes.fr/hal-00319590

C. E. Weir and S. Spinner, Comments on "Effects of Ultrahigh Pressures on Glass", Journal of the American Ceramic Society, vol.84, issue.11, p.196, 1962.
DOI : 10.1063/1.1722519

S. M. Wiederhorn, Influence of Water Vapor on Crack Propagation in Soda-Lime Glass, Journal of the American Ceramic Society, vol.42, issue.1, pp.407-414, 1967.
DOI : 10.1021/ja01168a005

S. M. Wiederhorn and J. P. Guin, Fracture of silicate glasses: ductile or brittle? Physical Review letters, p.215502, 2004.

C. Yan, H. Zheng, G. Sun, and X. Ge, Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing. Rock Mechanics and Rock Engineering, pp.1389-1410, 2016.

S. Yoshida, J. C. Sangleboeuf, and T. , Quantitative evaluation of indentation-induced densification in glass, Journal of Materials Research, vol.5, issue.12, 2005.
DOI : 10.1063/1.117458

M. Zhou, A new look at the atomic level virial stress: on continuum-molecular system equivalence, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.459, issue.2037, pp.2347-2392, 2003.
DOI : 10.1098/rspa.2003.1127

O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and Structural Mechanics, 2005.

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, Finite Element Method: Its Basis & Fundamentals, 2005.