I. Hiratani, T. Ryba, M. Itoh, T. Yokochi, M. Schwaiger et al., Global reorganization of replication domains during embryonic stem cell differentiation, PLoS Biol, vol.6, p.18842067, 2008.

R. Desprat, D. Thierry-mieg, N. Lailler, J. Lajugie, C. Schildkraut et al., Predictable dynamic program of timing of DNA replication in human cells, Genome Research, vol.19, pp.2288-2299, 2009.

B. D. Pope, I. Hiratani, and D. M. Gilbert, Domain-wide regulation of DNA replication timing during mammalian development, Chromosome Res, vol.18, pp.127-136, 2010.

P. Wu and P. Nurse, Replication origin selection regulates the distribution of meiotic recombination, Mol Cell, vol.53, p.24560273, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010761

C. A. Müller and C. A. Nieduszynski, DNA replication timing influences gene expression level, J Cell Biol, vol.216, pp.1907-1914, 2017.

D. O. Morgan, Cyclin-dependent kinases: engines, clocks, and microprocessors, Annu Rev Cell Dev Biol, vol.13, p.9442875, 1997.

P. Zegerman and J. Diffley, Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast, Nature, vol.445, p.17167417, 2007.

S. Tanaka, T. Umemori, K. Hirai, S. Muramatsu, Y. Kamimura et al., CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast, Nature, vol.445, p.17167415, 2007.

S. Muramatsu, K. Hirai, Y. S. Tak, Y. Kamimura, and H. Araki, CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol, and GINS in budding yeast, Genes Dev, vol.24, p.20231317, 2010.

K. Labib, How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?, Genes Dev, vol.24, p.20551170, 2010.

B. Stern and P. Nurse, A quantitative model for the cdc2 control of S phase and mitosis in fission yeast, Trends in Genetics, vol.12, p.8855663, 1996.

D. L. Fisher and P. Nurse, A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins, EMBO J, vol.15, p.8631306, 1996.

D. Coudreuse and P. Nurse, Driving the cell cycle with a minimal CDK control network, Nature, vol.468, p.21179163, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01120603

A. Lengronne and E. Schwob, The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1), Mol Cell, vol.9, p.12049742, 2002.

S. Tanaka and J. Diffley, Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation, Genes Dev, vol.16, p.12381663, 2002.

S. Ekholm-reed, J. Méndez, D. Tedesco, A. Zetterberg, B. Stillman et al., Deregulation of cyclin E in human cells interferes with prereplication complex assembly, J Cell Biol, vol.165, p.15197178, 2004.

A. D. Donaldson, M. K. Raghuraman, K. L. Friedman, F. R. Cross, B. J. Brewer et al., CLB5-dependent activation of late replication origins in S. cerevisiae, Mol Cell, vol.2, p.9734354, 1998.

F. R. Cross, M. Yuste-rojas, S. Gray, and M. D. Jacobson, Specialization and targeting of B-type cyclins, Mol Cell, vol.4, p.10445023, 1999.

A. D. Donaldson, The yeast mitotic cyclin Clb2 cannot substitute for S phase cyclins in replication origin firing, EMBO Rep, vol.1, p.11263495, 2000.

H. J. Mccune, L. S. Danielson, G. M. Alvino, D. Collingwood, J. J. Delrow et al., The temporal program of chromosome replication: genomewide replication in clb5{Delta} Saccharomyces cerevisiae, Genetics, vol.180, p.18832352, 2008.

L. Krasinska, E. Besnard, E. Cot, C. Dohet, M. Méchali et al., Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus, EMBO J, vol.27, p.18256689, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00266277

Y. Katsuno, A. Suzuki, K. Sugimura, K. Okumura, D. H. Zineldeen et al., Cyclin A-Cdk1 regulates the origin firing program in mammalian cells, Proc Natl Acad Sci USA, vol.106, p.19221029, 2009.

K. Kozar, M. A. Ciemerych, V. I. Rebel, H. Shigematsu, A. Zagozdzon et al., Mouse development and cell proliferation in the absence of D-cyclins, Cell, vol.118, p.15315760, 2004.

D. Santamaría, C. Barrière, A. Cerqueira, S. Hunt, C. Tardy et al., Cdk1 is sufficient to drive the mammalian cell cycle, Nature, vol.448, p.17700700, 2007.

A. M. Thomson, P. J. Gillespie, and J. J. Blow, Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels, J Cell Biol, vol.188, p.20083602, 2010.

N. Nandagopal and M. B. Elowitz, Synthetic biology: integrated gene circuits, Science, vol.333, p.21885772, 2011.

A. C. Bishop, J. A. Ubersax, D. T. Petsch, D. P. Matheos, N. S. Gray et al., A chemical switch for inhibitor-sensitive alleles of any protein kinase, Nature, vol.407, p.11014197, 2000.

