. .. , Overview of nLC-nESI platforms and advantages for metabolomics

. .. Nano-esi-sources,

.. .. Robustness,

.. .. Nanoesi-ms-response-stability,

, Sample preparation strategies for metabolomic studies using nLC-nESI

.. .. Current,

.. .. Conclusions,

.. .. Acknowledgment,

.. .. References,

W. B. Dunn, D. I. Broadhurst, H. J. Atherton, R. Goodacre, and J. L. Griffin, Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy, Chem. Soc. Rev, vol.40, issue.1, pp.387-426, 2011.

W. Lu, B. D. Bennett, and J. D. Rabinowitz, Analytical strategies for LC-MS-based targeted metabolomics, J Chromatogr B Analyt Technol Biomed Life Sci, vol.871, issue.2, pp.236-278, 2008.

J. K. Nicholson, Global systems biology, personalized medicine and molecular epidemiology, Mol. Syst. Biol, vol.2, pp.1-6, 2006.

P. A. Guy, I. Tavazzi, S. J. Bruce, Z. Ramadan, and S. Kochhar, Global metabolic profiling analysis on human urine by UPLC-TOFMS: Issues and method validation in nutritional metabolomics, J. Chromatogr. B, vol.871, issue.2, pp.253-260, 2008.

A. Scalbert, L. Brennan, C. Manach, C. Andres-lacueva, L. O. Dragsted et al., The food metabolome: a window over dietary exposure, Am. J. Clin. Nutr, vol.99, issue.6, pp.1286-1308, 2014.

C. H. Johnson, A. D. Patterson, J. R. Idle, and F. J. Gonzalez, Xenobiotic Metabolomics: Major Impact on the Metabolome, Annu. Rev. Pharmacol. Toxicol, vol.52, pp.37-56, 2012.

D. M. Kristensen, S. Mazaud-guittot, P. Gaudriault, L. Lesne, T. Serrano et al., Analgesic use -prevalence, biomonitoring and endocrine and reproductive effects, Nat Rev Endocrinol, vol.12, issue.7, pp.381-93, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01359566

I. Jiménez-díaz, A. Zafra-gómez, O. Ballesteros, and A. Navalón, Analytical methods for the determination of personal care products in human samples: An overview, Talanta, vol.129, issue.0, pp.448-458, 2014.

R. Al-salhi, A. Abdul-sada, A. Lange, C. R. Tyler, and E. M. Hill, The Xenometabolome and Novel Contaminant Markers in Fish Exposed to a Wastewater Treatment Works Effluent, Environ. Sci. Technol, vol.46, issue.16, pp.9080-9088, 2012.

E. Holmes, R. L. Loo, O. Cloarec, M. Coen, H. R. Tang et al., Detection of urinary drug metabolite (Xenometabolome) signatures in molecular epidemiology studies via statistical total correlation (NMR) spectroscopy, Anal. Chem, vol.79, issue.7, pp.2629-2640, 2007.

A. David, A. Abdul-sada, A. Lange, C. R. Tyler, and E. M. Hill, A new approach for plasma (xeno)metabolomics based on solid-phase extraction and nanoflow liquid chromatographynanoelectrospray ionisation mass spectrometry, J Chromatogr A, vol.1365, pp.72-85, 2014.

P. Vineis, M. Chadeau-hyam, H. Gmuender, J. Gulliver, Z. Herceg et al., The exposome in practice: Design of the EXPOsOMICS project, Int. J. Hyg. Environ. Health, vol.220, pp.142-151, 2017.

J. Balog, L. Sasi-szabó, J. Kinross, M. R. Lewis, L. J. Muirhead et al., Intraoperative Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry, vol.5, pp.194-93, 2013.

S. Medina, R. Dominguez-perles, J. I. Gil, F. Ferreres, and A. Gil-izquierdo, Metabolomics and the Diagnosis of Human Diseases -A Guide to the Markers and Pathophysiological Pathways Affected, Curr. Med. Chem, vol.21, issue.7, pp.823-848, 2014.

N. Bonvallot, M. Tremblay-franco, C. Chevrier, C. Canlet, L. Debrauwer et al., Potential Input From Metabolomics for Exploring and Understanding the Links Between Environment and Health, J Toxicol Environ Health B Crit Rev, vol.17, issue.1, pp.21-44, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00976116

M. Bouhifd, T. Hartung, H. T. Hogberg, A. Kleensang, and L. Zhao, Review: Toxicometabolomics, vol.33, issue.12, pp.1365-1383, 2013.

