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Abstract

Cohesin is crucial for genome stability, cell division, transcription and chromatin organiza-

tion. Its functions critically depend on NIPBL, the cohesin-loader protein that is found to be

mutated in >60% of the cases of Cornelia de Lange syndrome (CdLS). Other mutations are

described in the cohesin subunits SMC1A, RAD21, SMC3 and the HDAC8 protein. In 25–

30% of CdLS cases no mutation in the known CdLS genes is detected. Until now, functional

elements in the noncoding genome were not characterized in the molecular etiology of

CdLS and therefore are excluded from mutation screening, although the impact of such

mutations has now been recognized for a wide range of diseases. We have identified differ-

ent elements of the noncoding genome involved in regulation of the NIPBL gene. NIPBL-

AS1 is a long non-coding RNA transcribed upstream and antisense to NIPBL. By knock-

down and transcription blocking experiments, we could show that not the NIPBL-AS1 gene

product, but its actual transcription is important to regulate NIPBL expression levels. This

reveals a possibility to boost the transcriptional activity of the NIPBL gene by interfering with

the NIPBL-AS1 lncRNA.

Further, we have identified a novel distal enhancer regulating both NIPBL and NIPBL-

AS1. Deletion of the enhancer using CRISPR genome editing in HEK293T cells reduces

expression of NIPBL, NIPBL-AS1 as well as genes found to be dysregulated in CdLS.

Author summary

The most frequent mutations in the human developmental disorder Cornelia de Lange

Syndrome (CdLS) occur in the NIPBL gene. NIPBL is critical for chromatin-association of
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the cohesin complex and has a dual role as transcription factor. The regulation of the

NIPBL gene is of great interest since organisms are very sensitive to NIPBL levels. For

instance, severely affected patients showed only ~65% and mildly affected patients ~75%

of NIPBLmRNA levels. One case reports a CdLS phenotype with as little as 15% reduction

of the NIPBL transcript. Further, in a number of patients with CdLS phenotype no muta-

tions in known CdLS genes are found, raising the question whether mutations could also

occur in gene-regulatory elements. Here we investigate the role of a long non-coding

RNA NIPBL-AS1 originating from a promoter shared with NIPBL and observe a co-regu-

lation by a distal enhancer that we have identified and that seems to be conserved between

tissues. Deletion of the enhancer by CRISPR leads to reduced expression of NIPBL and

NIPBL-AS1 but also of NIPBL target genes that were found to be dysregulated in CdLS

patient cells. The lncRNA NIPBL-AS1 itself has no role for NIPBL expression, but its tran-

scription reduces the expression of the NIPBL gene and vice versa, thus revealing an inter-

esting mechanism for the fine-tuning of expression levels.

Introduction

Genetic information needs to be inherited without any changes over numerous cell genera-

tions and from parents to offspring. This process crucially depends on the cohesin complex

that ensures genome stability during cell divisions, DNA damage repair and is involved in the

three-dimensional organisation of the chromatin fibre in the cell nucleus [1,2,3]. The associa-

tion of cohesin with DNA critically depends on the cohesin-loading factor NIPBL [4,5,6].

However, NIPBL is also involved in gene regulation, independent on its role for cohesin [7,8].

NIPBL is the gene that is most frequently (>60% of cases, OMIM 122470) found to be

mutated in the human developmental disorder Cornelia de Lange syndrome (CdLS, 1 of

10,000–30,000 live births) [9,10] [11,12]. This syndrome is characterized by craniofacial anom-

alies, upper limb malformations, growth and mental retardation, hirsutism, and other system

abnormalities [13,14]. Mutations in the cohesin subunits SMC1A, SMC3, RAD21 and the cohe-

sin regulator HDAC8 [15,16,17,18] account for ~10% of the more moderately affected patients.

The genetic causes of 20–25% of CdLS patients are still unknown.

The actual NIPBL expression levels seem to be critical for developmental processes in human

and mouse. In a cohort of severely affected CdLS patients only ~65% of NIPBL expression is

observed while mildly affected cases showed ~75% expression; one case report describes a mild

CdLS phenotype with as little as 15% reduction of theNIPBL transcript [19,20,21]. InNipbl het-

erozygous knockout mice with a CdLS reminiscent phenotype, the levels of Nipbl expression are

reduced by only 25–30%, suggesting a compensation by the intact allele [22]. Further, high

NIPBL levels have been found to confer poor prognosis in non-small cell lung cancer [23].

In this study we aimed at gaining insight into the regulation of the NIPBL gene by identify-

ing regulatory elements in the noncoding genome. Different studies have shown that a large

number of potentially disease-causing mutations/variants in the genome are located outside

coding regions in regulatory non-coding areas, highlighting the importance of the identifica-

tion of these elements for the study and diagnosis of human genetic diseases [24] [25] [26].

The potential relevance of such regions for CdLS is illustrated by mutations in the 5’ untrans-

lated region of NIPBL (NIPBL:c.-316_-315delinsA; [19] and NIPBL:c.-94C>T; [10]) that affect

NIPBL expression levels and are disease causing without affecting the NIPBL protein sequence.

Gene regulatory elements controlling CdLS genes have not yet been identified and analysed

for mutations at all.

NIPBL-AS1 and a distal enhancer regulate expression of the cohesin-loading factor NIPBL
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During the course of our project, a study aiming at analysing non-coding RNAs overlap-

ping with known autism-related genes identified a NIPBL promoter-associated antisense

transcript of 5.3 kb, named NIPBL-AS1, in brain tissues from patients affected by Autism Spec-

trum Disorders (ASD) [27]. Since NIPBL-AS1 and NIPBL showed a concordant expression in

their hands as well as ours, we hypothesized that NIPBL-AS1 andNIPBLmight be interconnec-

ted and that this could represent a gene regulatory mechanism.

Long non-coding RNAs (lncRNA) were shown to control genes located in their vicinity in

cis but also in distant domains in trans (reviewed in [28]). These processes can be mediated by

the transcription of the lncRNA per se, which affects nucleosome positioning or histone modi-

fications at gene promoters [29,30,31,32] or creates a permissive chromatin environment [33].

Alternatively, the lncRNA transcript itself functions as a scaffold to mediate silencing or activa-

tion of a target gene by binding to chromatin modifiers, transcription factors or proteins that

are part of the transcription preinitiation complex [34,35,36,37,38,39,40]. Thus, we aimed at

understanding whether and how the lncRNA NIPBL-AS1 influences NIPBL transcription.

Other crucial gene regulatory elements are enhancers. In mammals, they have been found

up to several hundred kilobases from the target transcription start site, as for instance the

Sonic Hedgehog (SHH) enhancer that is located 1MB upstream of the gene [41]. Enhancers

are “open” chromatin regions marked by H3.3/H2A.Z histone variants and enriched for his-

tone modifications such as mono- and di-methylated lysine 4 of histone H3 (H3K4me1/

H3K4me2) and acetylated lysine 27 of histone H3 (H3K27ac) (reviewed in [42]). Enhancers

for the NIPBL gene were so far unknown. Here we identified an enhancer that stimulates

expression of NIPBL as well as the lncRNA NIPBL-AS1.

