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Abstract 

Liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS) platforms are widely 

used to perform high throughput untargeted profiling of biological samples for metabolomics-based 

approaches. However, these LC-ESI platforms usually favour the detection of metabolites present at 

relatively high concentrations because of analytical limitations such as ion suppression, thus 

reducing overall sensitivity. To counter this issue of sensitivity, the latest in terms of analytical 

platforms can be adopted to enable a greater portion of the metabolome to be analysed in a single 

analytical run. Here, nanoflow liquid chromatography-nanoelectrospray ionisation (nLC-nESI), which 

has previously been utilised successfully in proteomics, is explored for use in metabolomic and 

exposomic research. As a discovery based field, the markedly increased sensitivity of these nLC-nESI 

platforms offer the potential to uncover the roles played by low abundant signalling metabolites 

(e.g. steroids, eicosanoids) in health and disease studies, and would also enable an improvement in 

the detection of xenobiotics present at trace levels in biological matrices to better characterise the 

chemical exposome. This review aims to give an insight into the advantages associated with nLC-nESI 

for metabolomics-based approaches. Initially we detail the source of improved sensitivity prior to 

reviewing the available approaches to achieving nanoflow rates and nanospray ionisation for 

metabolomics. The robustness of nLC-nESI platforms was then assessed using the literature available 

from a metabolomic viewpoint. We also discuss the challenging point of sample preparation which 

needs to be addressed to fully enjoy the benefits of these nLC-nESI platforms. Finally, we assess 

metabolomic analysis utilising nano scale platforms and look ahead to the future of metabolomics 

using these new highly sensitive platforms. 
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1. Introduction 

The aim of untargeted metabolomics is the comprehensive analysis of all known and 

unknow metabolites in a biological sample such as cells, biofluids or tissues at any one time [1]. 

Quantitative strategy can also be used where dozens to hundreds of metabolites are targeted and 

this is referred to as targeted metabolomics [2]. The metabolites in question are typically <1000 Da 

[3, 4], and are reactants, intermediates or by-products of enzymatic activity [1]. In some cases, these 

metabolites may be exogenous in source (e.g., xenobiotics), such as food additives from the diet [5], 

pharmaceutical intake (e.g. anti-inflammatory drugs and mild analgesics, antidepressants) [6, 7] or 

use of cosmetics (e.g., parabens, UV filters) [8]. The combination of the metabolome (including 

microbial metabolism) and xenobiotics as well as their products from phase I and/or II metabolism in 

biological samples is known as the (xeno)metabolome [6, 9-12]. Profiling biological samples from 

different populations such as diseased and healthy subjects or exposed and non-exposed subjects 

using an untargeted metabolomics-based approach combined with chemometric pattern analysis 

allows for the potential to simultaneously uncover biomarkers of effect (i.e. disruption of 

endogenous metabolite profiles) as well as biomarkers of exposure (i.e., xenobiotic mixtures). 

Metabolomics-based approaches has thus wide applicability in medicine [13, 14], toxicology [6, 15, 

16], food sciences [5, 17], exposomics and human health studies [12, 18, 19], plant sciences [20, 21], 

and environmental sciences [9, 22, 23].  

To undertake untargeted analysis, analytical platforms capable of analysing thousands of 

metabolites simultaneously are required. To date, the most widely used analytical platform is liquid 

chromatography-mass spectrometry (LC-MS), typically utilising an electrospray ionisation source 

(ESI) [24, 25]. These LC-ESI platforms can offer highly reproducible and very high throughput 

methods to perform untargeted profiling of biological samples for metabolomics-based approaches. 

Furthermore, the soft ionisation process of LC-ESI platforms allows structural elucidation and the 

analysis of both volatile and non-volatile metabolites. However, these LC-ESI platforms usually 

favour the detection of metabolites present at relatively high concentrations because of analytical 
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issues such as poor ionisation efficiency and ion suppression [26, 27]. This is a major limitation since 

the idea behind the use of a metabolomics-based approach is to discriminate new biomarkers of 

effect or exposure that have so far remained unidentified. It is therefore essential for these 

untargeted methods to be sensitive enough to detect signalling metabolites or xenobiotics present 

at trace levels and that could be important in health effect outcomes. There is therefore a need for 

innovative strategies which allow to overcome sensitivity issues caused by ion suppression for 

metabolomics-based approaches.  

 

As a result of these deficiencies, LC and ESI technologies have slowly been miniaturised and 

the latest developments in LC-MS have taken miniaturisation a step further with the development of 

nanoLC-nanoESI (nLC-nESI) [28, 29]. As the name suggests, flow rates are on the nL/min scale and 

has been defined as LC platforms that deliver flow rates of 10-1000 nL/min with ESI emitters internal 

diameters (ID) of between 10 and 50 µm [30, 31]. The increased sensitivity of the nLC-nESI can be 

attributed to factors derived from both the nLC and nESI source, the latter being the main source of 

the increased sensitivity. The use of nESI emitters means that the droplets formed in the ESI plume 

are 100-1000 fold smaller than the typical droplets emitted from conventional ESI emitters [32]. The 

process of ESI is an evaporative one, and therefore the generation of significantly smaller plume 

droplets with lower volumes considerably increases the rate of desolvation, resulting in up to 500 

times more ions being formed and entering the mass analyser [32-35]. Another advantage of nESI 

lies in the fact that the emitter is closer to the MS inlet compared to conventional ESI, allowing a 

more efficient introduction of the ions formed into the inlet [36]. In addition, due to the much lower 

flow rate, chromatographic dilution is significantly decreased allowing more concentrated peaks to 

