T. Ha, MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease, Immune Network, vol.11, issue.3
DOI : 10.4110/in.2011.11.3.135

C. Schoof, E. Botelho, S. Da, A. Izzotti, L. Vasques et al., MicroRNAs in cancer treatment and prognosis, Am J Cancer Res, vol.2, pp.414-447, 2012.

W. Aoi, Frontier impact of microRNAs in skeletal muscle research: a future perspective, Frontiers in Physiology, vol.287, issue.266
DOI : 10.1074/jbc.M111.330381

E. Zacharewicz, S. Lamon, and A. Russell, MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease, Frontiers in Physiology, vol.4, p.266, 2013.
DOI : 10.3389/fphys.2013.00266

T. Xu, Q. Liu, J. Yao, Y. Dai, H. Wang et al., Circulating microRNAs in response to exercise, Scandinavian Journal of Medicine & Science in Sports, vol.179, issue.57, pp.149-54, 2015.
DOI : 10.1161/CIRCRESAHA.110.226357

C. Friedenreich and M. Orenstein, Physical Activity and Cancer Prevention: Etiologic Evidence and Biological Mechanisms, The Journal of Nutrition, vol.23, issue.11, pp.3456-3464, 2002.
DOI : 10.1207/S15324796ABM2304_5

R. Ballard-barbash, C. Friedenreich, K. Courneya, S. Siddiqi, A. Mctiernan et al., Physical Activity, Biomarkers, and Disease Outcomes in Cancer Survivors: A Systematic Review, JNCI Journal of the National Cancer Institute, vol.101, issue.9, pp.815-855, 2012.
DOI : 10.1093/jnci/djp068

L. He, G. Hannon, R. Friedman, K. Farh, C. Burge et al., MicroRNAs: small RNAs with a big role in gene regulation Available from: www.mirbase.org 10 Most mammalian mRNAs are conserved targets of microRNAs, Nat Rev Genet. Genome Res, vol.519, pp.522-3192, 2004.

W. Aoi and K. Sakuma, Does regulation of skeletal muscle function involve circulating microRNAs?, Frontiers in Physiology, vol.5, pp.39-52, 2014.
DOI : 10.3389/fphys.2014.00039

S. Johnson, H. Grosshans, J. Shingara, M. Byrom, R. Jarvis et al., RAS Is Regulated by the let-7 MicroRNA Family, Cell, vol.120, issue.5, pp.635-682, 2005.
DOI : 10.1016/j.cell.2005.01.014

R. Garzon, G. Marcucci, and C. Croce, Targeting microRNAs in cancer: rationale, strategies and challenges, Nature Reviews Drug Discovery, vol.124, issue.10, pp.775-89, 2010.
DOI : 10.4161/cc.7.16.6533

P. Muti, A. Sacconi, A. Hossain, S. Donzelli, B. Moshe et al., Downregulation of microRNAs 145-3p and 145-5p Is a Long-term Predictor of Postmenopausal Breast Cancer Risk: The ORDET Prospective Study, Cancer Epidemiology Biomarkers & Prevention, vol.23, issue.11, pp.2471-81, 2014.
DOI : 10.1158/1055-9965.EPI-14-0398

B. Zhang, X. Pan, G. Cobb, and T. Anderson, microRNAs as oncogenes and tumor suppressors, Developmental Biology, vol.302, issue.1, pp.1-12, 2007.
DOI : 10.1016/j.ydbio.2006.08.028

P. Mitchell, R. Parkin, E. Kroh, B. Fritz, S. Wyman et al., Circulating microRNAs as stable blood-based markers for cancer detection, Proceedings of the National Academy of Sciences, vol.579, issue.26, pp.10513-10521, 2008.
DOI : 10.1016/j.febslet.2005.09.039

W. Wang, Y. Chen, E. Ng, W. Chong, . Jin-hongchuan et al., Circulating miRNAs in cancer: from detection to therapy Differential expression of microRNAs in plasma of colorectal cancer patients: A potential marker for colorectal cancer screening Available from: http://gut.bmj.com/content/early, 167817.abstract 20. Ozen M, Creighton CJ, Ozdemir M, Ittmann M. Widespread deregulation of microRNA expression in human prostate cancer, pp.1788-93, 2007.