Results

NIPBL gene activity is not influenced by NIPBL-AS1 transcript

NIPBL-AS1 is located upstream of NIPBL in a head-to-head orientation and encodes for a 5.3

kb lncRNA (Fig 1A). Considering the emerging roles of lncRNA in genome regulation, we

asked whether the NIPBL-AS1 transcript acts in NIPBL expression regulation. Since long non-

coding RNAs can function in the nucleus (MALAT1, XIST) or in the cytoplasm (linc-MD1,

NORAD) [43] we addressed the localization of NIPBL-AS1 by fractionation of HEK293T cells

into cytoplasmic and nucleoplasmic RNA. The RT-qPCR analysis of the cell fractions showed

that NIPBL-AS1 is not retained in the cell nucleus as much as lncRNAs with nuclear functions

likeMALAT1 or XIST [43]. However a fraction of NIPBL-AS1 is still present in the nucleus (S1

Fig).

To test whether NIPBL-AS1 acts directly on NIPBL expression, we depleted NIPBL-AS1 in

HEK293T cells using Antisense Oligonucleotides (ASO), which activate the RNAseH pathway

by forming DNA/RNA hybrids [44], leading to degradation of the targeted NIPBL-AS1 RNA.

ASOs are in particular suited to knockdown nuclear lncRNA but are also efficient for cyto-

plasmic lncRNA, so both pools can be efficiently depleted [45,46,47,48]. We used two ASOs to

target either the 5’ end or the 3’ end of the NIPBL-AS1 gene (respectively ASO2 and ASO3)

and one non-targeting control (ASO C). The transcript levels of NIPBL-AS1 (P132) and NIPBL
(P138; P42) were assessed by RT-PCR/qPCR at 48 hours after transfection. Two intron-span-

ning primer pairs in the middle (P138) and at the 3’-end (P42) of the NIPBL gene that cannot

discriminate between the different reported NIPBL splice variants [49] were used (Fig 1A).

NIPBL-AS1 transcripts were significantly reduced by both ASOs (Fig 1B), yielding depletion

efficiencies for NIPBL-AS1 as high as 80% for ASO2 and 70% for ASO3. NIPBL transcript lev-

els were not affected when we used a primer pair positioned more in the front part of the

NIPBL gene (primer P138). When we used a primer spanning two of the last exons (P42) we

NIPBL-AS1 and a distal enhancer regulate expression of the cohesin-loading factor NIPBL
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observed a small but significant difference (Fig 1C). To validate our results we repeated our

experiment in a different cell line, HB2 cells—a model cell line for normal breast endothelium,

that can be easily transfected (S1B and S1C Fig). Here we obtained the same result for primer

138 but the change that we observed for primer 42 is not significant. If the lncRNA would

affect NIPBL transcription directly we would expect a significant and robust change detectable

by both primer pairs. Therefore we concluded that the RNA product originating from NIP-
BL-AS1 does not remarkably influence NIPBL expression levels.

Active transcription of NIPBL-AS1 is important for NIPBL transcription

NIPBL and NIPBL-AS1 are transcribed from a shared bidirectional promoter that is GC rich

and lacks TATA elements. The annotated transcription start sites (TSS) of both genes are sepa-

rated by 77 bp (Fig 2A). The promoter is characterized by a DNAse hypersensitive region

flanked by mirrored H3K4me3 marks (Fig 2A). Only little is known about the regulation of

bidirectional promoters and about the relationship between the two transcribed genes. Since

theNIPBL-AS1 transcript seems to have no relevant function forNIPBL regulation, we hypoth-

esized that the actual transcription of NIPBL-AS1 is important for NIPBL expression.

To investigate this, we used the CRISPR/Cas9 system to interfere with the transcription

process of NIPBL-AS1 and NIPBL using different specific guide RNA (CRISPRi) (Fig 2A and

2B). It has already been reported that the DNA-binding of the rather bulky complex of

Fig 1. NIPBL-AS1 does not influence NIPBL transcription. A) Overview of the genomic position of NIPBL and NIPBL-AS1 genes.

Strand-specific read coverage of RNA-sequencing data (positive in green; negative in red) from HEK293T cells shows the

transcription of NIPBL-AS1 antisense to NIPBL [1]. CTCF binding sites in HEK293 cells (ENCODE hg18) are shown. Primers used in

the transcript analysis are indicated as green bars. (B-C) Transcript levels of (B) NIPBL-AS1 and (C) NIPBL after antisense

oligonucleotide knockdown (ASO2, ASO3) of NIPBL-AS1 in HEK293T cells. ASO C was used as control. Transcript levels were

normalized against the control sample (ASO C) and the housekeeping SNAPIN using the ΔΔCt method (mean n = 3, error bars +/- s.

d., p-values determined with t-Test).

https://doi.org/10.1371/journal.pgen.1007137.g001
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catalytically inactive Cas9 (dCas9) and guide RNA (gRNA) is sufficiently stable to block the

progression of RNA polymerase II, leading to silencing of the target gene [50]. We designed

gRNA for three different dCAS9 blocks (Block I- targeting NIPBL-AS1, Block II—targeting

NIPBL, Block III—placed in the NIPBL gene but not blocking) as well as a control gRNA (GC)

in distant gene desert on chromosome 5. Since it was shown that gRNAs targeting the non-

template DNA strand have a higher gene silencing effect compared to those targeting the tem-

plate strand [50], we recruited dCas9 to the 5’ end of NIPBL-AS1 using two guide RNAs (Block

I, G1 and G2) targeting the non-template strand of NIPBL-AS1 (Block I, Fig 2A and 2B). To

block transcription of NIPBL, we used three guide RNAs (G3, G4 and G5 –Block II) targeting

the non-template strand of the gene (Block II, Fig 2A and 2B). To verify the specificity of the

transcription block we used two gRNAs (Block III, G6 and G7) designed complementary to

Fig 2. NIPBL-AS1 and NIPBL are transcribed from a shared bi-directional promoter. A) Overview of the NIPBL-AS1 and the NIPBL promoter region

together with ChIP-seq data for RNA polymerase II, CTCF, the H3K4me3 histone mark and DNase hypersensitive regions in HEK293 cells (ENCODE). The

locations of the different guide RNAs used for the CRISPRi blocks (Block I, Block II and Block III) are shown. B) Overview scheme of the CRISPRi blocks to

interfere with transcription of NIPBL-AS1 (Block I), NIPBL (Block II) and a non-interfering control block (Block III). Note that the interfering gRNAs for block I

and block II were designed complementary to the non-template DNA strand and for block III complementary to the template strand [50]. C-D) Transcript

levels of NIPBL-AS1 and NIPBL under the different blocks normalized to a control transfected with a guide RNA positioned in an intergenic region on chr5

unrelated to NIPBL (GC). Note that block III does not interfere with the transcription of NIPBL-AS1 and NIPBL. (C) NIPBL-AS1 levels are reduced under

block I targeting NIPBL-AS1 but increased under block II targeting NIPBL. (D) NIPBL levels are reduced under block II targeting NIPBL but increased under

block I targeting NIPBL-AS1 (mean of n = 6; error bars +- s.d., p-values determined with t-Test). (E) The level of the nascent NIPBL transcript was

determined when NIPBL-AS1 transcription was blocked (Block I) to determine whether the NIPBL upregulation seen in (D) originates from de-novo

transcription.

https://doi.org/10.1371/journal.pgen.1007137.g002
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the template strand of NIPBL (Block III, Fig 2A and 2B) since gRNAs targeting the template

strand do not efficiently block gene transcription. The gRNAs for each block were mixed and

co-transfected with a construct coding for catalytically inactive Cas9 (dCas9) into HEK293T

cells.

