C. A. Schuh, T. C. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Materialia, vol.55, issue.12, p.4067, 2007.
DOI : 10.1016/j.actamat.2007.01.052

A. L. Greer, Y. Q. Cheng, and E. Ma, Shear bands in metallic glasses, Materials Science and Engineering: R: Reports, vol.74, issue.4, p.71, 2013.
DOI : 10.1016/j.mser.2013.04.001

URL : https://hal.archives-ouvertes.fr/hal-00639976

B. Sun and W. Wang, The fracture of bulk metallic glasses, Progress in Materials Science, vol.74, p.211, 2015.
DOI : 10.1016/j.pmatsci.2015.05.002

T. Hufnagel, C. Schuh, and M. Falk, Deformation of metallic glasses: Recent developments in theory, simulations, and experiments, Acta Materialia, vol.109, p.375, 2016.
DOI : 10.1016/j.actamat.2016.01.049

M. Martin, T. Sekine, T. Kobayashi, L. Kecskes, and N. Thadhani, High-Pressure Equation of the State of a Zirconium-Based Bulk Metallic Glass, Metallurgical and Materials Transactions A, vol.3, issue.2, p.2689, 2007.
DOI : 10.1007/978-1-4612-2194-4_5

F. Xi, Y. Yu, C. Dai, Y. Zhang, and L. Cai, Shock compression response of a Zr-based bulk metallic glass up to 110 GPa, Journal of Applied Physics, vol.108, issue.8, p.83537, 2010.
DOI : 10.1088/0953-8984/15/3/324

S. Turneaure, J. Winey, and Y. Gupta, Compressive shock wave response of a Zr-based bulk amorphous alloy, Applied Physics Letters, vol.49, issue.10, p.1692, 2004.
DOI : 10.1111/j.1151-2916.1997.tb03090.x

S. Turneaure, J. Winey, and Y. Gupta, Response of a Zr-based bulk amorphous alloy to shock wave compression, Journal of Applied Physics, vol.100, issue.6, p.63522, 2006.
DOI : 10.1088/0953-8984/15/3/324

B. Arman, S. Luo, T. Germann, and T. , metallic glass to high-strain-rate shock loading: Plasticity, spall, and atomic-level structures, Physical Review B, vol.1049, issue.14, p.144201, 2010.
DOI : 10.1103/PhysRevLett.101.065506

B. Luo, G. Wang, F. Tan, J. Zhao, C. Liu et al., Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading, AIP Advances, vol.5, issue.6, p.67161, 2015.
DOI : 10.1063/1.1728382

S. Zhuang, J. Lu, and G. Ravichandran, Shock wave response of a zirconium-based bulk metallic glass and its composite, Applied Physics Letters, vol.4, issue.24, p.4522, 2002.
DOI : 10.1051/jp4:1994859

C. Yang, R. Liu, Z. Zhan, L. Sun, and W. Wang, High speed impact on Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass, Materials Science and Engineering: A, vol.426, issue.1-2, p.298, 2006.
DOI : 10.1016/j.msea.2006.04.016

J. Escobedo and Y. Gupta, Dynamic tensile response of Zr-based bulk amorphous alloys: Fracture morphologies and mechanisms, Journal of Applied Physics, vol.107, issue.12, p.123502, 2010.
DOI : 10.1016/0022-3697(82)90111-1

L. Lu, W. Wang, M. Zhu, X. Gong, and S. Luo, Ductile fracture of bulk metallic glass Zr 50 Cu 40 Al 10 under high strain-rate loading, Materials Science and Engineering: A, vol.651, p.848, 2016.
DOI : 10.1016/j.msea.2015.11.040

A. Cao, Y. Cheng, and E. Ma, Structural processes that initiate shear localization in metallic glass, Acta Materialia, vol.57, issue.17, p.5146, 2009.
DOI : 10.1016/j.actamat.2009.07.016

R. Maaß, D. Klaumünzer, and J. Löffler, Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass, Acta Materialia, vol.59, issue.8, p.3205, 2011.
DOI : 10.1016/j.actamat.2011.01.060

R. Maaß, D. Klaumünzer, G. Villard, P. Derlet, and J. Löffler, Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass, Applied Physics Letters, vol.100, issue.7, p.71904, 2012.
DOI : 10.1103/PhysRevE.69.061611

P. Thurnheer, R. Maaß, K. Laws, S. Pogatscher, and J. Löffler, Dynamic properties of major shear bands in Zr???Cu???Al bulk metallic glasses, Acta Materialia, vol.96, p.428, 2015.
DOI : 10.1016/j.actamat.2015.05.028

F. Cottet and M. Boustie, Spallation studies in aluminum targets using shock waves induced by laser irradiation at various pulse durations, Journal of Applied Physics, vol.47, issue.9, p.4067, 1989.
DOI : 10.1063/1.329011

M. Boustie and F. Cottet, Experimental and numerical study of laser induced spallation into aluminum and copper targets, Journal of Applied Physics, vol.7, issue.11, p.7533, 1991.
DOI : 10.1007/BF02322829

L. Lu, W. Wang, M. Zhu, X. Gong, and S. Luo, Ductile fracture of bulk metallic glass Zr 50 Cu 40 Al 10 under high strain-rate loading, Materials Science and Engineering: A, vol.651, p.848, 2016.
DOI : 10.1016/j.msea.2015.11.040

E. Lescoute, T. D. Rességuier, J. Chevalier, M. Boustie, J. Cuq-lelandais et al., Soft recovery technique to investigate dynamic fragmentation of laser shock-loaded metals, Applied Physics Letters, vol.5, issue.21, p.211905, 2009.
DOI : 10.1063/1.2795436

J. Colombier, P. Combis, F. Bonneau, R. L. Harzic, and E. Audouard, Hydrodynamic simulations of metal ablation by femtosecond laser irradiation, Physical Review B, vol.83, issue.16, p.165406, 2005.
DOI : 10.1103/PhysRevB.65.092103

URL : https://hal.archives-ouvertes.fr/hal-00121833

H. Leamy, H. Chen, and T. Wang, Plastic flow and fracture of metallic glass, Metallurgical and Materials Transactions B, vol.31, issue.3, p.699, 1972.
DOI : 10.1115/1.3629585

M. Falk and J. Langer, Dynamics of viscoplastic deformation in amorphous solids, Physical Review E, vol.78, issue.6, p.7192, 1998.
DOI : 10.1103/PhysRevLett.78.3908

P. Schall, D. Weitz, and F. Spaepen, Structural Rearrangements That Govern Flow in Colloidal Glasses, Science, vol.28, issue.5692, p.1895, 2007.
DOI : 10.1126/science.1102186

URL : http://www.deas.harvard.edu/projects/weitzlab/schall.science.2007.pdf

Y. Cheng, E. Ma, and H. Sheng, Atomic Level Structure in Multicomponent Bulk Metallic Glass, Physical Review Letters, vol.42, issue.24, p.245501, 2009.
DOI : 10.1103/PhysRevB.70.224103