elute from the analytical column [37-39]. Further advantages of the nLC-nESI include reduced 

desolvation temperature [40] and  the decrease of the consumption of both mobile and stationary 

phases [28].  
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Hence, these nano scale platforms offer a significant improvement in terms of sensitivity due 

to increased ionisation efficiency and reduced chromatographic dilution. These characteristics offer 

great potential to metabolomic researchers looking to encompass as much of the metabolome as 

possible. This review aims to give an insight to the advantages associated with nLC-nESI for 

metabolomics. To do this, we first describe the different techniques that have been used to achieve 

nLC and nESI for metabolomics. Here, we will focus on nanoscale instrumentation that have been 

successfully applied to metabolomic applications since comprehensive reviews on miniaturised 

liquid chromatography instrumentation can be found elsewhere, e.g.,[28].  We then discuss the 

robustness of these platforms in targeted analysis and global metabolomic studies. We also discuss a 

challenging point, the sample preparation, which needs to be addressed to get the most out of the 

platforms sensitivity while not adversely impacting upon the metabolomic analysis. Subsequently, 

we look ahead to the potential nLC-nESI-MS has in metabolomics for elucidating the roles played by 

very low abundance metabolites in health, disease and the potential nLC-nESI-MS has for the 

identification of mixtures of xenobiotics in exposure assessment. 

2. Overview of nLC-nESI platforms and advantages for metabolomics 

The aim of this section is to present instrumentations which can be utilised for 

metabolomics to generate nanoflow rates, the different nanocolumns and nESI emitters and to 

discuss their advantages and drawbacks. An overview of instrumentation, nanocolumns and 

methods used for metabolomics can be seen in Table 1. 

2.1 Nanoflow generation 

The method by which nanoflow rates are produced can have a dramatic effect on the quality 

of the chromatography and repeatability of the analysis, either in terms of peak shape or retention 

time. Here the generation of nanoflow rates for direct infusion metabolomics will be discussed in 

addition to the formation of nanoflow rate by splitting higher flow rates and direct from pump 
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generation for nLC-MS. These methods are known as self-fed/direct infusion, split flow, and direct 

flow, respectively.  

2.1.1 Self-fed/ direct infusion nanoESI 

While not a nLC-nESI method strictly speaking, direct infusion nESI-MS has proven popular 

for a number of metabolomic studies to analyse liver extracts [41-43], plasma [44], urine [45], 

zebrafish embryos [46], Daphnia magna [47]. These studies benefitted from the generation of 

nanoflow rates within a nESI emitter to achieve sensitive and high throughput analysis [30, 42]. 

Furthermore, direct infusion nESI reduces the volume of solvent used by 1000 fold compared to 

conventional LC-MS [48]. Self-fed systems load sample directly into an emitter to which a voltage is 

applied initiating a nanospray via capillary action and electrostatic force [33, 49, 50]. These systems 

were initially utilised in proteomics, however, they were known to offer poor reproducibility [51-53]. 

In addition, samples must be manually loaded individually into the tips and be installed for each run, 

making automated high-throughput analysis difficult [51-53].  

 New chip based methods automatically aspirate sample into a disposable tip which 

interfaces with a nESI emitter [30, 51-54]. Each tip and emitter is single use, eliminating carryover, 

reduces the impact of emitter blockage and significantly increases sample throughput [48, 52, 53, 

55, 56]. A novel method known as SIM stitch, collects direct infusion Orbitrap MS data using a series 

of overlapping SIM windows. Once collected SIM windows are “stitched” together to create a full MS 

spectra covering the entire m/z range. This technique alleviates the effect of space charge effects in 

the Orbitrap mass analyser and reduces the impact of high abundance metabolites being 

preferentially analysed [42, 57].  

The use of direct infusion nESI for high-throughput analyses seems to fit well with the 

application of metabolomics in studies which requires consecutive analysis of very large numbers of 

samples (e.g., epidemiological studies) by reducing dramatically the time and the cost of analysis. 

However, the lack of chromatographic separation in direct infusion methods means that the analysis 
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still suffers from ion suppression [48, 55]. In addition, these methods are unable to differentiate 

between isobaric/isomeric molecules or provide definitive metabolite identification without the 

need for subsequent fragmentation and/or chromatographic experiments, such as nLC-nESI-MS [56].  

2.1.2 Split flow 

When nLC was first introduced commercial pumps capable of delivering nanoflow rates were 

not available [31]. To counter this, HPLC pumps provided high flow rates which were subsequently 

split to provide nano scale flow rates with surplus mobile phase going to waste [27]. Depending 

upon where the flow is split, up to 99% of the sample can be lost, thus, eliminating the benefit of low 

volume or precious samples [36]. In addition, the green chemistry benefits are lost as most of the 

solvent goes to waste in the splitting process [31, 58]. A further complication is evident when trying 

to perform a gradient separation. Due to differing mobile phase viscosities, variation in back 

pressure and surface tension is observed, making it more difficult to achieve stable retention 

characteristics when using non-commercial flow splitters [58, 59]. One large advantage to the use of 

split flow systems is that they have a dual use as a conventional LC and a nanoflow system 

effectively giving researchers two instruments in one. The lack of split flow use in metabolomics 

potentially reflects upon the aforementioned disadvantages.  