C. Ibanez, A. Valdes, V. Garcia-canas, C. Simo, M. Celebier et al., Global Foodomics strategy to investigate the health benefits of dietary constituents, J. Chromatogr. A, vol.1248, pp.139-153, 2012.

E. L. Jamin, N. Bonvallot, M. Tremblay-franco, J. P. Cravedi, C. Chevrier et al., Untargeted profiling of pesticide metabolites by LC-HRMS: an exposomics tool for human exposure evaluation, Anal. Bioanal. Chem, vol.406, issue.4, pp.1149-1161, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00875889

N. Bonvallot, A. David, F. Chalmel, C. Chevrier, S. Cordier et al., Metabolomics as a powerful tool to decipher the biological effects of environmental contaminants in humans, Current Opinion in Toxicology, vol.8, pp.48-56, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01711069

O. Fiehn, Metabolomics -the link between genotypes and phenotypes, Plant Mol. Biol, vol.48, issue.1-2, pp.155-171, 2002.

L. W. Sumner, P. Mendes, and R. A. Dixon, Plant metabolomics: large-scale phytochemistry in the functional genomics era, Phytochemistry, vol.62, issue.6, pp.817-836, 2003.

M. Viant and U. Sommer, Mass spectrometry based environmental metabolomics: a primer and review, Metabolomics, vol.9, issue.1, pp.144-158, 2013.

A. David, A. Lange, A. Abdul-sada, C. R. Tyler, and E. M. Hill, Disruption of the Prostaglandin Metabolome and Characterization of the Pharmaceutical Exposome in Fish Exposed to Wastewater Treatment Works Effluent As Revealed by Nanoflow-Nanospray Mass Spectrometry-Based Metabolomics, Environ Sci Technol, vol.51, issue.1, pp.616-624, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01886219

G. A. Theodoridis, H. G. Gika, E. J. Want, and I. D. Wilson, Liquid chromatography-mass spectrometry based global metabolite profiling: A review, Anal. Chim. Acta, vol.711, pp.7-16, 2012.

H. G. Gika, G. A. Theodoridis, R. S. Plumb, and I. D. Wilson, Current practice of liquid chromatographymass spectrometry in metabolomics and metabonomics, J. Pharm. Biomed. Anal, vol.87, issue.18, pp.12-25, 2014.

J. P. Antignac, K. De-wasch, F. Monteau, H. De, F. Brabander et al., The ion suppression phenomenon in liquid chromatography-mass spectrometry and its consequences in the field of residue analysis, Analytica Chimica Acta, vol.529, pp.129-165, 2005.

T. O. Metz, J. S. Page, E. S. Baker, K. Tang, J. Ding et al., High Resolution Separations and Improved Ion Production and Transmission in Metabolomics, Trends Analyt Chem, vol.27, issue.3, pp.205-214, 2008.

C. E. Nazario, M. R. Silva, M. S. Franco, and F. M. Lancas, Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview, J Chromatogr A, vol.1421, pp.18-37, 2015.

L. E. Blue, E. G. Franklin, J. M. Godinho, J. P. Grinias, K. M. Grinias et al., Recent advances in capillary ultrahigh pressure liquid chromatography, J Chromatogr A, vol.1523, pp.17-39, 2017.

E. R. Wickremsinhe, G. Singh, B. L. Ackermann, T. A. Gillespie, and A. K. Chaudhary, A review of nanoelectrospray ionization applications for drug metabolism and pharmacokinetics, vol.7, pp.913-941, 2006.

J. P. Chervet, M. Ursem, and J. P. Salzmann, Instrumental requirements for nanoscale liquid chromatography, Anal. Chem, vol.68, issue.9, pp.1507-1512, 1996.

M. Wilm and M. Mann, Analytical properties of the nanoelectrospray ion source, Anal Chem, vol.68, issue.1, pp.1-8, 1996.

I. Marginean, K. Tang, R. D. Smith, and R. T. Kelly, Picoelectrospray ionization mass spectrometry using narrow-bore chemically etched emitters, Journal of the American Society for Mass Spectrometry, vol.25, issue.1, pp.30-36, 2014.

