A new denoising methodology to keep the spatial resolution of IR images equal to 1 pixel - Archive ouverte HAL Access content directly
Conference Papers Year : 2018

A new denoising methodology to keep the spatial resolution of IR images equal to 1 pixel

G. Corvec
Eric Robin
Jean-Benoit Le Cam

Abstract

This paper proposes a noise suppression methodology to improve the spatio-temporal resolution of infrared images. The methodology is divided in two steps. The first one consists in removing the noise from the temporal signal at each pixel. In the second step, the residual offset is identified by considering thermal images for which no mechanical loading is applied. In this case, the temperature variation field is homogeneous and the value of temperature variation at each pixel is theoretically equal to zero. The method is first tested on numerical images. The results demonstrate that this approach permits to keep the spatial resolution of infrared images equal to 1 pixel. The methodology is then applied to characterize thermal activity of a defect at the surface of inorganic glass submitted to cyclic mechanical loading.
Fichier principal
Vignette du fichier
corvec2017.pdf (400.03 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01695487 , version 1 (16-05-2020)

Licence

Attribution - CC BY 4.0

Identifiers

Cite

G. Corvec, Eric Robin, Jean-Benoit Le Cam, Jean-Christophe Sangleboeuf, Philippe Lucas. A new denoising methodology to keep the spatial resolution of IR images equal to 1 pixel. Annual Conference and Exposition on Experimental and Applied Mechanics, 2017, Jun 2017, Indianapolis, United States. pp.21-27, ⟨10.1007/978-3-319-62899-8_4⟩. ⟨hal-01695487⟩
115 View
74 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More