V. N. Kim, J. Han, and M. C. Siomi, Biogenesis of small RNAs in animals, Nat. Rev. Mol. Cell Biol, vol.10, pp.126-139, 2009.

A. and V. , The evolution of our thinking about microRNAs, Nat. Med, vol.14, pp.1036-1040, 2008.

R. C. Wilson and J. A. Doudna, Molecular mechanisms of RNA interference, Annu. Rev. Biophys, vol.42, pp.217-239, 2013.

I. J. Macrae, E. Ma, M. Zhou, C. V. Robinson, and J. A. Doudna, In vitro reconstitution of the human RISC-loading complex, Proc. Natl Acad. Sci. USA, vol.105, pp.512-517, 2008.

M. V. Iorio and C. M. Croce, microRNA involvement in human cancer, Carcinogenesis, vol.33, pp.1126-1133, 2012.

Z. Li and T. M. Rana, Therapeutic targeting of microRNAs: current status and future challenges, Nat. Rev. Drug Discov, vol.13, pp.622-638, 2014.

H. Ling, M. Fabbri, and G. A. Calin, MicroRNAs and other non-coding RNAs as targets for anticancer drug development, Nat. Rev. Drug Discov, vol.12, pp.847-865, 2013.

D. Giorgio, A. Tran, T. P. Duca, and M. , Small-molecule approaches toward the targeting of oncogenic microRNAs: roadmap for the discovery of RNA modulators, Future Med. Chem, vol.8, pp.803-816, 2016.

S. P. Velagapudi, B. R. Vummidi, and M. D. Disney, Small molecule chemical probes of microRNA function, Curr. Opin. Chem. Biol, vol.24, pp.97-103, 2015.

K. Gumireddy, Small-molecule inhibitors of microrna miR-21 function, Angew. Chem. Int. Ed. Engl, vol.47, pp.7482-7484, 2008.

S. P. Velagapudi and M. D. Disney, Two-dimensional combinatorial screening enables the bottom-up design of a microRNA-10b inhibitor, Chem. Commun. (Camb), vol.50, pp.3027-3029, 2014.

S. P. Velagapudi, Defining RNA-small molecule affinity landscapes enables design of a small molecule inhibitor of an oncogenic non-coding RNA, ACS Central Science, vol.3, pp.205-216, 2017.

G. Shan, A small molecule enhances RNA interference and promotes microRNA processing, Nat. Biotechnol, vol.26, pp.933-940, 2008.

N. S. Abell, M. Mercado, T. Cañeque, R. Rodriguez, and B. Xhemalce, Click Quantitative Mass Spectrometry Identifies PIWIL3 as a Mechanistic Target of RNA Interference Activator Enoxacin in Cancer Cells, J. Am. Chem. Soc, vol.139, pp.1400-1403, 2017.

Z. Shi, AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression, Cancer Res, vol.73, pp.5519-5531, 2013.

Y. Ren, AC1MMYR2 impairs high dose paclitaxel-induced tumor metastasis by targeting miR-21/CDK5 axis, Cancer Lett, vol.362, pp.174-182, 2015.

Y. Ren, Reprogramming carcinoma associated fibroblasts by AC1MMYR2 impedes tumor metastasis and improves chemotherapy efficacy, Cancer Lett, vol.374, pp.96-106, 2016.

D. D. Vo, Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules, ACS Chem. Biol, vol.9, pp.711-721, 2014.

D. D. Vo, Oncogenic microRNAs biogenesis as a drug target: structure-activity relationship studies on novel aminoglycoside conjugates, Chem. Eur. J, vol.22, pp.5350-5362, 2016.

W. J. Cho, S. miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2, Mol. Cells, vol.28, pp.521-527, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00338690

P. M. Voorhoeve, A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors, Cell, vol.124, pp.1169-1181, 2006.

C. M. Connelly, M. H. Moon, and J. S. Schneekloth, The Emerging Role of RNA as a Therapeutic Target for Small Molecules, Cell Chem. Biol, vol.23, pp.1077-1090, 2016.