M. Iorio, M. Ferracin, C. Liu, A. Veronese, R. Spizzo et al., MicroRNA gene expression deregulation in human breast cancer MicroRNAs in Hepatocellular Carcinoma: Carcinogenesis, Progression, and Therapeutic Target MicroRNAs as potential biomarkers for gastric cancer, Cancer Res. BioMed Res Int. World J Gastroenterol WJG, vol.65201420, issue.23, pp.48640712007-17, 2005.

S. Chang, W. Jiang, I. Smith, L. Poeta, S. Begum et al., MicroRNA alterations in head and neck squamous cell carcinoma, International Journal of Cancer, vol.3, issue.12, pp.2791-2798, 2008.
DOI : 10.1002/ijc.23831

C. Lawrie, S. Gal, H. Dunlop, B. Pushkaran, A. Liggins et al., Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma Stable serum miRNA profiles as potential tool for non-invasive lung cancer diagnosis, Br J Haematol. RNA Biol, vol.1418, pp.672-677, 2008.

N. Kosaka, H. Iguchi, and T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis, Cancer Science, vol.10, issue.10, pp.2087-92, 2010.
DOI : 10.1158/1940-6207.CAPR-09-0094

L. Jones, N. Eves, and J. Peppercorn, Pre-exercise screening and prescription guidelines for cancer patients, The Lancet Oncology, vol.11, issue.10, pp.914-920, 2010.
DOI : 10.1016/S1470-2045(10)70184-4

C. Rogers, L. Colbert, J. Greiner, S. Perkins, and S. Hursting, Physical Activity and Cancer Prevention, Sports Medicine, vol.4, issue.3, pp.271-96, 2008.
DOI : 10.1159/000386035

H. Na, S. Oliynyk, A. Betof, C. Lascola, D. Weitzel et al., Effects of physical activity on cancer prevention Modulation of Murine Breast Tumor Vascularity, Hypoxia, and Chemotherapeutic Response by Exercise Available from: http://jnci.oxfordjournals.org/content, Ann N Y Acad Sci. J Natl Cancer InstInternet]. Nat Rev Cancer, vol.12291071078, issue.5, pp.176-83, 2008.

D. Brenner, H. Neilson, K. Courneya, and C. Friedenreich, Physical Activity After Breast Cancer: Effect on Survival and Patient-Reported Outcomes, Current Breast Cancer Reports, vol.15, issue.3, pp.193-204, 2014.
DOI : 10.1016/j.ejon.2009.12.001

E. Lee, M. Baek, Y. Gusev, D. Brackett, G. Nuovo et al., Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors Pasiakos SM, McClung JP. miRNA Analysis for the Assessment of Exercise and Amino Acid Effects on Human Skeletal Muscle, Turchinovich A, Burwinkel B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma, pp.35-42412, 2008.

X. Chen, Y. Ba, L. Ma, X. Cai, Y. Yin et al., Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases, Cell Research, vol.25, issue.10, pp.997-1006, 2008.
DOI : 10.1073/pnas.0804549105

C. Chen, D. Ridzon, A. Broomer, Z. Zhou, D. Lee et al., Real-time quantification of microRNAs by stem-loop RT-PCR, Nucleic Acids Research, vol.33, issue.20, pp.179-179, 2005.
DOI : 10.1093/nar/gni178

J. Brase, D. Wuttig, R. Kuner, H. Sültmann, C. Pritchard et al., Serum microRNAs as non-invasive biomarkers for cancer Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies, Mol Cancer. Cancer Prev Res Phila Pa, vol.95, pp.1-9, 2010.

M. Laughlin, R. Korthuis, D. Duncker, R. Bache, H. Langberg et al., Control of Blood Flow to Cardiac and Skeletal Muscle During Exercise Available from Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green, Compr Physiol [Internet] J Appl Physiol, vol.89, pp.1868-78, 2000.