2.1.3 Direct flow 

 In recent years, technological advances have enabled commercially available nano 

reciprocal or syringe pumps to become widely available [60]. These platforms have been called 

direct nanoflow, due to the nanoflow rates being provided directly from the LC pumps. Unlike most 

of their split flow counterparts, direct flow platforms make use of micro fluidic flow controllers 

which control flow rates much more precisely than flow split systems [61]. Furthermore, there are 

fewer connections in the system thus reducing the risk of leakages, zero dead volumes and 

blockages [61]. The use of direct nanoflow is of particular importance in analysis utilising a gradient 

system. This is due to its ability to allow for variation in mobile phase viscosities using sophisticated 
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flow controllers [58, 59]. It is known that providing nanoflow rates directly from the pump improves 

retention and spray characteristics of the nano platform [37, 58]. In addition, the cost and 

environmental benefits of reduced solvent usage are also realised using direct nanoflow pumps [58]. 

To date direct nLC has been implemented in a small number of metabolomic analysis of urine [62-

65], plasma [11], tissue [23], faeces [66], exhaled breath condensates [67], sweat [68], cerebrospinal 

fluids [69] and cell extracts [70].  

2.2 Nanocolumns 

According to the classification of Saito et al. [71], nanocolumns range from 0.01 to 0.1 mm 

internal diameter (ID). In this review, we have included metabolomic studies using nanocolumns 

with ID up to 0.2 mm but with flow rates within the nanoflow rate ranges (i.e., up to 1000 nL/min) 

(Table 1). The main advantages of columns with lower ID compared with conventional HPLC columns 

are reduced chromatographic dilution, lower consumption of mobile phases and lower consumption 

of sample mainly due to the lower flow rates [28, 72].  

Due to the broad range of physico-chemical properties of small molecules (e.g., polarity, 

size) analysed in metabolomics, it is important that as many as possible can be retained on an 

analytical column with sufficient separation between each other. Nanocolumns used in metabolomic 

studies so far include BEH C18, HSS T3, Acclaim PepMax C18 and ZIC-HILIC for a wide range of 

matrices (Table 1). It must be noted that the majority of nanocolumns available utilise conventional 

reversed phased column chemistries. However, normal phase such as HILIC are now available from 

Merck (ZIC-HILIC 75-100 µm i.d), Sciex cHiPLC (75 µm x 15cm HALO HILIC), Tosoh (TSK-GEL Amide-80 

HILIC, 50 µm i.d.) and NewObjective (Unison UK-Amino 75 µm -10 mm) which could then be used to 

improve the retention of very polar and polar metabolites for nanoscale platforms as seen in the 

sole nanoHILIC study to date [69].  

A comparative study of three reversed phase nanocolumns with two column chemistries and 

three different pore sizes (BEH C18 300 and 130 Å, and HSS T3 100 Å) was performed in view of 
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metabolomic applications for urine and plasma [73] (see Fig. 1). Increased retention, separation and 

increased peak area were observed for most of the metabolites tested with the low porosity 

columns (100 and 130 Å), due to a combination of decreased chromatographic dilution, increased 

stationary phase surface area and increased mass transfer rate [39, 73, 74]. Furthermore, the 

retention of many analytes was favoured by the HSS phase compared with the BEH, suggesting that 

the use of HSS T3 phase with porosity smaller pore size could increase the performance of the 

system by reducing co-elution and ion suppression for metabolomic applications.  

Similar phases to these used for metabolomics with conventional HPLC columns are already 

available for nanocolumns and allow to achieve a comprehensive coverage of the metabolome of 

urine [64], plasma [10] and tissues samples [23]. However, more nanocolumns adapted in terms of 

column chemistry and pore sizes (i.e. lower pore size than for proteomics) would be welcome to gain 

optimal sensitivity and chromatographic separation of polar, mid-polar and apolar metabolites for 

metabolomic analysis. 

2.3 Nano ESI sources 

A nESI source is characterised by the narrow bore nanospray emitter. The sensitivity and 

reproducibility of nESI analysis is directly related to the quality of the emitter [75, 76]. Several factors 

such as the emitter material, tip geometry and the internal diameter influence the quality of nESI 

emitters [49, 75, 77]. For metabolomic applications, metal emitter may provide the most robust 

qualities and can be cleaned thus reducing costs associated with replacing damaged or blocked 

emitters [75, 78]. It is worth noting that homemade emitters can be constructed and these are 

generally less expensive that commercial ones. The geometry of the emitter is an important 

consideration for small molecule analysis as it impacts upon spray stability and emitter longevity. 

The use of tapered emitters has been demonstrated to have a shorter usable lifetime than non-

tapered tips, mainly as a result of clogging [77]. In other studies, tapered emitters have been found 

to produce a more stable nanospray, meaning that more reproducible mass spectra can be produced 
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[75, 76]. The internal diameter of the emitter is a further source of increased ionisation efficiency of 

the nESI source. A study by Lopes et al. [75] investigated 4 internal diameters; 5, 10, 20 and 30 µm 

and found that all emitters had similar sensitivity in terms of spectral features and total ion current. 

However, it was determined that the 30 µm was preferred as clogging is less frequent due to the 

larger orifice [75]. In other studies, the smaller the internal diameter, the greater the observed 

ionisation efficiency, however, emitter clogging became problematic at internal diameters below 10 

µm [79].  

With these factors considered, the use of non-tapered emitters with an internal diameter in 

the range of 10-30 µm offers an acceptable compromise between sensitivity, system longevity and 

potential loss of sample.  

3. Robustness of nanoflow platforms for metabolomics 

In metabolomics, the ability to generate highly repeatable and reliable data is a key factor to 

ensure high quality studies can be carried out [80, 81]. Two major sources of variation that limit the 

quality of metabolomic data sets are retention time drift and poor peak intensity reproducibility [80, 

82]. The stability of retention time in particular is of great significance during the peak picking 

process prior to multivariate statistical analysis. To date, many studies have reported on retention 

time and mean peak area repeatability while analysing a broad range of compounds and matrices. 