M. Karas, U. Bahr, and T. Dulcks, Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine, Fresenius J Anal Chem, vol.366, issue.6-7, pp.669-76, 2000.

I. Marginean, R. T. Kelly, D. C. Prior, B. L. Lamarche, K. Tang et al., Analytical characterization of the electrospray ion source in the nanoflow regime, Anal Chem, vol.80, issue.17, pp.6573-6582, 2008.

R. D. Smith, Y. Shen, and K. Tang, Ultrasensitive and Quantitative Analyses from Combined Separations?Mass Spectrometry for the Characterization of Proteomes, Acc. Chem. Res, vol.37, issue.4, pp.269-278, 2004.

M. R. Gama, C. H. Collins, and C. B. Bottoli, Nano-Liquid Chromatography in Pharmaceutical and Biomedical Research, J. Chromatogr. Sci, vol.51, issue.7, pp.694-703, 2013.

S. Fanali, Z. Aturki, G. Orazio, and A. Rocco, Separation of basic compounds of pharmaceutical interest by using nano-liquid chromatography coupled with mass spectrometry, J. Chromatogr. A, vol.1150, issue.1-2, pp.252-260, 2007.

M. Hilhorst, C. Briscoe, and N. Van-de-merbel, Sense and nonsense of miniaturized LC-MS/MS for bioanalysis, Bioanalysis, vol.6, issue.24, pp.3263-3265, 2014.

J. S. Page, R. T. Kelly, K. Tang, and R. D. Smith, Ionization and Transmission Efficiency in an Electrospray Ionization-Mass Spectrometry Interface, J. Am. Soc. Mass Spectrom, vol.18, issue.9, pp.1582-1590, 2007.

X. Shi, B. Wahlang, X. Wei, X. Yin, K. C. Falkner et al., Metabolomic Analysis of the Effects of Polychlorinated Biphenyls in Non-alcoholic Fatty Liver Disease, J. Proteome Res, vol.11, issue.7, pp.3805-3815, 2012.

A. D. Southam, T. G. Payne, H. J. Cooper, T. N. Arvanitis, and M. R. Viant, Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method, Anal. Chem, vol.79, issue.12, pp.4595-4602, 2007.

H. Wu, A. D. Southam, A. Hines, and M. R. Viant, High-throughput tissue extraction protocol for NMRand MS-based metabolomics, Anal. Biochem, vol.372, issue.2, pp.204-212, 2008.

K. O. Boernsen, S. Gatzek, and G. Imbert, Controlled protein precipitation in combination with chipbased nanospray infusion mass spectrometry. An approach for metabolomics profiling of plasma, Anal. Chem, vol.77, issue.22, pp.7255-64, 2005.

E. Chekmeneva, G. Santos-correia, Q. Chan, A. Wijeyesekera, A. Tin et al., Optimization and Application of Direct Infusion Nanoelectrospray HRMS Method for Large-Scale Urinary Metabolic Phenotyping in Molecular Epidemiology, J. Proteome Res, vol.16, issue.4, pp.1646-1658, 2017.

R. Raterink, F. Van-der-kloet, J. Li, N. Wattel, M. Schaaf et al., Rapid metabolic screening of early zebrafish embryogenesis based on direct infusionnanoESI-FTMS, Metabolomics, vol.9, issue.4, pp.864-873, 2013.

N. Taylor, R. M. Weber, A. Southam, T. Payne, O. Hrydziuszko et al., A new approach to toxicity testing in Daphnia magna: application of high throughput FT-ICR mass spectrometry metabolomics, Metabolomics, vol.5, issue.1, pp.44-58, 2009.

J. Dethy, B. L. Ackermann, C. Delatour, J. D. Henion, and G. A. Schultz, Demonstration of Direct Bioanalysis of Drugs in Plasma Using Nanoelectrospray Infusion from a Silicon Chip Coupled with Tandem Mass Spectrometry, Anal. Chem, vol.75, issue.4, pp.805-811, 2003.

M. M. Rahman, K. Hiraoka, and L. C. Chen, Realizing nano electrospray ionization using disposable pipette tips under super atmospheric pressure, Analyst, vol.139, issue.3, pp.610-617, 2014.

A. B. Kanu, B. S. Kumar, and H. H. Hill, Evaluation of micro-versus nano-electrospray ionization for ambient pressure ion mobility spectrometry, Int J Ion Mobil Spectrom, vol.15, issue.1, pp.9-20, 2012.