M. Cortez and G. Calin, MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases, Expert Opinion on Biological Therapy, vol.52, issue.6, pp.703-714, 2009.
DOI : 10.1371/journal.pone.0004029

M. Hanke, K. Hoefig, H. Merz, A. Feller, I. Kausch et al., A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer, Urologic Oncology: Seminars and Original Investigations, vol.28, issue.6, pp.655-61
DOI : 10.1016/j.urolonc.2009.01.027

D. Zubakov, A. Boersma, Y. Choi, P. Van-kuijk, E. Wiemer et al., MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation, International Journal of Legal Medicine, vol.129, issue.2, pp.217-243, 2010.
DOI : 10.1007/s00414-009-0402-3

E. Creemers, A. Tijsen, and Y. Pinto, Circulating MicroRNAs: Novel Biomarkers and Extracellular Communicators in Cardiovascular Disease?, Circulation Research, vol.110, issue.3, pp.483-95, 2012.
DOI : 10.1161/CIRCRESAHA.111.247452

L. Xu, Y. B. , and A. J. , MicroRNA transport: A new way in cell communication, Journal of Cellular Physiology, vol.147, issue.8, pp.1713-1722, 2013.
DOI : 10.1016/j.cell.2011.08.033

M. Uhlemann, S. Möbius-winkler, S. Fikenzer, J. Adam, M. Redlich et al., Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training, Eur J Prev Cardiol. J Physiol, vol.21589, pp.484-91, 2011.

X. Chen, H. Liang, J. Zhang, K. Zen, and C. Zhang, Secreted microRNAs: a new form of intercellular communication, Trends in Cell Biology, vol.22, issue.3, pp.125-157, 2012.
DOI : 10.1016/j.tcb.2011.12.001

J. Zhang, S. Li, L. Li, M. Li, C. Guo et al., Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function MicroRNAs are Transported in Plasma and Delivered to Recipient Cells by High-Density Lipoproteins Boon RA, Vickers KC. Intercellular Transport of MicroRNAs Circulating miRNAs: cell? cell communication function? Front Genet, The roles of extracellular vesicles in cancer biology: Toward the development of novel cancer biomarkers, pp.17-24, 2011.

Q. Yang, M. Diamond, and A. Hendy, The emerging role of extracellular vesicle-derived miRNAs: implication in cancer progression and stem cell related diseases, J Clin Epigenetics, vol.2, pp.13-57, 2016.

M. Fabbri, A. Paone, F. Calore, R. Galli, and C. Croce, A new role for microRNAs, as ligands of Toll-like receptors, RNA Biology, vol.56, issue.2, pp.169-74, 2013.
DOI : 10.1146/annurev-immunol-020711-075008

W. Zhou, M. Fong, Y. Min, G. Somlo, L. Liu et al., Cancer-secreted miR- 105 destroys vascular endothelial barriers to promote metastasis Diseaseassociated Expression Profiles in Peripheral Blood Mononuclear Cells from Patients with Advanced Renal Cell Carcinoma, Cancer Cell. Twine NC Cancer Res, vol.2563, pp.501-516, 2003.

N. Mookherjee and H. El-gabalawy, High degree of correlation between whole blood and PBMC expression levels of miR-155 and miR-146a in healthy controls and rheumatoid arthritis patients, Journal of Immunological Methods, vol.400, issue.401, pp.400-401106, 2013.
DOI : 10.1016/j.jim.2013.10.001

S. Atarod, H. Smith, A. Dickinson, X. Wang, S. Radom-aizik et al., MicroRNA levels quantified in whole blood varies from PBMCs Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes, Effects of Exercise on microRNA Expression in Young Males Peripheral Blood Mononuclear Cells, pp.183252-6132, 2010.

S. Radom-aizik, F. Zaldivar, F. Haddad, and D. Cooper, Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults, Journal of Applied Physiology, vol.17, issue.5, pp.628-664, 2013.
DOI : 10.1189/jlb.0306191

A. Tonevitsky, D. Maltseva, A. Abbasi, T. Samatov, D. Sakharov et al., Dynamically regulated miRNA-mRNA networks revealed by exercise, BMC Physiology, vol.13, issue.1, pp.9-9, 2013.
DOI : 10.1093/bioinformatics/19.2.185

URL : https://doi.org/10.1186/1472-6793-13-9

W. Aoi, H. Ichikawa, K. Mune, Y. Tanimura, K. Mizushima et al., Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men Profiling of Circulating MicroRNAs after a Bout of Acute Resistance Exercise in Humans Changes in circulating microRNAs levels with exercise modality, Front Physiol. PLoS ONE. J Appl Physiol, vol.48115, pp.80-671237, 2013.