While many of these have been in targeted approaches they provide a good indication as to the 

suitability for untargeted small molecule analysis.  

3.1 Retention time stability 

For metabolomic analysis, it has been suggested that the % coefficient of variation (%CV) for 

retention time should not exceed 2% [24]. The retention time variation reported in studies using 

both direct and split nanoflow systems for small molecule analysis in targeted and untargeted 

studies are detailed in Table 2. The range of CVs reported was lower with direct nanoflow systems 
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(<0.20% to 2.2%) than for split flow ones (0.50-3.4%). Furthermore, all reported CVs were below the 

2% threshold with direct nanoflow systems (with the exception of the 2D nLC system) and usually 

lower than 1% (in 12 out of 19 studies). On the other hand, 3 out 13 reported CVs were higher than 

the 2% threshold for the split flow and these systems typically have CVs greater than 1% (in 9 out of 

13 studies). Overall, these studies reported highly reproducible results for retention times but seems 

to highlight the importance of pump fed direct nanoflow for retention time stability [24].  

The number of metabolomic studies reporting retention time stability for nanoflow 

platforms is very limited. To date, only two have reported retention time stability of metabolites [11, 

62]. In both studies, the CV was below 1.9%. A further metabolomics study has reported the 

retention time stability of 6 internal standards, and CVs below 0.2% were reported for these internal 

standards spiked in plasma and urine [73]. 

Comparing retention time repeatability reported in different studies is quite difficult 

because of differences in chromatographic methods (e.g. solvents, additives such as formic acid) and 

matrices used for the experiment. Nevertheless, the reported CVs for the split and direct nanoflow 

platforms suggest that reproducible retention characteristics are achievable on both nanoflow 

systems even if direct nanoflow provides slightly more retention time reproducibility.  

3.2 NanoESI MS response stability 

It has been suggested that a CV of up to 30% is acceptable for variation of mean peak area in 

metabolomics analysis [83]. The mean peak CV has been reported in a number of studies using 

nanoflow systems, covering a wide range of analytes and samples matrices (Table 3).  

Overall, these targeted and untargeted studies indicate that a high degree of peak area 

reproducibility can be achieved since CV of peak area calculated for a wide range of metabolites 

were lower than 20% in all but one study. There appears to be little difference between emitter 

geometry and internal diameters for those studies, showing that no single diameter or geometry 
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appeared preferential in terms of reproducibility for these studies. The low reproducibility reported 

by Kiefer et al. [84] may be due to the fact that ion pairing solvents were in use which can be less 

stable in the ESI source. Moreover, this was reported for only 1 compound (all others being below 

14%). While these studies investigated only a limited number of compounds, they demonstrate that 

nLC-nESI is reproducible in terms of peak area. 

As with retention time stability, the mean peak area reproducibility in metabolomic analysis 

has only been investigated in a small number of cases. In these cases the variation in mean peak 

areas for the whole metabolome were investigated using either the method or a modification of the 

method proposed by Want et al. [83]. In all these studies, >70% peaks of quality control samples 

returned CV of <30% for negative and positive nESI respectively [11, 62-64]. Furthermore, Jones et 

al. reported that >50% of all peaks measure in the metabolome of yeast cell extracts had a CV of < 

14% [70]. Each of these studies indicates that the reproducibility of the nESI source is capable of 

supplying reliable results for metabolomics. 

4. Sample preparation strategies for metabolomic studies using nLC-nESI 

Sample preparation is an important aspect to consider for the use of nanoflow platforms for 

metabolomics [11, 73, 85]. The narrow bore columns, emitters and connections are prone to 

blockages and consequently, efficient sample clean-up are recommended to remove particulates, 

salts and proteins [11]. In the field of untargeted metabolomics, it has often been argued that 

selective sample preparation such as solid phase extraction (SPE) should be avoided in order to have 

the whole picture of the sample. However, several studies have shown that sample preparation 

based on SPE can increase the coverage of the metabolome compared with conventional protein 

precipitation (PPT) as well as the repeatability of the method [11, 86-88].  

 Sample preparation for metabolomic purposes that allow for the efficient removal of 

interfering matrix components other than PPT include, for instance, offline or online SPE, solid-phase 
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microextraction (SPME), ultrafiltration, delipidation using commercially available lipid depletion 

plate and Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) methods [11, 25, 87, 89-92]. 

These techniques can be used on their own or in combination with other techniques such as LLE, 

with or without fractionation [93]. Among these different techniques, delipidation (mainly lyso- and 

phospholipids) of the sample has gained increased interest because it can reduce ion-suppression 

effects and can increase column lifetime [11, 90]. These recent innovations are effective for 

removing phospholipids and they have been shown, in combination to solvent deproteinisation, to 

enhance analyte detection of non-lipid species in comparison to extractions with organic solvents 

and a membrane-based solvent free technique [87]. It is also worth noting that miniaturised sample 

preparation techniques such as SPME [94], stir bar sorptive extraction (SBSE) [95]or microextraction 

by packed sorbent (MEPS) [96] may be applied to nanoscale LC, and applications in metabolomic 

studies are numerous in the case of SPME [94, 97]. 

Examples of applications of these sample preparation techniques in metabolomics-based 

approaches using a nLC-nESI system include a study where plasma samples were extracted using 

phospholipid filtration plates in combination with polymeric or mixed mode exchange SPE [11]. 

Another study described a SPE methodology to enable a high urine equivalence to be injected on a 

nLC-nESI-MS platform [62]. Additionally, lyophilisation and SPE has been used to prepare yeast 

samples for metabolomic analysis using a nLC-nESI-MS platform [70]. These studies showed that 

injections of more concentrated extracts onto nLC-nESI-MS platforms using more selective sample 

preparation can result in a wider coverage of the metabolome and can also extend the column life 

time. 