S. Zhang and C. K. Van-pelt, Chip-based nanoelectrospray mass spectrometry for protein characterization, Expert Rev Proteomics, vol.1, issue.4, pp.449-68, 2004.

S. Zhang, C. K. Van-pelt, and J. D. Henion, Automated chip-based nanoelectrospray-mass spectrometry for rapid identification of proteins separated by two-dimensional gel electrophoresis, Electrophoresis, vol.24, issue.21, pp.3620-3652, 2003.

C. Van-pelt, S. Zhang, and J. Henion, Characterization of a fully automated nanoelectrospray system with mass spectrometric detection for proteomic analyses, J Biomol Tech, vol.13, issue.2, pp.72-84, 2002.

C. K. Van-pelt, S. Zhang, E. Fung, I. Chu, T. Liu et al., A fully automated nanoelectrospray tandem mass spectrometric method for analysis of Caco-2 samples, Rapid Commun. Mass Spectrom, vol.17, issue.14, pp.1573-1578, 2003.

C. E. Hop, Y. Chen, and L. J. Yu, Uniformity of ionization response of structurally diverse analytes using a chip-based nanoelectrospray ionization source, Rapid Commun. Mass Spectrom, vol.19, issue.21, pp.3139-3181, 2005.

E. Chekmeneva, G. Correia, J. Dénes, M. Gómez-romero, A. Wijeyesekera et al., Development of nanoelectrospray high resolution isotope dilution mass spectrometry for targeted quantitative analysis of urinary metabolites: application to population profiling and clinical studies, Analytical Methods, vol.7, issue.12, pp.5122-5133, 2015.

A. D. Southam, R. J. Weber, J. Engel, M. R. Jones, and M. R. Viant, A complete workflow for highresolution spectral-stitching nanoelectrospray direct-infusion mass-spectrometry-based metabolomics and lipidomics, Nat. Protocols, vol.12, issue.2, pp.255-273, 2016.

J. Hernandez-borges, Z. Aturki, A. Rocco, and S. Fanali, Recent applications in nanoliquid chromatography, J. Sep. Sci, vol.30, issue.11, pp.1589-1610, 2007.

G. A. Valaskovic, J. P. Murphy, and M. S. Lee, Automated orthogonal control system for electrospray ionization, J. Am. Soc. Mass Spectrom, vol.15, issue.8, pp.1201-1215, 2004.

J. ?esták, D. Moravcová, and V. Kahle, Instrument platforms for nano liquid chromatography, J. Chromatogr. A, vol.1421, pp.2-17, 2015.

M. Noga, F. Sucharski, P. Suder, and J. Silberring, A practical guide to nano-LC troubleshooting, J. Sep. Sci, vol.30, issue.14, pp.2179-2189, 2007.

A. J. Chetwynd, A. Abdul-sada, and E. M. Hill, Solid phase extraction and splitless nanoflow liquid chromatography -nanoelectrospray ionisation mass spectrometry for improved global urine metabolomics, Anal. Chem, vol.87, issue.2, pp.1158-1165, 2015.

A. J. Chetwynd, A. Abdul-sada, S. G. Holt, and E. M. Hill, Use of a pre-analysis osmolality normalisation method to correct for variable urine concentrations and for improved metabolomic analyses, J. Chromatogr. A, vol.1431, pp.103-110, 2016.

A. J. Chetwynd, A. Samarawickrama, J. H. Vera, S. A. Bremner, A. Abdul-sada et al., Nanoflow-Nanospray Mass Spectrometry Metabolomics Reveals Disruption of the Urinary Metabolite Profiles of HIV-Positive Patients on Combination Antiretroviral Therapy, JAIDS J. Acquired Immune Defic. Syndromes, vol.74, issue.2, pp.45-53, 2017.

S. Medina, F. Ferreres, C. Garcia-viguera, M. N. Horcajada, J. Orduna et al., Non-targeted metabolomic approach reveals urinary metabolites linked to steroid biosynthesis pathway after ingestion of citrus juice, Food Chemistry, vol.136, issue.2, pp.938-946, 2013.

M. L. Stoll, R. Kumar, E. J. Lefkowitz, R. Q. Cron, C. D. Morrow et al., Fecal metabolomics in pediatric spondyloarthritis implicate decreased metabolic diversity and altered tryptophan metabolism as pathogenic factors, Genes Immun, vol.17, issue.7, pp.400-405, 2016.

