]. J. Cervera, B. Schiedt, R. Neumann, and S. Mafé, Ionic conduction, rectification, and selectivity in single conical nanopores, The Journal of Chemical Physics, vol.11, issue.10, p.104706, 2006.
DOI : 10.1023/A:1012040425146

URL : http://roderic.uv.es/bitstream/10550/2401/1/23.%20Journal%20of%20Chemical%20Physics%2c%20124%20%282006%29%20Cervera.pdf

D. Constantin, Z. S. Siwy, S. W. Nam, M. J. Rooks, K. B. Kim et al., Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode Ionic field effect transistors with sub-10 nm multiple nanopores, Phys. Rev. E Nano Lett, vol.76, issue.9, pp.2044-2048, 2007.
DOI : 10.1103/physreve.76.041202

URL : http://arxiv.org/pdf/0706.1556

]. L. Azzaroni5, A. Steinbock, O. Lucas, U. F. Otto, and . Keiser, Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment Voltage-driven transport of ions and DNA through nanocapillaries, J. Am. Chem. Soc. Electrophoresis, vol.132, issue.33, pp.8338-8348, 2010.

Y. L. Ying, J. J. Zhang, R. Gao, and Y. T. Long, Nanopore-Based Sequencing and Detection of Nucleic Acids, Angewandte Chemie International Edition, vol.33, issue.50, pp.52-13154, 2013.
DOI : 10.1002/elps.201200272

]. N. Sa, W. J. Lan, W. Shi, and L. A. Baker, Rectification of Ion Current in Nanopipettes by External Substrates, ACS Nano, vol.7, issue.12, pp.11272-11282, 2013.
DOI : 10.1021/nn4050485

URL : http://europepmc.org/articles/pmc3933015?pdf=render

H. C. Zhang, Y. Tian, and L. Jiang, Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels, Nano Today, vol.11, issue.1, pp.61-81, 2004.
DOI : 10.1016/j.nantod.2015.11.001

H. Daiguji, P. Yang, A. J. Szeri, and A. Majumdar, Electrochemomechanical Energy Conversion in Nanofluidic Channels, Nano Letters, vol.4, issue.12, pp.2315-2321, 2004.
DOI : 10.1021/nl0489945

S. Bouranene, P. Fievet, and A. Szymczyk, Investigating nanofiltration of multi-ionic solutions using the Steric, Electric and Dielectric Exclusion model, Chem. Eng. Sci, vol.64, pp.3789-3798, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00475076

I. D. Fuli?ski and Z. Kosi?ska, On the validity of continuous modelling of ion transport through nanochannels, Europhysics Letters (EPL), vol.67, issue.4, pp.683-689, 2004.
DOI : 10.1209/epl/i2003-10304-y

R. Karnik, C. Duan, K. Castelino, H. Daiguji, and A. Majumdar, Rectification of Ionic Current in a Nanofluidic Diode, Nano Letters, vol.7, issue.3, pp.547-551, 2007.
DOI : 10.1021/nl062806o

P. Ramírez, V. Gómez, J. Cervera, B. Schiedt, and S. Mafé, Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions, The Journal of Chemical Physics, vol.126, issue.19, p.126, 2007.
DOI : 10.1073/pnas.0500796102

L. J. Cheng and L. J. Guo, Rectified Ion Transport through Concentration Gradient in Homogeneous Silica Nanochannels, Nano Letters, vol.7, issue.10, pp.3165-3171, 2007.
DOI : 10.1021/nl071770c

URL : http://www.eecs.umich.edu/~guo/online-pub2/2007_IonTransportNanochannel_NL.pdf

N. R. Scruggs, J. W. Robertson, J. J. Kasianowicz, and K. B. Migler, Rectification of the Ionic Current through Carbon Nanotubes by Electrostatic Assembly of Polyelectrolytes, Nano Letters, vol.9, issue.11, pp.3853-3859, 2009.
DOI : 10.1021/nl9020683

A. Szymczyk, H. Zhu, and B. Balannec, Pressure-Driven Ionic Transport through Nanochannels with Inhomogenous Charge Distributions, Langmuir, vol.26, issue.2, pp.1214-1220, 2010.
DOI : 10.1021/la902355x

URL : https://hal.archives-ouvertes.fr/hal-00918416

A. Szymczyk, H. Zhu, and B. Balannec, Ion Rejection Properties of Nanopores with Bipolar Fixed Charge Distributions, The Journal of Physical Chemistry B, vol.114, issue.31, pp.10143-10150, 2010.
DOI : 10.1021/jp1025575

URL : https://hal.archives-ouvertes.fr/hal-00918422

H. Zhu, A. Szymczyk, and B. Balannec, On the salt rejection properties of nanofiltration polyamide membranes formed by interfacial polymerization, Journal of Membrane Science, vol.379, issue.1-2, pp.215-223, 2011.
DOI : 10.1016/j.memsci.2011.05.062

URL : https://hal.archives-ouvertes.fr/hal-00920363

Z. Ható, M. Valiskó, T. Kristóf, D. Gillespie, and D. Boda, Multiscale modeling of a rectifying bipolar nanopore: explicit-water versus implicit-water simulations, Physical Chemistry Chemical Physics, vol.126, issue.27
DOI : 10.1063/1.2408420

Z. S. Siwy, Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry, Advanced Functional Materials, vol.93, issue.535, pp.735-746, 2006.
DOI : 10.1002/adfm.200500471

J. Cervera, B. Schiedt, and P. Poisson, A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores, Europhysics Letters (EPL), vol.71, issue.1, pp.71-106, 2005.
DOI : 10.1209/epl/i2005-10054-x