M. P. Swaffer, A. W. Jones, H. R. Flynn, A. P. Snijders, and P. Nurse, CDK Substrate Phosphorylation and Ordering the Cell Cycle, Cell, vol.167, pp.1750-1761, 2016.

G. Banyai, F. Baïdi, D. Coudreuse, and Z. Szilagyi, Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription, Nature Communications, vol.7, p.27045731, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01299978

T. Chen, B. Gómez-escoda, J. Munoz-garcia, J. Babic, L. Griscom et al., A drug-compatible and temperature-controlled microfluidic device for live-cell imaging, Open Biol, vol.6, p.27512142, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01415931

C. Heichinger, C. J. Penkett, J. Bähler, and P. Nurse, Genome-wide characterization of fission yeast DNA replication origins, EMBO J, vol.25, p.17053780, 2006.

S. L. Forsburg and N. Rhind, Basic methods for fission yeast, Yeast, vol.23, p.16498704, 2006.

M. Hayashi, Y. Katou, T. Itoh, A. Tazumi, M. Tazumi et al., Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast, EMBO J, vol.26, p.17304213, 2007.

Y. Daigaku, A. Keszthelyi, C. A. Müller, I. Miyabe, T. Brooks et al., A global profile of replicative polymerase usage, Nat Struct Mol Biol, vol.22, p.25664722, 2015.

P. Wu and P. Nurse, Establishing the program of origin firing during S phase in fission Yeast, Cell, vol.136, p.19269364, 2009.

D. Mantiero, A. Mackenzie, A. Donaldson, and P. Zegerman, Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast, EMBO J, vol.30, p.22081107, 2011.

S. Tanaka, R. Nakato, Y. Katou, K. Shirahige, and H. Araki, Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing, Curr Biol, vol.21, p.22169533, 2011.

T. Ryba, I. Hiratani, J. Lu, M. Itoh, M. Kulik et al., Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types, Genome Research, vol.20, p.20430782, 2010.

A. Duch, I. Felipe-abrio, S. Barroso, Y. G. García-rubio, M. Aguilera et al., Coordinated control of replication and transcription by a SAPK protects genomic integrity, Nature. Nature Publishing Group, vol.493, p.23178807, 2012.

J. Poli, C. Gerhold, A. Tosi, N. Hustedt, A. Seeber et al.,

, Genes Dev, vol.30, p.26798134, 2016.

S. J. Rahi, K. Pecani, A. Ondracka, C. Oikonomou, and F. R. Cross, The CDK-APC/C Oscillator Predominantly Entrains Periodic Cell-Cycle Transcription, Cell, vol.165, p.27058667, 2016.

B. D. Pope, T. Ryba, V. Dileep, F. Yue, W. Wu et al., Topologically associating domains are stable units of replication-timing regulation, Nature, vol.515, p.25409831, 2014.

V. Dileep, F. Ay, J. Sima, D. L. Vera, W. S. Noble et al., Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program, Genome Research, vol.25, p.25995270, 2015.

H. Tanizawa, K. Kim, O. Iwasaki, and K. Noma, Architectural alterations of the fission yeast genome during the cell cycle, Nat Struct Mol Biol, vol.24, p.28991264, 2017.

S. Dalton, Linking the Cell Cycle to Cell Fate Decisions, Trends in Cell Biology, vol.25, p.26410405, 2015.

S. Lim, P. Kaldis, and . Cdks, cyclins and CKIs: roles beyond cell cycle regulation, Development, vol.140, p.23861057, 2013.

J. Hayles and P. Nurse, Genetics of the fission yeast Schizosaccharomyces pombe, Annu Rev Genet, vol.26, p.1482118, 1992.

S. Moreno, A. Klar, and P. Nurse, Molecular genetic analysis of fission yeast Schizosaccharomyces pombe, Meth Enzymol, vol.194, pp.795-823, 1991.

C. S. Hoffman and F. Winston, A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli, Gene, vol.57, p.3319781, 1987.

H. Bakel, F. J. Van-werven, M. Radonjic, M. O. Brok, D. Van-leenen et al., Improved genome-wide localization by ChIP-chip using double-round T7 RNA polymerase-based amplification, Nucleic Acids Research, vol.36, p.18180247, 2008.

P. K. Patel, B. Arcangioli, S. P. Baker, A. Bensimon, and N. Rhind, DNA replication origins fire stochastically in fission yeast, Mol Biol Cell, vol.17, p.16251353, 2006.

A. Kaykov, T. Taillefumier, A. Bensimon, and P. Nurse, Molecular Combing of Single DNA Molecules on the 10

, Megabase Scale. Sci Rep, vol.6, 2016.

J. N. Bianco, J. Poli, J. Saksouk, J. Bacal, M. J. Silva et al., Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing, Methods, vol.57, p.22579803, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00733285

A. Kaykov and P. Nurse, The spatial and temporal organization of origin firing during the S-phase of fission yeast, Genome Research, vol.25, p.25650245, 2015.