H. Sechi, S. Snyder, M. Srivastava, S. Uhlen, M. Wu et al., The human proteome project: current state and future direction

F. Schaeffer, M. Teixeira, D. Lane, L. Bairoch, and A. , The neXtProt knowledgebase on human proteins: 2017 update, pp.45-177, 2017.

Y. Vandenbrouck, Computational and Mass-Spectrometry-5ased Workflow for the Discovery and Validation of Missing Human Proteins: Application to Chromosomes

G. S. Omenn, Metrics for the Human Proteome Project 2013-2014 and strategies for finding missing proteins, pp.15-20, 2014.

Q. R. Chen, N. Cenacchi, and J. Khan, Database of mRNA gene expression profiles of multiple human organs, Genome research, vol.15, issue.3, pp.443-50, 2005.

J. Rockberg, P. Nilsson, J. M. Schwenk, M. Hamsten, K. Von-feilitzen et al., Proteomics. Tissue-based map of the human proteome, Science, vol.2015, issue.6220, pp.347-1260419

M. Uhlen, B. M. Hallstrom, C. Lindskog, A. Mardinoglu, F. Ponten et al., Transcriptomics resources of human tissues and organs. Molecular systems biology, p.862, 2016.

S. Chocu, P. Calvel, A. D. Rolland, and C. Pineau, Spermatogenesis in mammals: proteomic insights, Systems biology in reproductive medicine 2012, pp.179-90
DOI : 10.1021/pr0600733

URL : https://hal.archives-ouvertes.fr/hal-00877749

M. Uhlen and F. Ponten, The human testis-specific proteome defined by transcriptomics and antibody-based profiling. Molecular human reproduction, pp.476-88, 2014.

C. Pineau, Human Spermatozoa as a Model for Detecting Missing Proteins in the Context of the Chromosome-Centric Human Proteome Project, pp.3-3
URL : https://hal.archives-ouvertes.fr/hal-01187320

S. Gallien, S. Y. Kim, and B. Domon, Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM). Molecular & cellular proteomics : MCP 2015, pp.1630-1674
DOI : 10.1074/mcp.o114.043968

URL : http://www.mcponline.org/content/14/6/1630.full.pdf

P. Duek, A. Bairoch, A. Gateau, Y. Vandenbrouck, L. Lane et al., Missing Protein Landscape of Human Chromosomes 2 and 14: Progress and Current Status Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis, Proteomics. Clinical applications, vol.201, issue.15, pp.3971-3978, 2007.

M. Schaeffer, A. Gateau, D. Teixeira, P. A. Michel, M. Zahn-zabal et al., The neXtProt peptide uniqueness checker: a tool for the proteomics community, Bioinformatics, vol.15, issue.21
DOI : 10.1021/acs.jproteome.6b00400

A. Rolland and F. Aubry, doi: 10.1093/bioinformatics/btx318. [Epub ahead of print]. 17, Bioinformatics Com, E Jegou, B, 2017.

V. Pineau and C. , Identification, molecular cloning, and cellular distribution of the rat homolog of minichromosome maintenance protein 7 (MCM7) in the rat testis
URL : https://hal.archives-ouvertes.fr/hal-00651393

C. Sander, L. Hood, R. Aebersold, and R. L. Moritz, Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome, Cell, vol.2016, issue.1663, pp.766-78

A. Emili, H. Gan, T. Cai, X. Lin, Y. Wu et al., Human tissue profiling with multidimensional protein identification technology 1757-&'A 20 Integrative proteomic and transcriptomic analyses reveal multiple post-transcriptional regulatory mechanisms of mouse spermatogenesis, Molecular & cellular proteomics : MCP 2013, pp.1144-57, 2005.

N. B. Hecht, Regulation of 'haploid expressed genes' in male germ cells, Reproduction, vol.88, issue.2
DOI : 10.1530/jrf.0.0880679

F. H. Espinoza, T. J. Desai, M. A. Krasnow, S. R. Quake, J. Leszyk et al., Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq Proteomic analysis of a eukaryotic cilium, Nature Pazour, G. J.; Agrin, N The Journal, vol.2014, issue.1701, pp.371-376, 2005.

K. Blondeau, J. Janin, and H. Van-tilbeurgh, Crystal structure of yeast allantoicase reveals a repeated jelly roll motif. The Journal of biological chemistry, pp.279-23447, 2004.

E. M. Cho, C. Castaneda, J. M. Fujihara, and Y. , Integrative characterization of germ cell-specific genes from mouse spermatocyte UniGene library, BMC Genomics, vol.8, issue.1, pp.256-292, 2007.
DOI : 10.1186/1471-2164-8-256

M. Mori, M. Noda, T. Oji, A. Okabe, M. Prunskaite-hyyrylainen et al., Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice, Proceedings of the National Academy of Sciences of the United States of America 2016, pp.113-7704

W. Chen, M. Lin, R. Huo, B. Su, Z. Zhou et al., Proteomic analysis of proteins involved in spermiogenesis in mouse, Neesen, J.; Hartwich, T, vol.9, issue.3, pp.124-56, 2010.

P. Mendoza-lujambio and I. , Tep22, a novel testicular expressed gene, is involved in the biogenesis of the acrosome and the midpiece of the sperm tail, pp.737-785, 2002.

