P. Poizot and F. Dolhem, Clean energy new deal for a sustainable world: from non
URL : https://hal.archives-ouvertes.fr/hal-00830394

Y. Liang, Z. Tao, and J. Chen, Organic Electrode Materials for Rechargeable Lithium Batteries, Advanced Energy Materials, vol.100, issue.7, pp.742-769, 2012.
DOI : 10.1063/1.3689764

Z. Song and H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials, Energy & Environmental Science, vol.48, issue.121, pp.2280-2301, 2013.
DOI : 10.1039/c2cc32466k

B. Haeupler, A. Wild, and U. S. Schubert, Carbonyls: Powerful Organic Materials for Secondary Batteries, Advanced Energy Materials, vol.505, issue.121, p.1402034, 2015.
DOI : 10.1038/nature12909

Q. Zhao, C. Guo, Y. Lu, L. Liu, J. Liang et al., Rechargeable Lithium Batteries with Electrodes of Small Organic Carbonyl Salts and Advanced Electrolytes, Industrial & Engineering Chemistry Research, vol.55, issue.20, pp.55-5795, 2016.
DOI : 10.1021/acs.iecr.6b01462

T. B. Schon, B. T. Mcallister, P. Li, and D. S. Seferos, The rise of organic electrode materials for energy storage, Chem. Soc. Rev, pp.45-6345, 2016.

S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka et al., Polymer-Based Organic Batteries, Chemical Reviews, vol.116, issue.16, pp.9438-9484, 2016.
DOI : 10.1021/acs.chemrev.6b00070

Q. Zhao, Y. Lu, and J. Chen, Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries, Advanced Energy Materials, vol.349, issue.8, p.1601792, 2017.
DOI : 10.1126/science.aab3033

J. Winsberg, T. Hagemann, T. Janoschka, M. D. Hager, and U. S. Schubert, Redox-Flow Batteries: From Metals to Organic Redox-Active Materials, Angewandte Chemie International Edition, vol.300, issue.121, pp.56-686, 2016.
DOI : 10.1002/anie.201606472

S. Gottis, A. Barrès, F. Dolhem, and P. Poizot, Voltage Gain in Lithiated Enolate-Based Organic Cathode Materials by Isomeric Effect, ACS Applied Materials & Interfaces, vol.6, issue.14, pp.10870-10876, 2014.
DOI : 10.1021/am405470p

URL : https://hal.archives-ouvertes.fr/hal-01063341

M. Yao, H. Sano, H. Ando, and T. Kiyobayashi, Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier, Scientific Reports, vol.107, issue.43, p.10962, 2015.
DOI : 10.1063/1.474659

E. Deunf, P. Moreau, E. Quarez, D. Guyomard, F. Dolhem et al., Reversible anion intercalation in a layered aromatic amine: a high-voltage host structure for organic batteries, Journal of Materials Chemistry A, vol.88, issue.16, pp.6131-6139, 2016.
DOI : 10.1039/dc9898800317

URL : https://hal.archives-ouvertes.fr/hal-01314724

E. Deunf, N. Dupré, E. Quarez, P. Soudan, D. Guyomard et al., Poizot, Solvation, exchange and electrochemical intercalation properties of disodium 2,5- (dianilino)terephthalate, CrystEngComm, pp.18-6076, 2016.

E. Deunf, P. Jiménez, D. Guyomard, F. Dolhem, and P. Poizot, A dual???ion battery using diamino???rubicene as anion???inserting positive electrode material, Electrochemistry Communications, vol.72, pp.72-64, 2016.
DOI : 10.1016/j.elecom.2016.09.002

URL : https://hal.archives-ouvertes.fr/hal-01382972

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, second edition, 2001.