E. Fransen, Plasma levels of microRNA in chronic kidney disease: patterns in acute and chronic exercise, Am J Physiol -Heart Circ Physiol, vol.309, pp.2008-2024, 2015.

F. Mooren, J. Viereck, K. Krüger, and T. Thum, Circulating micrornas as potential biomarkers of aerobic exercise capacity, American Journal of Physiology-Heart and Circulatory Physiology, vol.71, issue.4, pp.557-63, 2014.
DOI : 10.1097/MOL.0b013e328350a425

S. Nielsen, T. Åkerström, A. Rinnov, C. Yfanti, C. Scheele et al., The miRNA Plasma Signature in Response to Acute Aerobic Exercise and Endurance Training Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise, PLoS ONE. J Appl Physiol, vol.9116, pp.87308-72522, 2014.

C. Gomes, G. Oliveira-jr, B. Madrid, J. Almeida, O. Franco et al., Circulating miR-1, miR-133a, and miR-206 levels are increased after a half-marathon run, Biomarkers, vol.5, issue.7, pp.585-594, 2014.
DOI : 10.1371/journal.pone.0013735

S. Cui, W. Li, J. Niu, C. Zhang, X. Chen et al., Acute responses of circulating microRNAs to low-volume sprint interval cycling MicroRNAs as Biomarkers for Acute Atrial Remodeling in Marathon Runners (The miRathon Study ? A Sub- . Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited, Front Physiol, vol.6, pp.311-75, 2015.

P. Min, J. Park, S. Isaacs, B. Taylor, P. Thompson et al., Influence of statins on distinct circulating microRNAs during prolonged aerobic exercise, Journal of Applied Physiology, vol.7, issue.6, pp.711-731, 2016.
DOI : 10.1523/JNEUROSCI.3766-11.2011

A. Bye, H. Røsjø, S. Aspenes, G. Condorelli, T. Omland et al., Circulating MicroRNAs and Aerobic Fitness ??? The HUNT-Study, PLoS ONE, vol.27, issue.2, pp.57496-78, 2013.
DOI : 10.1371/journal.pone.0057496.t002

W. Aoi, Y. Naito, T. Takagi, Y. Tanimura, Y. Takanami et al., A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise, Gut, vol.62, issue.6, pp.882-891, 2013.
DOI : 10.1136/gutjnl-2011-300776

G. Wang, J. Zhu, J. Zhang, Q. Li, Y. Li et al., Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans Available from, Eur Heart J [Internet], vol.31, issue.82, 2010.

T. Adachi, M. Nakanishi, Y. Otsuka, K. Nishimura, G. Hirokawa et al., Plasma MicroRNA 499 as a Biomarker of Acute Myocardial Infarction Available from, Clin Chem [Internet], vol.56, 2010.

L. Zhang, X. Chen, T. Su, H. Li, Q. Huang et al., GW26-e0469 Circulating miR-499 are novel and sensitive biomarker of acute myocardial??infarction, Journal of the American College of Cardiology, vol.66, issue.16, pp.303-311, 2015.
DOI : 10.1016/j.jacc.2015.06.318

Y. Xin, C. Yang, Z. Han, G. Neumayr, H. Gaenzer et al., Circulating miR-499 as a potential biomarker for acute myocardial infarction Plasma levels of cardiac troponin I after prolonged strenuous endurance exercise Clinical significance of increased cardiac troponins T and I in participants of ultra-endurance events, Ann Transl Med. Am J Cardiol. Am J Cardiol, vol.48794, issue.87, pp.135-85369, 2001.

D. Moffat, J. Krahn, R. Ahmadie, T. Fang, and G. Eschun, Myocardial Injury and Ventricular Dysfunction Related to Training Levels Among Nonelite Participants in the Boston Marathon Cardiac Injury Markers in Non-elite Marathon Runners, Circulation. Int J Sports Med, vol.11430, pp.75-84, 2006.