In addition, column trapping has also been used in metabolomics-based approaches using a 

nLC-nESI system to load a larger volume of sample. While the metabolites are “trapped”, mobile 

phase continues to wash through the column thus removing any salts and any other unretained 

contaminants [68]. This method can be used to replace offline SPE and automate the entire sample 

preparation and analysis process [98]. 
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5. Current and potential use of nLC-nESI in metabolomics 

Although still limited, several papers have already used nLC-nESI-MS platforms in 

metabolomics. These studies have highlighted that these systems may be up to 2000 fold more 

sensitive than conventional LC-ESI-MS [73] and with LOD and LOQs up to 300 fold lower using nLC-

nESI-MS [85]. Two studies have also shown how nLC-nESI-MS can be combined with chemical 

isotope labelling to further increase the coverage of the metabolome and enhance the relative 

quantification of metabolites [68, 98].  In this section, we review the different studies which have 

used nLC-nESI-MS systems in metabolomics according to their applications. 

5.1 Health and disease metabolomics 

The prospect of very highly sensitive analysis of low abundance or difficult to ionise 

metabolite species provides an exciting prospect for metabolomic studies of health and disease. 

Metabolic pathways of particular interest are, for instance, conjugated and unconjugated sex 

steroids such as the estrogens and androgens which are implicated in several cancers, infertility and 

other related endocrine disruption problems [99]. These metabolites are typically found at low 

concentrations and usually difficult to ionise using conventional ESI-MS. Also of interest and found at 

low concentrations are metabolites involved in inflammation and several disease pathways such as 

eicosanoids [100].  

A couple of early metabolomics-based studies investigated the effect of dietary compounds 

on health and disease using nLC-nESI-MS. In one study, the potential for phenol rich olive oil was 

investigated for its cell proliferation inhibition capacity in colon cancer [101]. The other nutraceutical 

investigation using nLC-nESI-MS was implemented to investigate the health benefits associated with 

the consumption of citrus juice [65]. In this study, significant changes in steroidogenesis pathways 

were detected following citrus juice consumption. Some of the detected steroids, in particular 17-

hydroxyprogesterone, are typically found at low levels in urine, thus requiring a highly sensitive 

analysis to detect these changes.  
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In human health and disease, four studies using nLC-nESI-MS have been carried out to date, 

one on HIV [64], one on drug resistant multiple myeloma [70], a third on paediatric spondylarthrosis 

[66] and the most recent investigating lung disease in new-born neonates [67]. The metabolomic 

analysis of anti-retroviral toxicity in the urine of HIV positive patients detected for the first time all 

the anti-retroviral drugs and a wide range of their metabolites in addition to several low abundance 

endogenous metabolites in an untargeted analysis (see Fig. 2 for example of chromatograms) [64]. 

The most recent study investigated exhaled breath condensates from two lung morphologies in 

intubated neonates (<20 days old). The ability to analyse samples such as exhaled breath 

condensates requires a highly sensitive technique due to the low volumes available. Concentrations 

of a number eicosanoids were found to differentiate between the control group and the diseased 

lung groups highlighting an inflammatory aspect of the conditions [67]. Furthermore, eicosanoids 

were detected in 60% of all samples underlying the sensitivity of the nLC-nESI-MS approach used as 

previous analysis has shown these compounds are present at a pg/mL level in exhaled breath 

condensates [67, 102].  

An example of application using targeted metabolomics includes a study where a sensitive 

nLC-nESI-MS method was developed to monitor 184 phosphorus-related metabolic changes in small 

volumes of cancer cells treated with metabolic enzyme inhibitors [103].  

These studies indicate that nLC-nESI-MS platforms are well suited for metabolomic analysis 

in health and disease studies. Using nLC-nESI-MS to uncover low abundance signalling metabolites, it 

may become possible to characterise unique metabolites and metabolic pathways affected in 

different cancers and diseases. 

5.2 Exposure assessment and biomonitoring studies 

With regards to the very high diversity of xenobiotics present in the environment, 

metabolomics-based approaches using highly sensitive nLC-nESI platforms offer exciting 

perspectives to detect xenobiotic mixtures (i.e., the chemical exposome), usually present at trace 
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levels, in environmental and biological samples and simultaneously study their potential associated 

health effects [104, 105].  

To date, the use of nLC-nESI-MS platforms in untargeted analysis for exposure assessment 

has been very limited. It includes a study in which a metabolomics-based approach using a nUPLC-

nESI-TOFMS platform was used to investigate the chemical mixtures accumulating in fish exposed to 

a treated wastewater effluent and the associated changes in the tissues metabolome [23]. A wide 

range of contaminants including 31 pharmaceuticals from 11 different classes, endocrine disrupters, 

personal care products, pesticides, antibacterials and human dietary products were detected, 

sometimes at very low concentrations, in blood plasma and tissues of effluent-exposed fish (see Fig. 

3 for example of chromatograms). Concurrently, metabolite profiling revealed for the first time a 

widespread reduction (between 50% and 90%) in prostaglandin (E2 and F2α) profiles in effluent-

exposed fish tissues/plasma [23]. Another example of application using nLC platform for exposure 

assessment includes a study where an untargeted approach was used to investigate changes in a 

small benthic invertebrates exposed to a wastewater treatment plant effluent. Significant changes in 

lipid metabolism were observed and several xenobiotics were detected (e.g., ibuprofen and 

propranolol) in invertebrates exposed to the wastewater treatment plant effluent using very small 

invertebrate samples (i.e., 12 mg) [92]. 