First, we analysed the wider promoter region of NIPBL-AS1 and NIPBL by ChIP-qPCR (for

primer positions see S2A Fig) for the coverage of the initiating Polymerase II, marked by phos-

phorylation of the C-terminal Ser5 residue (RNA PolII Ser5) [51,52,53,54], and the total RNA

Polymerase II (RNA Pol II). We observed an increased accumulation of RNA PolII Ser5

upstream of the guide RNA target sites of Block I compared to the control block (Block III)

(see S2B Fig, primer AS3). Vice versa we observed in Block II a similar accumulation of RNA

PolII Ser5 upstream of the guide RNA target sites (S2D Fig, primer AS7). For both blocks we

also observed a slight increase in total RNA Pol II signals upstream of the guide RNA target

sites (S2C Fig, primer AS3 and S2E Fig, primer AS7). RNA PolII and RNA PolII Ser5 signal

increments tend to spread on the respective gene that was not blocked (NIPBL for Block I and

NIPBL-AS1 for Block II).

We then analysed the transcript levels of NIPBL and NIPBL-AS1 under the different blocks.

When we transfected the cells with Block I, only 30% of the NIPBL-AS1 transcript was still

detectable compared to the control guide RNA transfection (GC), indicating that NIPBL-AS1
transcription was significantly blocked (see Block I, Fig 2C). NIPBLmRNA levels after block-

age of NIPBL-AS1 transcription were increased (Fig 2D). By using a primer pair detecting the

unspliced NIPBL transcript (Fig 2E) we confirmed that the increase in NIPBL transcripts origi-

nates from de-novo transcription and not from increased stability of the mRNA. In cells trans-

fected with Block II we could achieve a significant reduction of NIPBL transcription, with only

30% of the transcript still detectable (Fig 2D). We observe now an upregulation of the NIP-
BL-AS1 transcript (Fig 2C), similar to the observations for the NIPBL transcript in Block I. In

cells transfected with Block III we did not observe a relevant reduction ofNIPBL orNIPBL-AS1
transcription (Fig 2C and 2D).

In summary, we could achieve an efficient block of the transcription of NIPBL and NIP-
BL-AS1 (Fig 2). This is probably due to the accumulation of RNA PolII and RNA PolII Ser5 at

the block sites (see primer AS3 and AS7 in S2 Fig). The accumulation of PolII Ser5 is more evi-

dent than that of RNA PolII; this is consistent with the presence of a stalled RNA PolII, since

RNA PolII Ser 5 is also a mark for stalling. [51,52,53,54]. This leads to a reduced expression of

the gene involved in the blocking but also a significant upregulation of the corresponding gene

that is not blocked. We have therefore demonstrated that the transcription of NIPBL-AS1 and

NIPBL is indeed interconnected and that by reducing the transcription activity of NIPBL-AS1
we increased the transcription at the NIPBL gene and vice versa. We have also uncovered an

interesting approach to eventually manipulate the expression of the NIPBL gene without inter-

fering with the NIPBL gene itself.

Identification of a distal enhancer for the NIPBL gene

We aimed at identifying the distal regulatory elements of NIPBL and NIPBL-AS1 using chro-

mosome conformation capturing (3C-seq, a derivative of 4C) [55], initially in the HB2 cell line

but also in HEK293T cells since these cells are better suitable for CRISPR genome editing.

Using BglII as 3C-seq restriction enzyme and a viewpoint located at the NIPBL promoter

(VP1), we observed contacts to two intergenic regions, namely R1 and R2, respectively at 130

kb and 160 kb upstream of the NIPBL promoter (S3A Fig). We focused on these regions since

the analysis of ChIP sequencing data for different histone marks and DNaseI hypersensitivity

tracks for six cell lines (GM1287, K562, HeLa-S3, HMEC, HUVEC, HSMM), available from

NIPBL-AS1 and a distal enhancer regulate expression of the cohesin-loading factor NIPBL
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the ENCODE project [56], revealed that the R1 region highly correlates with open chromatin

(DNAseI) and histone variants/marks found at enhancers and active transcription (H2A.Z,

H3K4me1, H3K4me2, H3K4me3) [57] in different cell lines (Fig 3C, S3C and S3D Fig). Region

R2 correlates only in GM12878 cells with enhancer marks. Thus, we hypothesized that R1 is

the best candidate for a NIPBL distal enhancer. The 3C-seq analysis also revealed contacts

from the NIPBL promoter into the NIPBL gene body, covering nearly all of the 47 exons (188

kb), also confirmed by two additional viewpoints inside NIPBL (VP2-3) (S3A Fig). However,

Fig 3. Interactions of NIPBL and NIPBL-AS1 with a potential distal enhancer. A) Long-range chromosomal interactions of the NIPBL and NIPBL-AS1

promoter detected by chromosome conformation capture (3C-seq) in HEK293T cells using an ApoI digest. The positions of the different viewpoints used are

marked in yellow. Three different viewpoints at the promoter (VP4, blue track) and the candidate enhancers regions R1 (VP5, green track) and R2 (R2—

VP6, red track) were used. B) CTCF ChIP sequencing track from HEK293 cells (ENCODE). The orientations of the CTCF motifs as determined with

JASPAR are shown below the track (red triangle–forward orientation, green triangle–reverse orientation). The CTCF sites involved in the promoter-enhancer

interaction are indicated with yellow triangles above the track. C) DNAse clusters as well as histone modification profiles—H2A.z, H3K4me1, H3K4me2 and

H3K4me3—of six different cell lines (G312878, K562, HeLa-S3, HEMEC, HSMM and HUVEC, available from ENCODE) are displayed as density graph.

Black represents areas with the highest enrichment of the signals.

https://doi.org/10.1371/journal.pgen.1007137.g003
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since these contacts do not involve regions with characteristic enhancer marks we omitted

them from our search for NIPBL/NIPBL-AS1 enhancers.

To confirm the observed long-range interactions of the NIPBL promoter, we performed a

higher resolution 3C-seq (using ApoI as restriction enzyme) using one viewpoint at the NIPBL
promoter (VP4) and two viewpoints at R1 (VP5) and R2 (VP6) in HEK293T cells (Fig 3A) and

HB2 cells (S3B Fig). These experiments confirmed the contact between the NIPBL promoter

and the distal intragenic region R1 (Fig 3A, S3B Fig, blue tracks, VP4). Vice versa, the view-

point located at R1 (VP5) showed contacts between this potential enhancer and the promoter

of NIPBL and NIPBL-AS1 (or 5’end of NIPBL-AS1) (Fig 3A, S3B Fig, green tracks, VP5). These

interactions involved two CTCF binding sites at R1 and two within NIPBL-AS1 respectively

(see CTCF ChIP-sequencing peaks in HEK293 cells in Fig 3B or S3C Fig), that are positioned

in the forward-reverse motif orientation that favours long-range interactions (Fig 3B)

[58,59,60]. The interaction between R2 (VP6) and the NIPBL promoter is no longer observed

(Fig 3A, S3B Fig, red tracks, VP6). Therefore we consider from now on only R1 as candidate

enhancer.