E. Fortescue, A. Shin, D. Greenes, R. Mannix, S. Agarwal et al., Cardiac Troponin Increases Among Runners in the Boston Marathon, Annals of Emergency Medicine, vol.49, issue.2, pp.137-143, 2007.
DOI : 10.1016/j.annemergmed.2006.09.024

S. Wang, A. Aurora, B. Johnson, X. Qi, J. Mcanally et al., The Endothelial-Specific MicroRNA miR-126 Governs Vascular Integrity and Angiogenesis, Developmental Cell, vol.15, issue.2, pp.261-71, 2008.
DOI : 10.1016/j.devcel.2008.07.002

R. Saba, D. Sorensen, S. Booth, A. Baggish, A. Hale et al., MicroRNA-146a: A Dominant Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling The role of let-7 in cell differentiation and cancer, Decreased Serum Level of miR-146a as Sign of Chronic Inflammation in Type 2 Diabetic Patients, pp.578-93354517, 2010.

S. Roush and F. Slack, The let-7 family of microRNAs, Trends in Cell Biology, vol.18, issue.10, pp.505-521, 2008.
DOI : 10.1016/j.tcb.2008.07.007

M. Párrizas, L. Brugnara, Y. Esteban, A. González-franquesa, S. Canivell et al., Circulating miR-192 and miR-193b Are Markers of Prediabetes and Are Modulated by an Exercise Intervention, The Journal of Clinical Endocrinology & Metabolism, vol.100, issue.3, pp.407-422, 2014.
DOI : 10.1210/jc.2014-2574

H. Oghbaei, A. Asl, N. Sheikhzadeh, F. Alipour, M. Khamaneh et al., The Effect of Regular Moderate Exercise on miRNA-192 Expression Changes in Kidney of Streptozotocin- Induced Diabetic Male Rats, Adv Pharm Bull, vol.5, pp.127-159, 2015.

C. Payne, C. Crowley-skillicorn, C. Bernstein, H. Holubec, and H. Bernstein, Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis, Clinical and Experimental Gastroenterology, vol.4, pp.75-119, 2011.
DOI : 10.2147/CEG.S17114

W. Cui, S. Zhang, C. Shan, L. Zhou, and Z. Zhou, microRNA-133a regulates the cell cycle and proliferation of breast cancer cells by targeting epidermal growth factor receptor through the EGFR/Akt signaling pathway, FEBS Journal, vol.18, issue.16, pp.3962-74, 2013.
DOI : 10.1091/mbc.E07-05-0496

X. Rao, D. Leva, G. Li, M. Fang, F. Devlin et al., MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways, Oncogene, vol.24, issue.9, pp.1082-97, 2011.
DOI : 10.1002/jcp.1041410217

URL : http://www.nature.com/onc/journal/v30/n9/pdf/onc2010487a.pdf

J. Guo, B. Xia, F. Meng, and G. Lou, miR-133a suppresses ovarian cancer cell proliferation by directly targeting insulin-like growth factor 1 receptor, Tumor Biology, vol.61, issue.18, pp.1557-64, 2013.
DOI : 10.1136/gutjnl-2011-300178

Y. Dong, J. Zhao, C. Wu, L. Zhang, X. Liu et al., Tumor Suppressor Functions of miR-133a in Colorectal Cancer, Molecular Cancer Research, vol.11, issue.9, pp.1051-60, 2013.
DOI : 10.1158/1541-7786.MCR-13-0061

H. Yoshino, T. Chiyomaru, H. Enokida, K. Kawakami, S. Tatarano et al., The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer, British Journal of Cancer, vol.31, issue.5, pp.808-826, 2011.
DOI : 10.3724/SP.J.1005.2009.01094

T. Chiyomaru, H. Enokida, S. Tatarano, K. Kawahara, Y. Uchida et al., miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer, British Journal of Cancer, vol.59, issue.5, pp.883-91, 2010.
DOI : 10.1155/2009/921907