These studies show that highly sensitive untargeted techniques based on nanoscale could be 

extremely useful to identify xenobiotics that need to be prioritised for future toxicological 

investigations.  

6. Conclusions and future perspectives 

 The current literature surrounding nLC-nESI clearly demonstrates that significant gains in 

sensitivity for metabolites can be achieved compared to conventional LC-ESI platforms (see Table 4 

for a summary of advantages and drawbacks of nLC-nESI platforms). While in the past there has 
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been concern about nLC retention time reproducibility, the review of existing data shows that the 

improvements made since the introduction of nanoflow, such as the implementation of direct 

nanoflow platforms, have greatly contributed to improve the reproducibility of these platforms since 

the majority of these studies fall within the guidelines proposed within the metabolomic community. 

As mentioned in this review, one key factor is sample preparation, which is required to extend 

column and emitter lifetimes by reducing blockages. While this process is indeed more time 

consuming and may be seen as selective, several studies have shown that more extensive sample 

preparation can increase the coverage of the metabolome as it allows injection of more 

concentrated extracts and, on the other hand, improve the repeatability of the method. Hence, 

more automated sample preparation methods should be developed in the future to implement 

metabolomic methods based on nLC-nESI platforms for high throughput applications. Taking the 

current nLC-nESI methods and potential future advances into account, new and exciting possibilities 

exist to expand impact of metabolomics on human and environmental health and disease. The 

increased sensitivity of these nLC-nESI platforms offer the potential to uncover the roles played by 

low abundant signalling metabolites in health and disease studies, and would also enable an 

improvement in the detection of xenobiotics present at trace levels in biological matrices to better 

characterise the chemical exposome and uncover potential health outcomes associated. While many 

aspects of metabolomics are still under progress (e.g., development of more automated annotation 

work-flows to overcome problems linked to unidentified features), the development of analytical 

methods of higher sensitivity is also a priority to be as comprehensive as possible. 
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Table 1: Overview of existing nLC-nESI instrumentations and associated parameters (nanocolumns 

characteristics, flow rate, injection volume, run time and matrices) used in metabolomic studies. 

nLC MS Flow 
rate  
(nL/min
) 

Colum
n ID 
(µm) 

Lengt
h  
(mm) 

Particl
e  
size 
(µm) 

Phase Injectio
n  
volume 
(nL) 

Run 
time  
(min
) 

Matrice Refs 

      

Thermo 
Ultimate 
3000 nano 

Thermo 
LTQ-
Orbitrap 

1000 150 150 5 HILIC 
Not 
defined 

60 CSF [69] 

Eksigent 
nanoLC 
Ultra 

Thermo 
LTQ-
Orbitrap 

500 100 100 5 C18 1000 45 
In vitro cell 
lines  

[84] 

Bruker 
EASY-nLC 

Bruker 
MicroTO
F 

300 75 100 3 C18 5000 47 
In vitro cell 
lines 

[106
] 

Agilent 
1100 Series 

Bruker 
MicroTO
F 

312 75 150 3 C18 6.25 23 Urine [65] 

Waters 
nanoAcquit
y 

Orbitrap 
Elite 

300 75 100 1.7 
BEH 
C18 

2000 60 
In vitro cell 
lines 

[70] 

Waters 
nanoAcquit
y 

Waters 
XEVO G2 
QTOF 

700 100 100 1.8 HSS-T3 500 50 
Urine/Plasm
a 

[73] 

Waters 
nanoAcquit
y 

Waters 
XEVO G2 
QTOF 

700 100 100 1.7 
BEH 
C18 

500 50 Plasma [11] 

Waters 
nanoAcquit
y 

Waters 
XEVO G2 
QTOF 

700 100 100 1.8 HSS-T3 500 50 Urine [62] 

Waters 
nanoAcquit
y 

Waters 
QTOF 
Premier 

350 75 200 1.7 
Acclaim 
Pepma
x C18 

5000 45 
Urine and 
sweat 

[68] 

Waters 
nanoAcquit
y 

Waters 
XEVO G2 
QTOF 

700 100 100 1.8 HSS-T3 500 50 Urine [63] 

Eksigent 
415 - 
nanoflex 
cHiPLC 

Sciex 
5600 
Triple 
TOF 

300 200 150 
Not 
define
d 

C18 5000 24 Faeces [66] 
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Waters 
nanoAcquit
y 

Waters 
XEVO G2 
QTOF 

700 100 100 1.8 HSS-T3 500 50 Urine [64] 

Waters 
nanoAcquit
y 

Waters 
XEVO G2 
QTOF 

700 100 100 1.8 HSS-T3 500 50 
Plasma and 
tissues 

[23] 

Agilent 
1100 Series 

Thermo 
7-T LTQ-
FT Ultra  

300 75 120 3 C18 2000 105 
Exhaled 
breath 
condensate 

[67] 

Waters 
nanoAcquit
y 

Bruker 
Impact 
HD QTOF 

350 75 150 2 
Acclaim 
Pepma
x C18 

11.4 
pmol  
of 
sample 

45 
In vitro cell 
lines  

[98] 
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Table 2: Relative standard deviation (RSD) of retention time (RT) for small molecules (<1000 Da) 
analysed in different matrices using direct (D) and split (S) flow nLC platforms. 

