, Papers of particular interest, published within the period of review, have been highlighted as: ? of special interest ?? of outstanding interest

M. B. Shakoor, R. Nawaz, F. Hussain, M. Raza, S. Ali et al., Human health implications, risk assessment and remediation of As-contaminated water: A [17] A. Bahari, V. Salmani, Environmentally relevant dose of arsenic interferes in functions of human monocytes derived dendritic cells, Toxicol. Lett, pp.275-118, 2017.

B. J. Wang, Y. Y. Lee, C. P. Mak, H. F. Kao, M. L. Hsu et al., Quantitative and morphological changes of Langerhans cells in Bowen's disease from patients with chronic arsenicism, J. Formos. Med. Assoc. Taiwan Yi Zhi, pp.90-1093, 1991.

]. Lee, C. Hong, C. Yu, L. Wang, B. E. Clausen et al., Arsenic mobilizes Langerhans cell migration and induces Th1 response in epicutaneous protein sensitization via CCL21: A plausible cause of decreased Langerhans cells in arsenic-induced intraepithelial carcinoma, Biochemical Pharmacology, vol.83, issue.9, pp.1290-1299, 2012.
DOI : 10.1016/j.bcp.2012.01.028

M. Cebrián, E. S. Bastida, L. Calderón-aranda, and . Vega, Assessment of lymphocyte subpopulations and cytokine secretion in children exposed to arsenic

. Fed, Am. Soc. Exp. Biol, vol.20, pp.779-78105, 2006.

]. R. Biswas, P. Ghosh, N. Banerjee, J. K. Das, T. Sau et al.,

M. Chatterjee, A. Mukherjee, and A. K. Giri, Analysis of T-cell proliferation and cytokine secretion in the individuals exposed to arsenic, Hum. Exp. Toxicol, vol.27, pp.381-386, 2008.

H. Yu, C. Morzadec, F. Bouezzedine, M. Macoch, O. Fardel et al., Differential effects of arsenic on cutaneous and systemic immunity: focusing on CD4+ cell apoptosis in patients with arsenic-induced Bowen's disease, Carcinogenesis doi:10.1093/carcin/bgp095 Inorganic arsenic impairs proliferation and cytokine expression in human primary T lymphocytes, Toxicology, pp.30-1064, 2009.

. Hudson, Differential susceptibility of human peripheral blood T cells to suppression by

A. Mostofa, R. O. Cardenas, D. C. Wright, and . Christiani, Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood, Epigenetics, issue.9, pp.774-782, 2014.

]. S. Ahmed, K. B. Ahsan, M. Kippler, A. Mily, Y. Wagatsuma et al., P.T

S. Ngom, R. Arifeen, M. Raqib, and . Vahter, In utero arsenic exposure is associated with impaired thymic function in newborns possibly via oxidative stress and apoptosis

. Sci, S. Off, P. Choudhury, S. Gupta, S. Ghosh et al., J. Soc. Toxicol, vol.129, pp.305-314, 2012.

. Chattopadhyay, Arsenic-induced dose-dependent modulation of the NF-?B/IL-6 axis in thymocytes triggers differential immune responses, Toxicology, pp.357-358, 2016.

R. Gera, V. Singh, S. Mitra, A. K. Sharma, A. Singh et al., Arsenic exposure impels CD4 commitment in thymus and suppress T cell cytokine secretion by increasing regulatory T cells, Scientific Reports, vol.27, issue.1
DOI : 10.1021/tx500046k

]. H. Lu, R. B. Crawford, C. M. North, B. L. Kaplan, and N. E. Kaminski, Establishment of an Immunoglobulin M Antibody-Forming Cell Response Model for Characterizing Immunotoxicity in Primary Human B Cells, Toxicological Sciences, vol.129, issue.2, pp.363-373, 2009.
DOI : 10.1016/S0300-483X(98)00059-6

P. C. Ezeh, F. T. Lauer, D. Mackenzie, S. Mcclain, K. J. Liu et al.,

S. W. Gandolfi and . Burchiel, Arsenite selectively inhibits mouse bone marrow lymphoid progenitor cell development in vivo and in vitro and suppresses humoral immunity in vivo, PloS One, vol.9

, arsenite selectively inhibits CFU-B colony formation in femur and T-dependent antibody response in spleen of mice exposed through contaminated drinking water In vitro, its monomethylated metabolite, monomethylarsonous acid, selectively suppresses the differentiation of murine CFU-B formation, at low nM concentrations, in the absence of apparent cytotoxicity. These finding support a marked sensitivity of murine lymphoid progenitor to inorganic arsenic and its methylated metabolite, Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells

. Sci, J. Off, D. Biswas, S. Sinha, S. Mukherjee et al., Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal, J. Soc. Toxicol, vol.149, pp.289-299, 2016.

. Toxicol, , pp.513-524, 2010.

J. S. Matalon, F. Deshane, D. R. Afaq, M. Bickers, and . Athar, Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption, Toxicol. Appl. Pharmacol, pp.272-879, 2013.

S. Gupta, L. Yel, D. Kim, C. Kim, S. Chiplunkar et al., Arsenic trioxide induces apoptosis in peripheral blood T lymphocyte subsets by inducing oxidative stress: a role of Bcl-2, Mol. Cancer Ther, vol.2, pp.711-719, 2003.