Consistent with our observations, recently published high resolution Hi-C data showed

contacts between the NIPBL promoter and the distal region R1 in seven different human cell

lines (GM12878, HMEC, NHEK, KBM7, HUVEC, K562, IMR90) [59] (S4A and S4G Fig).

This indicates conservation of this long-range interaction between different cell types, eventu-

ally also between species since Hi-C data from mouse CH12 cells also showed long-range con-

tacts of the NIPBL promoter to a potential distal enhancer next to the Slc1a3 gene (S4H Fig).

Functional characterization of the candidate enhancers

Since we identified R1 as potential distal regulatory element, we wanted to test whether this

element displays activity typical for enhancers with respect to NIPBL and NIPBL-AS1. For

this we deleted R1 using CRISPR/Cas9 genome editing in HEK293T cells. The R1 region com-

prises two fragments, which we termed R1_1 and R1_2, enriched in histone marks typical for

enhancers and actively transcribed regions as well as CTCF sites (CTCF#1 in R1_1 and

CTCF#2 in R1_2) (Fig 4A). To dissect the contribution of R1_1 and R1_2 in the regulation of

NIPBL and NIPBL-AS1 we designed guide RNA that specifically delete either a region includ-

ing R1_1 (D1, gRNA2 and gRNA3) or R1_1 and R1_2 at the same time (D2, gRNA1 and

gRNA3) (Fig 4A). In total we obtained four clones (D1_89, D1_38, D1_42, D1_63) for the

smaller deletion of 5 kb (D1) and five clones (D2_35, D2_18, D2_25, D2_33, D2_103) for the

12 kb deletion (D2). The homozygous targeting was confirmed by PCR where we obtained an

amplification only for primers designed to detect the deletion, but not for primers designed to

detect the intact genomic region (see S5D and S5H Fig).

We assessed the effects of these two deletions on the expression of NIPBL. RT-qPCR analy-

sis showed a reduction of NIPBL transcript levels to in average 60% for both depletions and

transcription of NIPBL-AS1 was also reduced (Fig 4B, S6 Fig). The reduction of NIPBL expres-

sion can also be detected at the protein level by western blotting (Fig 4C). This supports that

R1 acts as distal enhancer of NIPBL. We concluded that the actual enhancer localizes in the

R1_1 fragment since the larger deletion including also R1_2 does not lead to more significant

changes in NIPBL and NIPBL-AS1 transcript levels.

In order to validate the enhancer activity of R1_1 and R1_2 in an independent experimental

setup, we cloned the two fragments in plasmids carrying a luciferase gene under control of the

NIPBL promoter (Fig 4D). Two similar sized random DNA fragments were used as controls

(Fig 4D, cont1, cont2). The constructs were transfected into HEK293T cells and the luciferase

activity analysed. In comparison to the control, DNA fragment R1_1 leads to a clear 2.5 fold
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increase of the luciferase activity but not R1_2 (Fig 4E). Taken together, these results point to

R1_1 as the enhancer for NIPBL and NIPBL-AS1.

To investigate how the deletions D1 (including R1_1) and D2 (including R1_1 and R1_2)

affect the long-range interactions of the NIPBL promoter, we performed 3C-seq with one

clone from D1 (D1_C89) and one clone from D2 (D2_C35) (Fig 4F) using the NIPBL pro-

moter (VP4), R1 (VP5) and R2 (VP6) as viewpoints (Fig 4F). The D1 deletion removed the

CTCF#1 site (S2A Fig and Fig 4D) but the promoter remains in contact with the CTCF#2 site

(see Fig 4F, VP4 and VP5 panels for D1). When both CTCF sites (CTCF#1 and CTCF#2) are

deleted (D2) only very little interactions of the promoter region (Fig 4F, VP4 panel for D2)

into the area surrounding the deleted enhancer regions are detectable, as well as the contacts

into the NIPBL gene body.

We conclude that the NIPBL/NIPBL-AS1 enhancer overlaps with the R1_1 region but both

CTCF sites in R1 (CTCF#1 and CTCF#2) are required for the long-range interactions between

R1 and NIPBL/NIPBL-AS1.

Relevance for Cornelia de Lange Syndrome (CdLS)

To demonstrate the importance of the R1_1 enhancer we asked whether the deletion of the

enhancer affects genes that were found to be dysregulated in CdLS patients [20] and that we

previously confirmed to be regulated by NIPBL [8]. RT-qPCR analyses revealed that all three

analysed genes (BBX, ZNF695,GLCCI1) are downregulated in the larger deletion (D2) and two

genes in the smaller deletion (D1) (Fig 5A and S7 Fig). This further supports the relevance of

the identified enhancer region for the regulation of NIPBL and also of the NIPBL downstream

targets which are dysregulated in CdLS.

NIPBL transcript levels were found to be reduced in CdLS patients with NIPBLmutations

but the cause of this downregulation was unclear [8,20]. We were curious to checkNIPBL and

NIPBL-AS1 transcript levels in cells from CdLS patients with a heterozygous truncation muta-

tion of NIPBL [20,21]. We assessed levels ofNIPBL transcripts in three patient LCLs with early

truncating mutations inNIPBL (PT1-3) as well as in four control LCLs (C1-4) (described in

[8,20] and S8A Fig). Consistent with previous reports [20,21], theNIPBLmRNA levels in the

patient cells were reduced to 60–70% (Fig 5B and S8B Fig). Explanations for this imply either a

downregulation of theNIPBL gene and/or a degradation of theNIPBL transcript by the non-

sense-mediated mRNA degradation pathway, as has been previously hypothesized [61]. In the

first case we might expect a misregulation of NIPBL-AS1 since our data show that the transcrip-

tion of NIPBL and NIPBL-AS1 are interconnected. In the second case we would not observe an

Fig 4. Deletion of the candidate enhancers by CRISPR. A) The candidate enhancer region R1 contains two regions with

characteristic histone marks termed R1_1 and R1_2. CRIPSR genome editing was used to delete R1_1 (D1, gRNA_2 and

gRNA_3) and R1_1 and R1_2 together (D2, gRNA_1 and gRNA_3). B) Average transcript levels of NIPBL and NIPBL-AS1 in the

clones with the candidate enhancer regions R1_1 deleted (D1) and R1_1 together with R1_2 (D2) deleted by CRISPR editing in

HEK293T cells. The transcript levels of the individual clones are shown in S6 Fig. Two primers within NIPBL and one located at the

3’ end of NIPBL-AS1 were used. Transcript levels were normalized against the housekeeping gene SNAPIN (mean n = 5 for D1 and

n = 4 for D2, error bars +/- s.d., p-values determined with t-Test). C) Detection of NIPBL protein levels in two enhancer deletion

clones (D1_C89 and C_35) by western blotting. The condensin subunit SMC2 and tubulin were used as loading controls. D) Cloning

scheme of the luciferase assay constructs with the candidate enhancers R1_1 and R1_2. The luciferase gene is expressed under

the control of the NIPBL promoter. The candidate enhancer or an equally sized control sequence is positioned at the opposite side

of the gene. E) Relative luciferase activity obtained from the different constructs after transfection of HEK293T cells (mean of n = 3;

error bars +- s.d.). F) Long range-interactions of the NIPBL and NIPBL-AS1 promoter region after deletion of R1_1 (D1, clone