C. M. Connelly, R. E. Boer, M. H. Moon, P. Gareiss, and J. S. Schneekloth, Discovery of Inhibitors of MicroRNA-21 Processing Using Small Molecule Microarrays, ACS Chem. Biol, vol.12, pp.435-443, 2017.

S. P. Velagapudi, S. M. Gallo, and M. D. Disney, Sequence-based design of bioactive small molecules that target precursor microRNAs, Nat. Chem. Biol, vol.10, pp.291-297, 2014.

T. P. Tran, D. D. Vo, A. Di-giorgio, and M. Duca, Ribosome-targeting antibiotics as inhibitors of oncogenic microRNAs biogenesis: Old scaffolds for new perspectives in RNA targeting, Bioorg. Med. Chem, vol.23, pp.5334-5344, 2015.

J. G. Delcros, Effect of polyamine homologation on the transport and biological properties of heterocyclic amidines, J. Med. Chem, vol.49, pp.232-245, 2006.

C. Wang, J. G. Delcros, J. Biggerstaff, and O. Phanstiel, Molecular requirements for targeting the polyamine transport system. Synthesis and biological evaluation of polyamine-anthracene conjugates, J. Med. Chem, vol.46, pp.2672-2682, 2003.

S. Tomasi, Solid-phase synthesis of polyfunctionalized natural products: application to usnic acid, a bioactive lichen compound, J. Comb. Chem, vol.8, pp.11-14, 2006.

E. Agostinelli, Polyamines: fundamental characters in chemistry and biology, Amino Acids, vol.38, pp.393-403, 2010.

J. L. Mitchell, T. K. Thane, J. M. Sequeira, and R. Thokala, Unusual aspects of the polyamine transport system affect the design of strategies for use of polyamine analogues in chemotherapy, Biochem. Soc. Trans, vol.35, pp.318-321, 2007.

H. L. Lightfoot and J. Hall, Endogenous polyamine function-the RNAperspective, Nucleic Acid Res, vol.42, pp.11275-11290, 2014.

C. Belair, Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression, Silence, vol.2, p.7, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00639316

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet Journal, vol.17, pp.10-12, 2011.

J. An, J. Lai, M. L. Lehman, and C. C. Nelson, miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data, Nucleic Acids Res, vol.41, pp.727-737, 2013.

X. Liu, MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors, J. Clin. Invest, vol.120, pp.1298-1309, 2010.

N. Wong and X. Wang, miRDB: an online resource for microRNA target prediction and functional annotations, Nucleic Acids Res, vol.43, pp.146-152, 2015.

V. Agarwal, G. W. Bell, J. W. Nam, and D. P. Bartel, Predicting effective microRNA target sites in mammalian mRNAs, Elife, vol.4, p.5005, 2015.

H. Clevers, The cancer stem cell: Premises, promises and challenges, Nat. Med, vol.17, pp.313-319, 2011.

P. H. Nguyen, Characterization of Biomarkers of Tumorigenic and Chemoresistant Cancer Stem Cells in Human Gastric Carcinoma, Clin. Cancer Res, vol.23, pp.1586-1597, 2017.

C. Staedel, Inhibition of Gastric Tumor Cell Growth Using Seed-targeting LNA as Specific, Long-lasting MicroRNA Inhibitors, Mol. Ther. Nucleic Acids, vol.4, p.246, 2015.

G. M. Morris, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comp. Chem, vol.30, pp.2785-2791, 2009.

M. G. Costales, Small molecule inhibition of microRNA-210 reprograms an oncogenic hypoxic circuit, J. Am. Chem. Soc, vol.139, pp.3446-3455, 2017.

P. H. Nguyen, All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth, Oncogene, vol.35, pp.5619-5628, 2016.