Analyte Matrix Flow 
rate 
(nL/
min) 

RT 
(%RS
D) 

nLC system Flow 
type 

Ref 

6 Deuterated 
standards 

Plasma and 
urine 

700 <0.20
% 

Waters nanoAcquity UPLC D [7
3] 

100 
(Xeno)metabolites 

Plasma 700 <1.9% Waters nanoAcquity UPLC D [1
1] 

100 Metabolites Urine 700 <1.9% Waters nanoAcquity UPLC D [6
2] 

8 Amino acids Urine and 
sweat 

350 <1.1% Waters nanoAcquity UPLC D [6
8] 

Tryptic digests Bovine serum 
albumin 

325 0.73% Proxeon EASY-nLC D [1
07
] 

Tryptic digests Bovine serum 
albumin 

325 0.66% Waters nanoAcquity UPLC D [1
07
] 

Tryptic digests Bovine serum 
albumin 

325 0.87% Eksigent nanoLC-Ultra D [1
07
] 

Tryptic digests Bovine serum 
albumin 

325 2.2% Eksigent nanoLC-2D, D [1
07
] 

Pharmaceuticals Standard 
solution 

300 <0.50
% 

Agilent 1200 HPLC D [1
08
] 

Biogenic amines Wine 634 <1.2% Dionex Ultimate Capillary HPLC D [1
09
] 

Nonglycosylated 
tryptic peptides 

Plasma 450-
500 

<1.6% Waters nanoAcquity UPLC D [1
10
] 

Phosphoproteins Semen 300 2.0% Waters nanoAcquity UPLC D [1
11
] 

Penicillin antibiotics Standard 
solution 

200 <0.35
% 

Dionex Ultimate 3000 nano LC D [1
12
] 

Pharmaceuticals Standard 
solution 

300 <0.50
% 

Dionex Ultimate D [1
13
] 

Phenolic 
compounds 

Standard 
solution 

300 ≤0.80
% 

Bruker Easy-nLC
TM 

D [1
14
] 

Peptides HeLa protein 
standard 

20-
50 

≤0.30
% 

Thermo Ultimate 3000 RSLC nano 
LC 

D [1
15
] 

Glycans Plasma 500 <0.50 Eksigent Technologies nanoLC 2D D [1
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% 16
] 

Peptides Mitochondrial 
extracts 

200 ≤0.65
% 

Eksigent direct-flow nano-LC 
pumps 

D [1
17
] 

Parabens Standard 
solution 

200 <0.50
% 

AT10PV nanoGR generator D [1
18
] 

Pharmaceuticals Standard 
solution 

800 <2.0% Rheos 2000 micro-pump S [3
8] 

Oligosaccharides Standard 
solution 

300 <0.50
% 

Agilent 1000 HPLC S [1
19
] 

Plant hormones Tobacco seeds 350 ≤1.1% LC Packings Ultimate S [1
20
] 

Hormones, 
pesticides and PAHs 

Standard 
solution 

250 <2.0% Kontron instruments 420 dual-
pump binary gradient HPLC 

S [1
21
] 

Tryptic digests Bovine serum 
albumin 

400 <2.5% LC-10ADVP solvent delivery pump S [1
22
] 

Perfluorooctanoic 
acid/ sulfonate 

River water 700 <1.0% Agilent 1100 HPLC S [1
23
] 

Organophosphorous 
pesticides 

Standard 
solution 

360 <1.0% Dionex Ultimate Capillary HPLC S [1
24
] 

Flavanones Citrus juice 500 <2.4% Spectra System P2000 HPLC pump S [1
25
] 

Polyphenols Bee pollen 500 <1.8% Spectra System P2000 HPLC pump S [1
26
] 

Anthocyanins Fruit juices 400 <3.4% Dionex Ultimate–LC Packings  S [1
27
] 

Aloe-based 
phytotherapeutics  

Standard 
solution and 
leaf 

350 <1.5% Rheos 2000 micro-pump S [1
28
] 

Synthetic 
cannabinoids 

Herbal mixtures 500 <1.7% Rheos 2000 micro-LC pump S [1
29
] 

Peptides Serum 200 <0.80
% 

Finnigan quaternary Surveyor 
pump 

S [1
30
] 
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Table 3: Relative standard deviation (RSD) of peak area for small molecules (<1000 Da) analysed in 
different matrices using nLC-nESI platforms 

Analyte Matrix Peak area 
(%RSD) 

Emitter 
material 

Emitter 
ID 

Ref 

Deuterated and normal standards Standard solution/ urine 
and plasma 

<18% Fused silica 10 µm [73
] 

Cationic metabolites Cerebrospinal fluid <20% Fused silica 8 µm [69
] 

8 Amino acids Urine and sweat <7% Fused silica 5 µm Z. 
L[6
8] 

Tryptic digests Cellular protein extract <15% Fused silica 5 µm [13
1] 

Ceramides Cerebral spinal fluid <15% Fused silica 10 µm [13
2] 

Pharmaceuticals Standard solution <11% Fused silica 10 µm [11
3] 

Anthocyanins Fruit juice <16% Fused silica 25 µm [12
7] 

Pharmaceuticals Standard solution 10% Fused silica 25 µm [38
] 

Perfluorooctanoic 
acid/perfluorooctane sulfonate 

River water <20% Fused silica 30 µm [12
3] 

Aloe-based phytotherapeutic 
products 

Standard solution and 
leaves 

<12.5% Fused silica 25 µm [12
8] 

Ketamine and metabolites Human hair ≤4% Tapered 
fused silica 

20 µm [13
3] 

Plant hormones Tobacco seeds <11% Tapered 
fused silica 

8-9 µm [12
0] 

Phenolics Olive oil and cell culture <4% Tapered 
fused silica 

Not 
defined 

[10
6] 

Phenolic compounds Standard solution <7% Tapered 
fused silica 

Not 
defined 

[13
4] 