D1_C89) and deletion or R1_1 and R1_2 (D2, clone D2_C35) of the potential enhancer in HEK293T cells. The same viewpoints as

in Fig 3 are used located at the promoter region (VP4) and in the candidate enhancer regions R1 (VP5) and R2 (VP6), the position of

the viewpoints is highlighted in yellow. Positions and the size of the deletions are indicated. Below the 3C-seq experiments the

CTCF sites from HEK293 cells (ENCODE) are shown with the orientations of the CTCF motifs indicated (red triangle–forward

orientation, green triangle–reverse orientation).

https://doi.org/10.1371/journal.pgen.1007137.g004
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effect onNIPBL-AS1. Assessing theNIPBL-AS1 in the patient cells showed that the transcript

levels of NIPBL-AS1 were not significantly affected (Fig 5B, S8B Fig). Next we analysed by pyro-

sequencing the fraction of the mRNA originating from wt and mutant alleles. Here we observed

38% (PT1) or 24% (PT3) of mutant transcripts (S8C Fig) which increase up to 46–48% when

blocking nonsense-mediated mRNA decay by cycloheximide, indicating at least a partial degra-

dation of mutantNIPBL transcripts in patient cells, while both alleles remain actively tran-

scribed. This explains why NIPBL-AS1 transcription is not altered and supports our finding that

theNIPBL-AS1 transcript is not involved in NIPBL transcription and vice versa (Fig 1).

Discussion

NIPBL encodes for a protein that is required to load the cohesin complex onto DNA but has

also a role as transcription factor [8]. It is also the most frequently mutated gene in Cornelia de

Lange syndrome (>60% of the cases). However, in about 25–30% of the cases the genetic cause

of the disease is unknown. Some of these cases might be explained by mosaicism [62,63], but

the disease-causing mutations might also reside in gene-regulatory regions that are unknown

and therefore not covered in diagnostics.

Interestingly, in heterozygous Nipbl knock-out mouse tissues the Nipbl transcript was

found to be only reduced by 25–30% and a compensatory regulatory mechanism for Nipbl was

suggested [22]. Therefore, the gene regulation of NIPBL is of great interest for eventual

approaches to manipulate the expression of the gene.

Here we characterized in depth the regulation of the NIPBL gene by a bidirectional pro-

moter controlling the transcription of NIPBL and of the 5.3 kb lncRNA NIPBL-AS1. We

Fig 5. Implications for CdLS. A) Transcript levels of the genes BBX, GLCCI1 and ZNF695 that were described

as dysregulated genes in CdLS [20] and previously confirmed as NIPBL-dependent genes with NIPBL binding

sites at the promoter [8] were analysed in the different enhancer deletion clones D1 and D2 (mean n = 5 for D1 and

n = 4 for D2, error bars +/- s.d., p-values determined with t-Test, the transcript levels of the individual clones are

shown in S7 Fig). B) Average transcript levels of NIPBL and NIPBL-AS1 in lymphoblastoid cell lines (LCLs)

derived from CdLS patients and controls. The details of the four LCL controls and three CdLS LCLs as well as the

individual transcript levels are shown in S8 Fig and in [8,20]. Two primer pairs for NIPBL and one for NIPBL-AS1

were used. Transcript levels were normalized against the housekeeping gene NADH (mean n = 4 for control LCLs

and n = 3 for CdLS LCLs, error bars +/- s.d., p-values determined with t-Test).

https://doi.org/10.1371/journal.pgen.1007137.g005
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investigated the role of the lncRNA for NIPBL expression and identified and characterized a

conserved distal enhancer that stimulates NIPBL and NIPBL-AS1 expression.

It has been shown that lncRNAs can function either through their RNA product or through

their active transcription. To test this systematically we first depleted NIPBL-AS1 by antisense

oligonucleotides (ASO) without observing a significant change in NIPBL expression (Fig 1B

and 1C). Similarly, reduction of the NIPBL transcript in CdLS patient LCLs with heterozygous

NIPBL truncation mutations, at least in part due to nonsense-mediated mRNA decay, does

not alter the level of lncRNA transcription (Fig 5B and S8 Fig). Therefore the RNA products of

both genes seem to do not influence each other. This is consistent with the observation that

the NIPBL-AS1 sequence is not conserved among mammals.

To test whether the transcription of the lncRNA from the bidirectional promoter is impor-

tant for NIPBL expression, we blocked the transcription of NIPBL-AS1 using CRISPRi [50]

and observed an upregulation of the NIPBL transcript. Vice versa, blockage of the transcrip-

tion of NIPBL lead to an upregulation of the lncRNA (Fig 2C and 2D). This underlines an

interesting mechanism that could be potentially explored for the manipulation of NIPBL
expression levels in clinical applications.

Antisense transcription has been observed for a large number of promoters in the human

genome [64,65,66]. The NIPBL-AS1 is a rather long unspliced noncoding RNA (5.3 kb), tran-

scribed from a bidirectional promoter shared with NIPBL. Both genes seem to be transcribed

to comparable levels according to the RNA-seq signals (Fig 1A) and our transcript analysis in

LCLs (Fig 5B). How the transcription at such bidirectional promoters is regulated is still

unclear (for a review see [67]); therefore our observation that the transcripts are coupled in

such manner that blocking the transcription of one gene leads to increased transcription of the

other gene may represent a novel mechanism in fine tuning of gene expression.

We also identified one distal enhancer of NIPBL and NIPBL-AS1 located 130 kb upstream

of the promoter within a region that we call R1 (Fig 3). This region contains two CTCF sites: the

one facing theNIPBL gene (CTCF #1) correlates strongly with active chromatin marks (e.g.

H3K4me1, H3K4me2, H3K4me3) while the second one (CTCF #2) shows only little correlation

with those histone marks (Fig 4A). The deletion of 5 kb (D1) including a region (R1_1) enriched

in enhancer marks and including the CTCF#1 site led to downregulation of both NIPBL and

NIPBL-AS1 expression. A larger deletion of 12 kb (D2, comprising R1_1 and R1_2) that

included CTCF#1 and CTCF#2 did not lead to further downregulation of expression. The

enhancer of NIPBL/NIPBL-AS1 resides therefore in R1_1 and overlaps with CTCF#1.

Interestingly, the 3C-seq experiments reveal that two CTCF binding sites close to NIPBL/
NIPBL-AS1 bidirectional promoter strongly contact the two CTCF binding sites within the R1

region. The motif orientation of these sites is consistent with the preferential motif orientation

for loop formation. Both sites in R1 seem to be required for the long-range interactions of the

NIPBL/NIPBL-AS1 promoter. This promoter-enhancer interaction seems to be conserved

between different tissues and also across species (S4A and S4H Fig). We propose that the inter-

actions between these CTCF sites are important for the recruitment of the enhancer to the

NIPBL/NIPBL-AS1 promoter. It remains to be shown whether this enhancer-promoter loop

is a permanent loop scaffold, as suggested for developmental genes in fly [68] and TNF-α-

responsive genes in human [69]. Due to the close distance of the two TSS, the looped enhancer

might stimulate alternatively the transcription at the TSS of NIPBL or NIPBL-AS1, suggesting a

competition between both genes for the enhancer activity. This is supported by our observa-

tion that blocking the transcription of one gene, with RNA Pol II Ser5 accumulating at the

block site, leads to increased transcription of the other gene.