C. Zhang, G. Cheng, X. Chen, D. Kong, Y. Wang et al., Tissue-5ased Proteogenomics Reveals that Human Testis Endows Plentiful Missing Proteins Analysis of the Fam181 gene family during mouse development reveals distinct strain-specific expression patterns, suggesting a role in nervous system development and function, 41. Marks, M.; Pennimpede, T Gene, vol.2, issue.5752, pp.3583-94

J. Demmers, M. O. Steinmetz, T. J. Gibson, and A. Akhmanova, A Proteome-wide screen for mammalian SxIP motif-containing microtubule plus-end tracking proteins, pp.22-1800

C. J. Ormandy and M. K. O-'bryan, RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly, Cytoskeletal dynamics and spermatogenesis. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, pp.365-1581, 1546.

C. Cho, Testicular and epididymal ADAMs: expression and function during fertilization, Nature Reviews Urology, vol.91, issue.10, pp.550-60
DOI : 10.1016/j.fertnstert.2008.05.088

R. D. Moreno, P. Urriola-munoz, and R. Lagos-cabre, The emerging role of matrix metalloproteases of the ADAM family in male germ cell apoptosis, Spermatogenesis, vol.129, issue.3
DOI : 10.1016/S0378-1119(02)00508-5

A. Mujica, Presence, processing, and localization of mouse ADAM15 during sperm maturation and the role of its disintegrin domain during sperm-egg binding ADAM7 is associated with epididymosomes and integrated into sperm plasma membrane, Reproduction, vol.136, issue.285, pp.41-51, 2008.

P. Myles and D. G. , Fertilization defects in sperm from mice lacking fertilin beta, Science, issue.5384, pp.281-1857, 1998.

M. Ikawa and M. Okabe, Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse, Biology of reproduction, vol.81, issue.1, pp.142-148, 2009.

S. Jeon, Y. J. Yoo, and C. Cho, Reduced Fertility and Altered Epididymal and Sperm Integrity in Mice Lacking ADAM7, 70. 60. Stauber

M. Beckers, A. Kracht, M. Gossler, and A. , Identification of FOXJ1 effectors during ciliogenesis in the foetal respiratory epithelium and embryonic left-right organiser of the mouse, Developmental biology, vol.2017, issue.4232, pp.170-188

W. Li and G. Liu, DNAJB13, a type II HSP40 family member, localizes to the spermatids and spermatozoa during mouse spermatogenesis, BMC Developmental Biology, vol.24, issue.1, pp.38-62, 2014.
DOI : 10.1038/sj.emboj.7600549

S. Amselem, Mutations in DNAJB13, Encoding an HSP40 Family Member

M. Yano, S. Aizawa, M. Mori, R. Meccariello, R. Chianese et al., A type I DnaJ homolog, DjA1, regulates androgen 68 Molecular chaperones, cochaperones, and ubiquitination/deubiquitination system: involvement in the production of high quality spermatozoa, p.561426, 2014.

M. Doiguchi, T. Kaneko, A. Urasoko, H. Nishitani, and H. Iida, Identification of a heat-shock protein Hsp40, DjB1, as an acrosome-and a tail-associated component in rodent spermatozoa. Molecular reproduction and development, pp.223-255, 2007.

R. D. Burgoyne and A. Morgan, Cysteine string protein (CSP) and its role in preventing neurodegeneration, Seminars in cell & developmental biology 2015, pp.153-162
DOI : 10.1016/j.semcdb.2015.03.008

R. Schneggenburger and T. C. Sudhof, The synaptic vesicle protein CSP alpha prevents presynaptic degeneration, Neuron, vol.42, issue.2, pp.237-51, 2004.

C. B. Gundersen, S. A. Kohan, P. Souda, J. P. Whitelegge, and J. A. Umbach, Cysteine string protein beta is prominently associated with nerve terminals and secretory organelles in mouse brain, pp.1-11, 2010.

R. J. Mcfarlane, A novel cohort of cancer-testis biomarker genes revealed through meta-analysis of clinical data sets, Oncoscience, vol.2014, issue.15, pp.349-59

O. A. Gorleku and L. H. Chamberlain, Palmitoylation and testis-enriched expression of the cysteine-string protein beta isoform, Biochemistry, issue.25, pp.49-5308, 2010.

F. Boal, S. Le-pevelen, C. Cziepluch, P. Scotti, and J. Lang, Cysteine-string protein isoform beta (Cspbeta) is targeted to the trans-Golgi network as a nonpalmitoylated CSP in clonal beta-cells, Biochimica et biophysica acta, issue.2, pp.1773-109, 2007.

S. A. Boehme, K. Franz-bacon, D. N. Ditirro, T. W. Ly, K. B. Bacon et al., MAP3K19 Is a Novel Regulator of TGF-beta Signaling That Impacts Bleomycin- Induced Lung Injury and Pulmonary Fibrosis, e0154874. 77. Laska, pp.398-409

S. Mcreynolds, M. Dzieciatkowska, J. Stevens, K. C. Hansen, W. B. Schoolcraft et al., Toward the identification of a subset of unexplained infertility: a sperm proteomic approach The cycle of the seminiferous epithelium in man. The American journal of anatomy, Fertility and sterility, vol.2014, issue.112, pp.692-701, 1963.