Phenolic compounds Standard solution <15% Tapered 
fused silica 

Not 
defined 

[11
4] 

Metabolite standards Cell extracts <23% Silica 10 µm [84
] 

Pharmaceuticals Standard solution and 
plasma 

<10% Not defined 75 µm [10
8] 

Phytohormones Leaves <12% Not defined 8 µm [13
5] 

Peptides Serum  ≤25% Not defined 5 µm [13
0] 

50 Glycans Serum standard <10% Not defined Not 
defined 

[13
6] 

Polyphenols Urine ≤13% Not defined Not 
defined 

[13
7] 

Penicillin antibiotics Milk, liver, kidney <8% Not defined Not 
defined 

[11
2] 

Wax esters Seed oil extracts <5% Not defined Not 
defined 

[13
8] 

Oligosaccharides Standard solution <5% Not defined Not 
defined 

[11
9] 

Environmental contaminants Benthic tissue extracts <13% Not defined Not 
defined 

[13
9] 
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Pharmaceuticals Benthic tissue extracts <15% Not defined Not 
defined 

[14
0] 

Carbamazepine, testosterone and 
oxazepam 

Gammarus fossarum <12% Not defined Not 
defined 

[14
1] 

Peptides Mitochondrial extracts <12% Not defined Not 
defined 

[11
7] 

 

 

Table 4: Advantages and drawbacks of nLC-nESI compared to conventional LC-ESI platforms for 
metabolomic analysis 

Advantages  Drawbacks  

Increased ionisation efficiency in the source and 
transfer efficiency in the mass spectrometer  

More care to be done for sample preparation  

Reduced chromatographic dilution Less sample throughput due to longer LC run time 
More comprehensive analysis due to the detection of 
trace level metabolites  

More prone to column/emitter blockages 

Reduced cost and environmental impact by using less 
solvent 

Less array of column chemistries readily available 

Reduce need for desolvation gas and temperature in 
the source 

More expertise needed 

Possibility to convert existing proteomic platforms for 
metabolomic analysis 
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Figure captions 

Figure 1: Base peak intensity (BPI) chromatograms of a standard mixture of compounds analysed by 

BEH C18 300 and 130 Å and HSS T3 100 Å nUHPLC columns. The base peak intensity peaks of 

selected standards are labelled to demonstrate the different retention characteristics of each 

column. TIC = total ion count. 1, unretained polar compounds, 2, metropolol; 3, venlafaxine; 4, 

propranolol; 5, carbamazepine; 6, testosterone; 7, androstenedione; 8, sphingosine; 9, diazinon; 10, 

tris(2-butoxyethyl) phosphate. Reproduced with permission from Ref [73]. 

 

Figure 2: Positive ESI mode base peak intensity (BPI) of pooled HIV patient urine run using nLC-nESI-

TOFMS (A) and extracted ion chromatograms of protease inhibitors and their metabolites (B) as 

described in [64]. D= darunavir, DM1-3 = darunavir metabolites 1-3, A= atazanavir, AM1-5 = 

atazanavir metabolites 1-5, R=ritonavir, RM1-2 = ritonavir metabolites 1-2). Samples run on a Waters 

nanoAcquity-nanoESI-XEVO G2 TOFMS with a 100 mm x 100 µm x 2.8 µm x 100 Å HSS T3 column. 

 

Figure 3. Example of base peak intensity (BPI) chromatograms (A) of testis extracts from fish 

exposed to wastewater effluent in positive (+ESI) and negative (-ESI) modes. Chromatograms B show 

overlaid signals of selected xenobiotics extracted using their exact masses. Chemical identity was 

confirmed from accurate mass, isotopic fit and fragmentation data obtained from high energy 

collisional induced dissociation and from comparison with standard compounds. Testis samples were 

extracted by Strata-X-C solid-phase extraction after phospholipid removal and profiled in –ESI or +ESI 

modes by nUHPLC-nESI-TOFMS as described in [23].1=10 

Hydroxyamitriptyline;2=Norclozapine;3=citalopram;4=Amitriptyline;5=norsertraline;6=sertraline;7=c

lopidogrel 

 

 

 

 

 

 

 

Figure 1. 
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Figure 3. 

   
 

1 

7 

5 

4 

3 

2 
6 

A (+ESI) 

B (+ESI) 

A (-ESI) 

fish exposure-testis

Time
6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

%

0

100

fish exposure-testis

Time
6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

%

0

100

fish exposure-testis

Time
6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

%

0

100

fish exposure-testis

Time
6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

%

0

100

A (-ESI) 

B (-ESI) 

Bisphenol A 

Naproxen 

Triclosan 

Chlorophene 

Retention time (min) 

R
e

la
ti

ve
 a

b
u

n
d

an
ce

 (
%

) 

 (
%

) 

0 

100 

 (
%

) 

0 

Retention time (min) 

R
el

at
iv

e 
ab

u
n

d
an

ce
 (

%
) 

 (
%

) 

0 

100 

Retention time (min) 

 (
%

) 

0 

100 

R
e

la
ti

ve
 a

b
u

n
d

an
ce

 (
%

) 
R

el
at

iv
e 

ab
u

n
d

an
ce

 (
%

) 



38 
 

Graphical abstract 

 

 

 

 

Highlights 

 nanoLC-nanoESI-MS offers increased ionisation efficiency for small molecule analyses 

 nanoLC-nanoESI-MS is reproducible making it suitable for metabolomics 

 Sample preparation is a key step for nanoLC-nanoESI-MS 

 Applications of nanoLC-nanoESI-MS in untargeted studies offer promising perspectives 

 