An interesting observation concerning the NIPBL gene are the intensive contacts of the

NIPBL promoter all over the NIPBL gene covering nearly all of the 47 exons (188 kb) (S3 Fig).
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Since the NIPBL intragenic viewpoints (VP2-3) contact the promoter and the enhancer and

vice versa the enhancer contacts the NIPBL gene body (VP5), we might eventually observe

here a tracking of the promoter that is still in contact with the enhancer along the NIPBL gene

together with elongating RNA Pol II, as recently described by Lee et al. [70], although this

remains to be tested in greater detail.

In summary, we have discovered very important features of the genetic context of the

NIPBL gene and obtained functional insight on the regulation of the NIPBL gene expression.

Although we did not observe a direct effect of the lncRNA for the NIPBL gene, we found that

the transcription of the two genes is interconnected, suggesting a mechanism for the fine-tun-

ing of NIPBL expression. With these experiments we have also demonstrated one possibility to

boost the transcriptional activity of the NIPBL gene by interfering with the NIPBL-AS1
lncRNA. This could be further explored for other genes with a similar arrangement of lncRNA

and gene, and eventually also be used to manipulate gene expression in patient cells.

Moreover, we identified a distal enhancer controlling sense and antisense transcription at

the bidirectional promoter of NIPBL/NIPBL-AS1. Given that even a modest reduction of

NIPBL expression dramatically impacts on development, we suggest to include this non-cod-

ing genomic element into molecular diagnostics for CdLS.

Materials and methods

Cell culture

HEK293T cell line was cultured in DMEM supplemented with 0.2mM L-glutamine, 100 units/

ml penicillin, 100 mg/ml streptomycin and 10% FCS and was grown at 37˚C and 5% CO2.

HB2 cells (1-7HB2, a clonal derivative of the human mammary luminal epithelial cell line

MTSV1-7, [71]) were cultured in DMEM supplemented with 0.2 mM L-glutamine, 100 units/

ml penicillin, 100 mg/ml streptomycin, 10% FCS, 5 μg/ml hydroxycortisone and 10 μg/ml

human insulin.

Lymphoblastoid cell lines derived from controls and Cornelia de Lange syndrome patients

[20] were obtained from Ian Krantz (The Children’s Hospital of Philadelphia, Philadelphia,

Pennsylvania, United States of America) and cultured in RPMI medium supplemented with

0.2mM L-glutamine, 100 units per ml penicillin, 100 mg per ml streptomycin, 20% FCS.

Transcription analysis by reverse transcription (RT) and qPCR

Cells were harvested and total RNA was prepared using Trizol Reagent (Invitrogen). After

chloroform extraction and isopropanol precipitation, pellets were dissolved in DEPC water.

cDNA was generated by reverse transcription using oligo(dT)18 primer (Invitrogen), Super-

script II Reverse Transcriptase (RT) (Invitrogen) and RNaseOUT Recombinant Ribonuclease

Inhibitor (Invitrogen) according to the manufacturer’s instructions. The amounts of the differ-

ent transcripts were compared by qPCR using SYBR Green and Platinum Taq Polymerase

(Invitrogen) in CFX96 light cycler (BioRad) and specific primers. ΔΔCt method was used to

calculate the fold change in gene expression using the housekeeping gene SNAPIN and the

control sample for normalization.

Design of Anti-Sense Oligonucleotides (ASO)

Anti-Sense Oligonucleotides (ASO) were designed followed the guidelines from Integrated

DNA Technologies (IDT) (https://eu.idtdna.com/Scitools/Applications/AntiSense/Antisense.

aspx?source=menu). Two ASO were designed against the 5’ and 3’ end of NIBPL-AS1 and one
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were designed against a non-targeting sequence to use as control. All the ASOs were modified

with a phosphorothioate (PS) linkages that confer nuclease resistance.

The following ASOs were used:

ASO2 targeting the 5’ end of NIBP-AS1: G�C�C� C�T�T� C�C�C� T�C�T� G�T�G� T�A�A�

T�T�C

ASO3 targeting the 3’ end of NIBP-AS1: T�G�T� G�G�G� T�T�T� C�T�G� G�T�G� T�T�G�

T�G�G

Control ASO non targeting sequence: A�T�A� T�T�T� C�C�A� C�G�C� C�A�G� C�C�A� G�A

The position of the phosphorothioate (PS) linkages is indicated as �.

Depletion of NIPBL-AS1 by ASO and transcription analysis by reverse

transcription (RT) and qPCR

HB2 or HEK293T cells we transfected with 400 pmol of either ASO2, ASO3 or Control ASO

(IDT) using Lipofectamine 2000 (Invitrogen) according to the manufacture’s instruction. Cells

were harvested 48 hours after transfection and cDNA was prepared as described above. ΔΔCt

method was used to calculate the fold change in gene expression using the housekeeping gene

SNAPIN and the control sample for normalization.

CAS9 constructs and guide RNA

The expression vectors for active Cas9 and catalytically inactive Cas9 were obtained from

Addgene. The guide RNA were designed using the Cas9 design tool (http://cas9.cbi.pku.edu.

cn/CasDesign) [72] and inserted in the gRNA Cloning Vector (Addgene #41824) [73] follow-

ing the protocol deposited together with the vector. The sequences and positions of the guide

RNA are listed in the S1 Table.

Blocking of NIPBL-AS1 or NIPBL transcription by CRISPR/CAS9 and

transcription analysis by reverse transcription (RT) and qPCR

To block the transcription ofNIPBL-AS1, two gRNAs (G1 and G2; Block I) targeting the 5’ end of

NIPBL-AS1were used. To block the transcription ofNIPBL, three gRNAs (G3, G4, G5; Block II)

targeting the 5’ end ofNIPBLwere used. As controls we used either a combination of guide RNAs

onNIPBL that are not effective for RNA PolII blocking (G6 and G7; Block III) or one guide RNA

localizing outside of the locus (GC). The gRNA were designed using the web tool http://cas9.cbi.

pku.edu.cn/CasDesign and cloned into a pCR-Blunt II-TOPO vector (Plasmid #41824 from

AddGene) by Gibson Assembly (New England BioLabs) according to the manufacture’s instruc-

tion. HEK293T cells were transfected with the gRNAs vectors and the catalytically inactive Cas9

vector (dCas9) [74] (Plasmid #47948 from AddGene) using Lipofectamine 2000 (Invitrogen)

according to the manufacture’s instruction. Cells were harvested 48 hours after transfection and

cDNA was prepared as described above. ΔΔCt method was used to calculate the fold change in

gene expression using the housekeeping gene SNAPIN and the Control sample for normalization.