S. Kojima, T. Chiyomaru, K. Kawakami, H. Yoshino, H. Enokida et al., Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer, British Journal of Cancer, vol.126, issue.2, pp.405-418, 2012.
DOI : 10.1111/j.1349-7006.2009.01424.x

Y. Gong, J. Ren, K. Liu, and L. Tang, Tumor suppressor role of miR-133a in gastric cancer by repressing IGF1R, World Journal of Gastroenterology, vol.21, issue.10, pp.2949-58, 2015.
DOI : 10.4161/cc.24477

S. Nielsen, C. Scheele, C. Yfanti, T. Åkerström, A. Nielsen et al., Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle, The Journal of Physiology, vol.42, issue.20, pp.4029-4066, 2010.
DOI : 10.1249/MSS.0b013e3181cd76be

A. Russell, S. Lamon, H. Boon, S. Wada, I. Güller et al., Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training, The Journal of Physiology, vol.98, issue.18
DOI : 10.1152/japplphysiol.01185.2004

M. Huang, H. Xu, S. Xie, H. Zhou, and L. Qu, Insulin-Like Growth Factor-1 Receptor Is Regulated by microRNA-133 during Skeletal Myogenesis, PLoS ONE, vol.10, issue.12, p.29173, 2011.
DOI : 10.1371/journal.pone.0029173.s002

C. Neuzillet, A. Tijeras-raballand, L. De-mestier, J. Cros, S. Faivre et al., MEK in cancer and cancer therapy, Pharmacology & Therapeutics, vol.141, issue.2, pp.160-71, 2014.
DOI : 10.1016/j.pharmthera.2013.10.001

R. Jorissen, F. Walker, N. Pouliot, T. Garrett, C. Ward et al., Epidermal growth factor receptor: mechanisms of activation and signalling, Experimental Cell Research, vol.284, issue.1, pp.31-53, 2003.
DOI : 10.1016/S0014-4827(02)00098-8

T. Franke, C. Hornik, L. Segev, G. Shostak, and C. Sugimoto, PI3K/Akt and apoptosis: size matters, Oncogene, vol.22, issue.56, pp.8983-98
DOI : 10.1074/jbc.273.26.16568

D. Long, C. Chan, and Y. Ding, ANALYSIS OF MICRORNA-TARGET INTERACTIONS BY A TARGET STRUCTURE BASED HYBRIDIZATION MODEL, Biocomputing 2008, pp.64-74, 2008.
DOI : 10.1142/9789812776136_0008

A. Tong and J. Nemunaitis, Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther, pp.341-55, 2008.

A. Isanejad, A. Alizadeh, A. Shalamzari, S. Khodayari, H. Khodayari et al., MicroRNA-206, let-7a and microRNA-21 pathways involved in the anti-angiogenesis effects of the interval exercise training and hormone therapy in breast cancer, Life Sciences, vol.151, pp.30-40, 2016.
DOI : 10.1016/j.lfs.2016.02.090

V. Sampson, N. Rong, J. Han, Q. Yang, V. Aris et al., MicroRNA Let-7a Down-regulates MYC and Reverts MYC-Induced Growth in Burkitt Lymphoma Cells, Cancer Research, vol.67, issue.20, 2007.
DOI : 10.1158/0008-5472.CAN-07-2462

C. Dang, . Myc, . Metabolism, and T. Growth, Cold Spring Harb Perspect Med Available from, Internet], vol.3, 2013.

E. Castellano and J. Downward, RAS Interaction with PI3K: More Than Just Another Effector Pathway, Genes & Cancer, vol.2, issue.3, pp.261-74, 2011.
DOI : 10.1177/1947601911408079

URL : http://journals.sagepub.com/doi/pdf/10.1177/1947601911408079

S. Shenouda and S. Alahari, MicroRNA function in cancer: oncogene or a tumor suppressor?, Cancer and Metastasis Reviews, vol.10, issue.4, p.369, 2009.
DOI : 10.4161/cc.7.16.6533

D. Leva, G. Piovan, C. Gasparini, P. Ngankeu, A. Taccioli et al., Estrogen Mediated-Activation of miR-191/425 Cluster Modulates Tumorigenicity of Breast Cancer Cells Depending on Estrogen Receptor Status, PLoS Genetics, vol.22, issue.3, p.1003311, 2013.
DOI : 10.1371/journal.pgen.1003311.s016