Y. He, D. Gillespie, D. Boda, I. Vlassiouk, R. S. Eisenberg et al., Tuning Transport Properties of Nanofluidic Devices with Local Charge Inversion, Journal of the American Chemical Society, vol.131, issue.14
DOI : 10.1021/ja808717u

URL : http://europepmc.org/articles/pmc2714767?pdf=render

I. Vlassiouk, Z. S. Siwy, and . Nanofluidic-diode, Nanofluidic Diode, Nano Letters, vol.7, issue.3, pp.552-556, 2007.
DOI : 10.1021/nl062924b

Z. Siwy, I. D. Kosi?ska, C. R. Fuli?ski, and . Martin, Asymmetric Diffusion through Synthetic Nanopores, Physical Review Letters, vol.55, issue.4, pp.94-048102, 2005.
DOI : 10.1063/1.1535005

P. Jin, H. Mukaibo, L. P. Horne, G. W. Bishop, and C. R. Martin, Electroosmotic Flow Rectification in Pyramidal-Pore Mica Membranes, Journal of the American Chemical Society, vol.132, issue.7, pp.132-2118, 2010.
DOI : 10.1021/ja909335r

S. Tseng, S. C. Lin, C. Y. Lin, and J. P. Hsu, Influences of Cone Angle and Surface Charge Density on the Ion Current Rectification Behavior of a Conical Nanopore, The Journal of Physical Chemistry C, vol.120, issue.44, pp.25620-25627, 2016.
DOI : 10.1021/acs.jpcc.6b08588

E. Weatherall, P. Hauer, R. Vogel, and G. R. Willmott, Pulse Size Distributions in Tunable Resistive Pulse Sensing, Analytical Chemistry, vol.88, issue.17, pp.8648-8656, 2016.
DOI : 10.1021/acs.analchem.6b01818

Y. Zhang and G. C. Schatz, Conical Nanopores for Efficient Ion Pumping and Desalination, The Journal of Physical Chemistry Letters, vol.8, issue.13, pp.2842-2848, 2017.
DOI : 10.1021/acs.jpclett.7b01137

D. Wang and M. V. Mirkin, Electron-Transfer Gated Ion Transport in Carbon Nanopipets, Journal of the American Chemical Society, vol.139, issue.34, pp.11654-11657, 2017.
DOI : 10.1021/jacs.7b05058

W. R. Bowen and A. W. Mohammad, A theoretical basis for specifying nanofiltration membranes ??? Dye/salt/water streams, Desalination, vol.117, issue.1-3, pp.257-264, 1998.
DOI : 10.1016/S0011-9164(98)00112-X

X. Gong, J. Li, H. Lu, R. Wan, J. Li et al., A charge-driven molecular water pump, Nature Nanotechnology, vol.124, issue.11, pp.709-712, 2007.
DOI : 10.1038/nnano.2007.320

R. Renou, A. Ghoufi, A. Szymczyk, H. Zhu, J. C. Neyt et al., Nanoconfined Electrolyte Solutions in Porous Hydrophilic Silica Membranes, The Journal of Physical Chemistry C, vol.117, issue.21, pp.11017-11027, 2013.
DOI : 10.1021/jp403450x

URL : https://hal.archives-ouvertes.fr/hal-00828106

G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature, vol.93, issue.6860, pp.188-190, 2001.
DOI : 10.1073/pnas.93.17.8951

S. Mafé, V. M. Aguilella, and A. Alcaraz, Synthetic nanopores with fixed charges: an electrodiffusion model for ionic transport, Phys. Rev. E, vol.68, p.11910, 2003.

A. Szymczyk, M. Sbaï, P. Fievet, and A. Vidonne, Transport Properties and Electrokinetic Characterization of an Amphoteric Nanofilter, Langmuir, vol.22, issue.8, pp.3910-3919, 2006.
DOI : 10.1021/la051888d

L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev., vol.318, issue.3, pp.1073-1095, 2010.
DOI : 10.1126/science.1146339

Y. Jiang, Y. Feng, J. Su, J. Nie, L. Cao et al., On the Origin of Ionic Rectification in DNA-Stuffed Nanopores: The Breaking and Retrieving Symmetry, Journal of the American Chemical Society, vol.139, issue.51
DOI : 10.1021/jacs.7b11732

L. Cao, W. Guo, W. Ma, L. Wang, F. Xia et al., Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition, Energy & Environmental Science, vol.93, issue.6, pp.2259-2266, 2011.
DOI : 10.1103/PhysRevLett.93.035901

Z. Zhang, X. Y. Kong, K. Xiao, Q. Liu, G. Xie et al., Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device, Journal of the American Chemical Society, vol.137, issue.46, pp.14765-14772, 2015.
DOI : 10.1021/jacs.5b09918

S. Basu and M. M. Sharma, An improved Space-Charge model for flow through charged microporous membranes, Journal of Membrane Science, vol.124, issue.1, pp.77-91, 1997.
DOI : 10.1016/S0376-7388(96)00229-3

A. Szymczyk, P. Fievet, B. Aoubiza, C. Simon, and J. Pagetti, An application of the space charge model to the electrolyte conductivity inside a charged microporous membrane, Journal of Membrane Science, vol.161, issue.1-2, pp.161-275, 1999.
DOI : 10.1016/S0376-7388(99)00118-0

A. Szymczyk, C. Labbez, P. Fievet, B. Aoubiza, and C. Simon, Streaming potential through multilayer membranes, AIChE Journal, vol.97, issue.10, pp.2349-2358, 2001.
DOI : 10.1021/j100117a032

A. Szymczyk, C. Labbez, P. Fievet, A. Vidonne, A. Foissy et al., Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes, Advances in Colloid and Interface Science, vol.103, issue.1, pp.77-94, 2003.
DOI : 10.1016/S0001-8686(02)00094-5