Chromosome conformation capture sequencing (3C-seq) and analysis

Chromosome conformation capture sequencing was performed as previously described in

[55]. Briefly, cells were crosslinked with 1% (w/v) formaldehyde for 10 minutes and quenched

with 120mM glycine. Crosslinked-cells were resuspended in lysis buffer (50mM Tris-HCl pH

8.0, 0.5% NP-40, 50mM NaCl and Complete protease inhibitor (Roche)) and subjected to
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enzymatic digestion using 400 units of BglII (Roche) or ApoI (New England Biolabs) for the

higher resolution protocol. Digested chromatin was then diluted and ligated using 5 units of

T4 DNA ligase (Promega) under conditions favoring intramolecular ligation events. After

reversing the crosslink at 65˚C over night, the digested and ligated chromatin was subjected to

a second enzymatic digest using NlaIII (New England Biolabs) to produce smaller DNA frag-

ment. The resulting digested DNA underwent a second ligation using 10 units of T4 DNA

ligase (Promega) under conditions favoring self-ligation events that produce circular DNA

molecules. The unknown DNA fragment, ligated to the fragment of interest (called viewpoint),

was amplified by inverse-PCR using specific primer design in the outer part of the restriction

site of the viewpoints, linked with the Illumina adapter sequences. The samples were then sin-

gle-read sequenced using the Illumina Genome Analyzer II generating 76bp reads. The reads

were trimmed to remove the Illumina adapter sequences and mapped against human genome

(hg18 and hg19). Analysis was performed as previously described [1,75].

Depletion of regulatory region R1 by CRISPR/Cas9

To deplete the candidate enhancers (R1_1 and R1_2) in region R1, three gRNAs (gRNA_1,

gRNA2 and gRNA_3) targeting the region were designed and cloned as described above. To

delete R1_1 (5 kb deletion in R1 region), HEK 293T cells were transfected with 2ug of gRNA2,

gRNA3 and the vector coding for the catalytically active Cas9 (Plasmid #48139, AddGene)

using Lipofectamine 2000 (Invitrogen) according to the manufacture’s instruction. To delete

the entire R1 region including R1_1 and R1_2 (12 kb deletion), HEK293T cells were trans-

fected with 2 μg of gRNA1, gRNA3 plasmids and the catalytically active Cas9. Cell were cul-

tured in a puromycin-containing medium and single clones were picked and PCR analyzed

for the presence of the corresponding deletion.

Genotyping analysis of clones

Cells from different clones were harvested and lysed with lysis buffer (100mN Tris-HCl pH8.0,

5mM EDTA, 0.2% SDS, 50mM NaCl and proteinase K).

Genomic DNA was isolate using isopropanol and samples were analyzed by PCR. Primer

sequences are listed in the Supplemental information.

Transcription analysis by reverse transcription (RT) and qPCR of

deletion clones

Clones positive for deletions D1 and D2 were grown, cells were harvested and cDNA was pre-

pared as described above. HEK293T cells were used as control. ΔΔCt method was used to cal-

culate the fold change in gene expression using the housekeeping gene SNAPIN and the

Control sample for normalization.

LncRNA fractionation in cytoplasmic and nuclear

Fractionation of cells was performed as described [76] with addition of RNAse inhibitors

(RNAseout, Invitrogen) according to the manufacturer’s instructions. Preparation of RNA

with from the fractions using Trizol and the cDNA preparation and subsequent qPCR analysis

are described above.

Enhancer reporter assay

To test whether the candidate enhancer has indeed an effect on the NIPBL promoter we cloned

the luciferase gene under control of the NIPBL promoter (hg19, pos. chr5:36,875,913–
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36,876,915) together with the putative enhancer elements (R1_1—(hg 19)chr5:36743873–

36745877, R1_2 –(hg 19)chr5:36738465–36742009) or a similar sized control region in the

pGL4.10 vector (see scheme Fig 4A). Cloning primer sequences are available upon request.

HEK293 cells were transfected using FuGENE-HD (Promega, Madison, USA) with one of

the following constructs: (1) empty pGL4.10 vector; (2) pGL4.10 vector containing R1_1 and

NIPBL promoter; (3)(2) pGL4.10 vector containing R1_2 and NIPBL promoter; (4) pGL4.10

vector containing genomic DNA of the same size as the regulatory element. After 24 hours the

cells were lysed and the activity of firefly and renilla luciferase determined with the Dual Lucif-

erase Reporter Assay (Promega) in a TriStar2 LB Multidetection Microplate Reader (Berthold,

Bad Wildbad, Germany). Genomic regions and primer sequences are given in the table. All

measurements were verified in a minimum of three independent experiments and as tripli-

cates in each experiment.

ChIP-qPCR

The chromatin immunoprecipitation with anti-RNA PolII Ser5 and anti-PolII was performed

as described [1].

Pyrosequencing

A DNA fragment of interest was PCR-amplified with a biotinylated primer as described [77].

After denaturation, the biotinylated single-stranded PCR amplicon was hybridized with the

sequencing primer, specific for the analyzed position. The allelic dosage was quantified on

PyroMark Q24 instrument, with PyroMark Gold Q24 Reagent Kit (Qiagen), according to the

manufacturer’s instructions.

Antibodies for western blotting

NIPBL—monoclonal rat anti-NIPBL, isoform A (long isoform) NP_597677 (Absea, China,

010702F01 clone KT54) and isoform B (short isoform) NP_056199 (Absea, China, 010516H10

clone KT55)

SMC2 –rabbit polyclonal anti-SMC2 [78]

Tubulin—mouse anti-tubulin (Sigma)

Ethics Statement

There are no ethical issues. All cell lines used in this manuscript were previously published

[20].

Supporting information

S1 Fig. Cellular localization of the NIPBL-AS1 lncRNA and knockdown of the NIPBL-AS1
in HB2 cells. A) Fractionation of the RNA in HEK293T cells into cytoplasmic and nucleo-

plasmic fraction and detection of NIPBL-AS1 as well as the control lncRNAs MALAT1 and

XIST and the housekeeping genes SNAPIN and NADH with RT-qPCR (mean n = 3, error

bars +/- s.d.).

B-C) Transcript levels of NIPBL-AS1 (B) and NIPBL (C) after antisense oligonucleotide

(ASO) knockdown of NIPBL-AS1 in HB2 cells. Cells were transfected with either ASO2 or

ASO3, targeting respectively the 5’ end or the 3’ end of NIPBL-AS1 and one non-targeting

control ASO (ASO C). Transcript levels were normalized against the control sample (ASO

C) and the housekeeping SNAPIN (mean n = 6, error bars +/- s.d., p-values determined
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with t-Test).

(PDF)

S2 Fig. Coverage of the NIPBL and NIPBL-AS1 promoter with RNA PolII and RNA PolII

Ser5 under the different CRIPSRi conditions. A) Overview of the NIPBL-AS1 and the NIPBL
promoter region together with ChIP-seq data for RNA polymerase II, CTCF, the H3K4me3

histone mark and DNase hypersensitive regions in HEK293 cells (ENCODE). The locations of

the different guide RNAs used for the CRISPRi blocks (Block I, Block II and Block III) as well

as the primer used for ChIP-qPCR are shown.

B-C) Enrichment of Ser5-phosphorylated initiating RNA polymerase (Ser 5, panel B) and gen-

eral RNA Pol II (PolII, panel C) when transcription of NIPBL-AS1 is blocked (Block I).

D-E) Enrichment of Ser5-phosphorylated initiating RNA polymerase (Ser 5, panel D) and gen-

eral RNA Pol II (PolII, panel E) when transcription of NIPBL is blocked (Block II).