P. Costa-pinheiro, J. Ramalho-carvalho, F. Vieira, J. Torres-ferreira, J. Oliveira et al., MicroRNA-375 plays a dual role in prostate carcinogenesis, Clinical Epigenetics, vol.20, issue.18, p.42, 2015.
DOI : 10.1093/bioinformatics/bth456

. Koelz, Down-regulation of miR-221 and miR-222 correlates with pronounced Kit expression in gastrointestinal stromal tumors Available from, Int J Oncol [Internet], vol.38382, p.503, 2011.

M. Ihle, M. Trautmann, H. Kuenstlinger, S. Huss, C. Heydt et al., miRNA-221 and miRNA-222 induce apoptosis via the KIT/AKT signalling pathway in gastrointestinal stromal tumours, Molecular Oncology, vol.8, issue.Suppl 2, pp.1421-1454, 2015.
DOI : 10.1371/journal.pone.0053906

C. Gits, P. Van-kuijk, M. Jonkers, A. Boersma, W. Van-ijcken et al., MiR-17-92 and miR-221/222 cluster members target KIT and ETV1 in human gastrointestinal stromal tumours, British Journal of Cancer, vol.11, issue.6, pp.1625-1660, 2013.
DOI : 10.1016/j.ydbio.2006.08.028

T. Hemesath, E. Price, C. Takemoto, T. Badalian, and D. Fisher, MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes, Nature, vol.9, issue.6664, pp.298-301, 1998.
DOI : 10.1128/MCB.9.2.639

R. Chian, S. Young, A. Danilkovitch-miagkova, L. Rönnstrand, E. Leonard et al., Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant, Blood, vol.98, issue.5, pp.1365-73, 2001.
DOI : 10.1182/blood.V98.5.1365

Z. Ning, J. Li, and R. Arceci, at Codon 816 Confer Drug Resistance in Human Leukemia Cells, Leukemia & Lymphoma, vol.93, issue.5-6, pp.513-535, 2001.
DOI : 10.1073/pnas.93.25.14665

D. Linnekin, Early signaling pathways activated by c-Kit in hematopoietic cells, The International Journal of Biochemistry & Cell Biology, vol.31, issue.10, pp.1053-74, 1999.
DOI : 10.1016/S1357-2725(99)00078-3

M. Garofalo, G. Leva, G. Romano, G. Nuovo, S. Suh et al., miR-221&222 Regulate TRAIL Resistance and Enhance Tumorigenicity through PTEN and TIMP3 Downregulation, Cancer Cell, vol.16, issue.6, pp.498-509, 2009.
DOI : 10.1016/j.ccr.2009.10.014

M. Si, S. Zhu, H. Wu, Z. Lu, F. Wu et al., miR-21-mediated tumor growth, Oncogene, vol.5, issue.19, pp.2799-803, 2006.
DOI : 10.1023/A:1021540120521

N. Wang, C. Zhang, J. He, X. Duan, Y. Wang et al., miR-21 Down-Regulation Suppresses Cell Growth, Invasion and Induces Cell Apoptosis by Targeting FASL, TIMP3, and RECK Genes in Esophageal Carcinoma, Digestive Diseases and Sciences, vol.13, issue.7, pp.1863-70, 2013.
DOI : 10.3748/wjg.13.6076

S. Zhu, H. Wu, F. Wu, D. Nie, S. Sheng et al., MicroRNA-21 targets tumor suppressor genes in invasion and metastasis, Cell Research, vol.60, issue.3, pp.350-359, 2008.
DOI : 10.1016/j.bbrc.2006.02.106

E. Yang, A. Sood, M. Chen, Y. Li, T. Eubank et al., Norepinephrine Up-regulates the Expression of Vascular Endothelial Growth Factor, Matrix Metalloproteinase (MMP)-2, and MMP-9 in Nasopharyngeal Carcinoma Tumor Cells, Matrix Metalloproteinase (MMP)-2, and MMP-9 in Nasopharyngeal Carcinoma Tumor Cells, pp.10357-64, 2006.
DOI : 10.1158/0008-5472.CAN-06-2496