C. Batchelor-mcauley and R. G. Compton, Voltammetry of multi-electron electrode processes of organic species, Journal of Electroanalytical Chemistry, vol.669, pp.73-81, 2012.
DOI : 10.1016/j.jelechem.2012.01.016

M. Opa??o, The solvent effect on the electro-oxidation of 1,4-phenylenediamine. The influence of the solvent reorientation dynamics on the one-electron transfer rate, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.82, issue.2
DOI : 10.1039/f19868200339

A. Bewick, D. Serve, and T. A. Joslin, Anodic oxidation of aromatic nitrogen compounds, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.154, issue.1-2, pp.154-81, 1983.
DOI : 10.1016/S0022-0728(83)80533-6

H. Fernández and M. A. , Zón, Determination of the kinetic and activation parameters for the electro-oxidation of N, phenylenediamine (TMPD) in acetonitrile (ACN) by chronocoulometry and other electrochemical techniques, J. Electroanal

H. De-santana, S. Quillard, E. Fayad, and G. Louarn, In situ UV???vis and Raman spectroscopic studies of the electrochemical behavior of N,N???-diphenyl-1,4-phenylenediamine, Synthetic Metals, vol.156, issue.1, pp.156-81, 2006.
DOI : 10.1016/j.synthmet.2005.10.013

URL : https://hal.archives-ouvertes.fr/hal-00379519

A. Maleki and D. Nematollahi, Mechanism diversity in anodic oxidation of N,N-dimethyl-p-phenylenediamine by varying pH, Journal of Electroanalytical Chemistry, vol.704, pp.75-79, 2013.
DOI : 10.1016/j.jelechem.2013.06.002

H. Kim, K. Lee, Y. Han, J. H. Ryu, and S. M. Oh, A comparative study on the solubility and stability of p -phenylenediamine-based organic redox couples for non-aqueous flow batteries, Journal of Power Sources, vol.348, pp.264-269, 2017.
DOI : 10.1016/j.jpowsour.2017.03.019

M. Ue, Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and ??-Butyrolactone, Journal of The Electrochemical Society, vol.141, issue.12, pp.3336-3342, 1994.
DOI : 10.1149/1.2059336

M. Ue, Ionic Radius of (CF[sub 3]SO[sub 2])[sub 3]C[sup ???] and Applicability of Stokes Law to Its Propylene Carbonate Solution, Journal of The Electrochemical Society, vol.143, issue.11, pp.270-271, 1996.
DOI : 10.1149/1.1837231

W. Linert, A. Camard, M. Armand, and C. Michot, Anions of low Lewis basicity for ionic solid state electrolytes, Coordination Chemistry Reviews, vol.226, issue.1-2, pp.137-141, 2002.
DOI : 10.1016/S0010-8545(01)00416-7

F. Barrière and W. E. Geiger, Use of weakly coordinating anions to develop an integrated approach to the tuning of ?E 1/2 values by medium effects, J. Am. Chem. Soc, pp.128-3980, 2006.

R. G. Evans, O. Klymenko, C. Hardacre, K. R. Seddon, and R. Compton, Oxidation of N,N,N???,N???-tetraalkyl-para-phenylenediamines in a series of room temperature ionic liquids incorporating the bis(trifluoromethylsulfonyl)imide anion, Journal of Electroanalytical Chemistry, vol.556, pp.556-179, 2003.
DOI : 10.1016/S0022-0728(03)00343-7

S. E. Sloop, J. K. Pugh, S. Wang, J. B. Kerr, and K. Kinoshita, Chemical Reactivity of PF[sub 5] and LiPF[sub 6] in Ethylene Carbonate/Dimethyl Carbonate Solutions, Electrochemical and Solid-State Letters, vol.191, issue.82, pp.42-44, 2001.
DOI : 10.1002/macp.1990.021910301

C. L. Campion, W. Li, and B. L. Lucht, Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.61, issue.98, pp.2327-2334, 2005.
DOI : 10.1149/1.1837726

A. V. Plakhotnyk, L. Ernst, and R. Schmutzler, Hydrolysis in the system LiPF6???propylene carbonate???dimethyl carbonate???H2O, Journal of Fluorine Chemistry, vol.126, issue.1, pp.27-31, 2005.
DOI : 10.1016/j.jfluchem.2004.09.027