The position of the guide RNA furthest into the gene body together with the ChIP primer are

highlighted with blue boxes–left side: Block I primer AS3 in the NIPBL-AS1 gene—right side:

Block II primer AS7 in the NIPBL gene. ChIP-qPCR results are expressed as fold enrichment

relative to the target region AS3 on each control (Block III) [79] (average n = 3 experiments,

error bars +/- s.d., p-values determined with paired two-tailed t-Test).

(PDF)

S3 Fig. Long range interaction of the NIPBL/NIPBL-AS1 promoter in HB2 cells. A) Long-

range chromosomal interactions of the region covering the NIPBL and NIPBL-AS1 promoter

(VP1) detected by chromosome conformation capture (3C-seq) in the breast epithelial cell line

HB2 using an BglII digest. The positions of the viewpoints are highlighted in yellow. Note that

two viewpoints (VP2 and VP3) were positioned further into the NIPBL gene to validate the

long-range interaction of the promoter (P) into the NIPBL gene body.

B) Validation of interactions between the promoter region (P) (NIPBL_VP4, blue track) and

two candidate regions R1 and R2 carrying enhancer marks (R1—VP5, green track and R2—

VP6, red track) using the more frequently cutting enzyme ApoI in HB2 cells.

C) CTCF ChIP sequencing track from HEK293 cells (ENCODE) and DNAse hypersensitivity.

The orientations of the CTCF motifs as determined with JASPAR are shown below the track

(red triangle–forward orientation, green triangle–reverse orientation). The CTCF sites

involved in the promoter-enhancer interaction are indicated with yellow triangles above the

track.

D) Histone modification profiles—H2A.z, H3K4me1, H3K4me2 and H3K4me3—of six differ-

ent cell lines (G312878, K562, HeLa-S3, HEMEC, HSMM and HUVEC, available from

ENCODE) are displayed as density graph in which black represents areas with the highest

enrichment of the ChIP-sequencing signals. NIPBL and NIPBL-AS1 promoter region (P) and

distal intragenic regions (R1 and R2) detected by 3C-sequencing analysis are highlighted with

blue boxes.

(PDF)

S4 Fig. Interactions between the NIPBL promoter/NIPBL-AS1 and distal enhancers are

conserved between different human cell lines and in part also in mouse. Hi-C interactions

maps at 5 kb resolution from seven different human cell lines [59] (maps generated with

http://promoter.bx.psu.edu/hi-c/view.php) (A-G) and in the CH12 mouse cell line (H). Inter-

actions between the NIPBL promoter/NIPBL-AS1 and the potential enhancer in R1 are indi-

cated by dashed lines. When available in ENCODE ChIP-seq signals for CTCF and different

histone marks are shown. In GM12878 cells (A) also region R2 is shown and the interaction of

R2 with the NIPBL promoter that is unique for this cell line is indicated with an arrow. Note
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that the potential enhancer in mouse cells (H) is positioned closer to the Slc1a3 gene than in

human cells.

(PDF)

S5 Fig. Deletion of the potential enhancer using CRISPR/Cas9. A) Location of the gRNAs

(gRNA_1, gRNA_2 and gRNA_3) used to delete the potential enhancers R1_1 and R1_2. The

ENCODE data for CTCF in HEK293 cell and histone marks (H2A.z, H3K4me1, H3K4me2

and H3K4me3) derived from six different cell lines (G312878, K562, HeLa-S3, HEMEC,

HSMM and HUVEC) are shown to support that these regions are potential enhancers. Note

that the combination of gRNA_2 and gRNA_3 will delete one CTCF binding site and the com-

bination of gRNA_1 and gRNA_3 will delete two CTCF binding sites.

(B-C) Schematic overview of the two different conditions used to create (B) a partial deletion

of 5 kb (D1, gRNA2+gRNA3) or (C) a full deletion of 12 kb (D2, gRNA1 +gRNA3). The prim-

ers used for genotyping of the clones and the respective PCR product sizes are shown.

(D-H) Analysis of CRISPR edited clones with deletions D1 and D2. Genomic DNA of the

clones was analysed with PCR primers specific for the deletions (for primer positions see B

and C) and PCR products analysed on agarose gels. (D) PCR products in unedited HEK293T

cells (Control). Note that primers P4-P8 give only in unedited cells a product of correct size.

(E-H) Genotyping of clones obtained in two rounds of CRIPSR targeting. Clones D1_89 and

D2_35 were obtained in the first round. In the second round four clones were obtained for D1

and three for D2, clones D1_63 and D2_103 are shown as examples. (E+F) Genotyping of D1

clones using one primer designed for a product unique for the D1 deletion (P2, 815bp prod-

uct) and primers designed to detect the intact genomic region (P6-P8). (G+H) Genotyping of

D2 clones using one primer designed for a product unique for the D2 deletion (P3, 927bp) and

primer designed to detect the intact genomic region (P4-P8).

The expected product sizes are indicated on the agarose gel pictures in (E) and (G). The PCR

products missing due to the deletions are indicated with boxes. The asterisks (�) indicate side-

products of the PCR primers that become more prominent in the absence of the original tem-

plates.

(PDF)

S6 Fig. NIPBL-AS1 and NIPBL mRNA levels in the clones deleted for R1_1 (D1) and both

R1_1 and R1_2 (D2). Transcript levels of the individual clones and the HEK293T cells used

for genome edition were determined with two primers for NIPBL (#42 and #138) and one for

NIPBL-AS1 (#132) (mean n = 3 of cDNA preparations from the clones, error bars +/- s.d., p-

values determined with t-Test).

(PDF)

S7 Fig. mRNA levels of NIPBL regulated genes in the enhancer deletion clones. Transcript

levels of the genes BBX,GLCCI1 and ZNF695 that were described as dysregulated genes in

CdLS [20] and previously confirmed as NIPBL-dependent genes with NIPBL binding sites at

the promoter [8] were analysed in all enhancer deletion clones R1_1 (D1) and both R1_1 and

R1_2 (D2) (mean n = 3 from different cDNA preparations, error bars +/- s.d., p-values deter-

mined with t-Test).

(PDF)

S8 Fig. Levels of NIPBL and NIPBL-AS1 transcripts in CdLS patient and control LCLs. A)

Details of control and CdLS patients lymphoblastoid cell lines (LCLs) used for analysing

NIPBL and NIPBL-AS1 transcripts. The lines were previously described [8,20].

B) Transcript levels of NIPBL and NIPBL-AS1 in four controls and three CdLS patients. Two

primer pairs for NIPBL and one for NIPBL-AS1 were used. Transcript levels were normalized
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against the housekeeping gene NADH. Note that transcript levels are reduced by only 30–40%

in CdLS patients but the NIPBL-AS1 transcription is hardly affected.

C) The contribution of intact and mutated allele to the total RNA was determined in PT1 and

PT3 by pyrosequencing to estimate the efficiency of nonsense-mediated decay. To visualize

that the intact and mutant allele are transcribed at similar level nonsense mediated decay was

blocked with cycloheximide.

(PDF)

S1 Table. Guide RNA used in the different experiments.

(PDF)

S2 Table. Primer used to detect the deletions generated by CRISPR/Cas9.

(PDF)

S3 Table. 3C–seq viewpoint primer pairs.

(PDF)

S4 Table. Primer used for qPCR analysis of transcripts and for ChIP-qPCR analysis.

(PDF)
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