A. D. Kligerman, C. L. Doerr, A. H. Tennant, K. Harrington-brock, and J. W. ,

P. Winkfield, B. Poorman-allen, K. Kundu, B. C. Funasaka, and M. Roop,

G. Mahiuddin, Y. Mostofa, R. O. Hsueh, D. C. Wright, and . Christiani, Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes

, Health Perspect, vol.120, pp.1061-1066, 2012.

M. M. Niedzwiecki, M. N. Hall, X. Liu, J. Oka, and K. N. ,

A. Levy, J. L. Van-geen, S. Mey, A. B. Alam, F. Siddique et al.,

L. Gamble, F. Chen, L. Jasmine, and B. L. Tong, A dose-response study of arsenic exposure and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults, Environ. Health Perspect, pp.1306-1312, 2013.

K. N. Gamble, F. Harper, M. Parvez, M. Rahman, V. Rakibuz-zaman et al.,

J. H. Baron, M. G. Graziano, H. Kibriya, A. H. Ahsan, and . Smith, Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh, Environ. Health Perspect, vol.123, 2015.

M. R. Perry, V. K. Prajapati, J. Menten, and A. , Chile that arsenic in drinking water may increase mortality from pulmonary tuberculosis, Am. J. Epidemiol, vol.173, pp.414-420, 2011.

A. H. Sundar, M. Fairlamb, A. Boelaert, and . Picado, Arsenic exposure and outcomes of antimonial treatment in visceral leishmaniasis patients in Bihar, India: a retrospective cohort study, PLoS Negl. Trop. Dis, vol.9, p.3518, 2015.

C. D. Kozul, K. H. Ely, R. I. Enelow, and J. W. Hamilton, Low-Dose Arsenic Compromises the Immune Response to Influenza A Infection in Vivo, Environmental Health Perspectives, vol.117, issue.9, pp.1441-1447, 2009.
DOI : 10.1289/ehp.0900911

, Health Glob. Access Sci. Source, vol.12, issue.73, 2013.

]. A. Yuan, J. J. Chen, P. Yao, and P. Yang, The role of interleukin-8 in cancer cells and microenvironment interaction, Frontiers in Bioscience, vol.10, issue.1-3, pp.10-853, 2005.
DOI : 10.2741/1579

F. Chen, J. H. Wu, F. Graziano, M. Parvez, R. R. Liu et al., Arsenic Exposure From Drinking Water, Arsenic Methylation Capacity, and Carotid Intima-Media Thickness in Bangladesh, American Journal of Epidemiology, vol.48, issue.4, pp.372-381, 2013.
DOI : 10.1177/000331979704800405

F. J. Mateen, M. Grau-perez, J. S. Pollak, K. A. Moon, B. V. Howard et al.,

K. A. Best, W. Francesconi, C. Goessler, E. Crainiceanu, R. B. Guallar et al.,

A. Roman, Navas-Acien, Chronic arsenic exposure and risk of carotid artery disease: The Strong Heart Study, Environ. Res, vol.157, pp.127-134, 2017.

J. E. Smits, S. Lehoux, and K. K. Mann, Arsenic Exposure Increases Monocyte Adhesion to the Vascular Endothelium, a Pro-Atherogenic Mechanism, PloS One

V. Bohle, J. H. Slavkovich, S. Graziano, K. K. Lehoux, and . Mann, Effects of Inorganic Arsenic, Methylated Arsenicals, and Arsenobetaine on Atherosclerosis in the Mouse Model and the Role of As3mt-Mediated Methylation, Environ. Health Perspect, vol.125, 2017.

P. Bobé, D. Bonardelle, K. Benihoud, P. Opolon, and M. K. Chelbi-alix, Arsenic trioxide: a promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/lpr mice, Blood, vol.108, issue.13, pp.3967-3975, 2006.
DOI : 10.1182/blood-2006-04-020610

. Batteux, Arsenic trioxide prevents murine sclerodermatous graft-versus-host disease, J

. Immunol and . Baltim, Using a murine model of sclerodermatous graft-versus-host disease, the investigators report that arsenic trioxide markedly abrogates severe clinical syndromes developed by transplanted mice, through depletion of glutathione and production of reactive oxygen species that selectively kill activated CD4+ T cells and plasmacytoid dendritic cells. These results support the hypothesis that inorganic arsenic may display beneficial effects in the management of chronic graft-versus-host disease in humans, pp.5142-5149, 1950.

G. Yan, Y. Xi, S. Xu, Y. Lin, J. Chen et al., memory T cells and prolonged allograft survival by arsenic trioxide, Immunological Investigations, vol.196, issue.5, pp.42-438, 2013.
DOI : 10.1046/j.1600-065X.2003.00089.x

C. Gao, J. Jiang, P. Ma, and P. Cheng,

N. Jin, J. Li, L. Wang, Q. Li, Y. Leng et al., Arsenic Trioxide Induces T Cell Apoptosis and Prolongs Islet Allograft Survival in Mice, Transplantation, vol.99, pp.1796-1806, 2015.

C. Li, T. Guan, C. Gao, Y. Lin, G. Yan et al., Arsenic trioxide inhibits accelerated allograft rejection mediated by alloreactive CD8(+) memory T cells, Z. Qi
DOI : 10.1016/j.trim.2015.05.004