J. Leupold, I. Asangani, G. Maurer, E. Lengyel, S. Post et al., Src Induces Urokinase Receptor Gene Expression and Invasion/Intravasation via Activator Protein-1/p-c-Jun in Colorectal Cancer, Molecular Cancer Research, vol.5, issue.5, pp.485-96, 2007.
DOI : 10.1158/1541-7786.MCR-06-0211

W. Aoi, Y. Naito, K. Mizushima, Y. Takanami, Y. Kawai et al., The microRNA miR-696 regulates PGC-1?? in mouse skeletal muscle in response to physical activity, American Journal of Physiology-Endocrinology and Metabolism, vol.260, issue.4, p.799, 2010.
DOI : 10.1016/j.mehy.2006.11.043

Y. Zhang, P. Yang, T. Sun, D. Li, X. Xu et al., miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis, Nature Cell Biology, vol.18, issue.3, pp.284-94, 2013.
DOI : 10.1093/bioinformatics/18.11.1427

B. Teicher and S. Fricker, CXCL12 (SDF-1)/CXCR4 Pathway in Cancer, Clinical Cancer Research, vol.16, issue.11, pp.2927-2958, 2010.
DOI : 10.1158/1078-0432.CCR-09-2329

B. Qian, J. Li, H. Zhang, T. Kitamura, J. Zhang et al., CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis, Nature, vol.64, issue.7355, pp.222-227, 2011.
DOI : 10.1158/0008-5472.CAN-04-2078

URL : http://europepmc.org/articles/pmc3208506?pdf=render

P. Costa, P. De-lima, and M. , MicroRNAs as Molecular Targets for Cancer Therapy: On the Modulation of MicroRNA Expression, Pharmaceuticals, vol.25, issue.12, pp.1195-220, 2013.
DOI : 10.1016/j.addr.2005.09.012

P. Mishra and G. Merlino, MicroRNA reexpression as differentiation therapy in cancer, Journal of Clinical Investigation, vol.119, pp.2119-2142, 2009.
DOI : 10.1172/JCI40107

S. Rothschild, microRNA therapies in cancer, Molecular and Cellular Therapies, vol.2, issue.1, pp.1-8, 2014.
DOI : 10.1186/2052-8426-2-7

D. Barh, R. Malhotra, B. Ravi, and P. Sindhurani, Microrna let-7: an emerging next-generation cancer therapeutic, Current Oncology, vol.17, issue.1, 2010.
DOI : 10.3747/co.v17i1.356

URL : http://europepmc.org/articles/pmc2826782?pdf=render

X. Wang, L. Cao, Y. Wang, X. Wang, N. Liu et al., Regulation of let-7 and its target . Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited

T. Kolenda, W. Przyby?a, A. Teresiak, A. Mackiewicz, and K. Lamperska, The mystery of let-7d ??? a??small RNA with great power, Wsp????czesna Onkologia, vol.5, pp.293-301, 2014.
DOI : 10.5114/wo.2014.44467

S. Chiu, H. Chung, D. Cho, T. Chan, M. Liu et al., Therapeutic Potential of MicroRNA Let-7: Tumor Suppression or Impeding Normal Stemness, Cell Transplantation, vol.285, issue.53, pp.459-69, 2014.
DOI : 10.1177/147323001103900631

M. Kirschner, E. Jjb, S. Kao, M. Vallely, N. Van-zandwijk et al., The Impact of Hemolysis on Cell-Free microRNA, Biomarkers. Front Genet, vol.4, p.94, 2013.

S. Chen, Y. Wang, M. Telen, and J. Chi, The Genomic Analysis of Erythrocyte microRNA Expression in Sickle Cell Diseases, PLoS ONE, vol.95, issue.6, p.2360, 2008.
DOI : 10.1371/journal.pone.0002360.s003

K. Wang, Y. Yuan, J. Cho, S. Mcclarty, D. Baxter et al., Comparing the MicroRNA Spectrum between Serum and Plasma, :e41561. . Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited, 2012.
DOI : 10.1371/journal.pone.0041561.s007