A. S. Kononikhin, N. L. Starodubtseva, V. V. Chagovets, A. Y. Ryndin, A. A. Burov et al., Exhaled breath condensate analysis from intubated newborns by nano-HPLC coupled to high resolution MS, J. Chromatogr. B, vol.1047, pp.97-105

Z. Li, J. Tatlay, and L. Li, Nanoflow LC-MS for High-Performance Chemical Isotope Labeling Quantitative Metabolomics, Anal Chem, vol.87, issue.22, pp.11468-74, 2015.

K. T. Myint, K. Aoshima, S. Tanaka, T. Nakamura, and Y. Oda, Quantitative profiling of polar cationic metabolites in human cerebrospinal fluid by reversed-phase nanoliquid chromatography/mass spectrometry, Anal Chem, vol.81, issue.3, pp.1121-1130, 2009.

D. R. Jones, Z. P. Wu, D. Chauhan, K. C. Anderson, and J. M. Peng, A Nano Ultra-Performance Liquid Chromatography-High Resolution Mass Spectrometry Approach for Global Metabolomic Profiling and Case Study on Drug-Resistant Multiple Myeloma, Anal. Chem, vol.86, issue.7, pp.3667-3675, 2014.

Y. Saito, K. Jinno, and T. Greibrokk, Capillary columns in liquid chromatography: between conventional columns and microchips, J Sep Sci, vol.27, pp.1379-90, 2004.

D. A. Collins, E. P. Nesterenko, and B. Paull, Porous layer open tubular columns in capillary liquid chromatography, Analyst, vol.139, issue.6, pp.1292-302, 2014.

A. J. Chetwynd, A. David, A. Abdul-sada, and E. M. Hill, Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno)metabolome, J. Mass Spectrom, vol.49, issue.10, pp.1063-1069, 2014.

M. Motokawa, H. Kobayashi, N. Ishizuka, H. Minakuchi, K. Nakanishi et al., Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography, J. Chromatogr. A, vol.961, issue.1, pp.53-63, 2002.

F. Lopes, D. A. Cowan, M. Thevis, A. Thomas, and M. C. Parkin, Quantification of intact human insulinlike growth factor-I in serum by nano-ultrahigh-performance liquid chromatography/tandem mass spectrometry, Rapid Commun. Mass Spectrom, vol.28, issue.13, pp.1426-1432, 2014.

G. T. Gibson, S. M. Mugo, and R. D. Oleschuk, Nanoelectrospray emitters: Trends and perspective, Mass Spectrom. Rev, vol.28, issue.6, pp.918-936, 2009.

R. T. Kelly, J. S. Page, Q. Luo, R. J. Moore, D. J. Orton et al., Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry, Anal. Chem, vol.78, issue.22, pp.7796-801, 2006.

W. Shui, Y. Yu, X. Xu, Z. Huang, G. Xu et al., Micro-electrospray with stainless steel emitters, Rapid Commun. Mass Spectrom, vol.17, issue.14, pp.1541-1547, 2003.

W. Xiong, J. Glick, Y. Lin, and P. Vouros, Separation and Sequencing of Isomeric Oligonucleotide Adducts Using Monolithic Columns by Ion-Pair Reversed-Phase Nano-HPLC Coupled to Ion Trap Mass Spectrometry, Anal. Chem, vol.79, issue.14, pp.5312-5321, 2007.

H. P. Benton, E. Want, H. C. Keun, A. Amberg, R. S. Plumb et al., Intra-and Interlaboratory Reproducibility of Ultra Performance Liquid Chromatography-Time-of-Flight Mass Spectrometry for Urinary Metabolic Profiling, Anal. Chem, vol.84, issue.5, pp.2424-2432, 2012.

H. G. Gika, G. A. Theodoridis, J. E. Wingate, and I. D. Wilson, Within-day reproducibility of an HPLC-MSBased method for metabonomic analysis: Application to human urine, J. Proteome Res, vol.6, issue.8, pp.3291-3303, 2007.

H. G. Gika, G. A. Theodoridis, M. Earll, and I. D. Wilson, A QC approach to the determination of day-today reproducibility and robustness of LC-MS methods for global metabolite profiling in metabonomics/metabolomics, Bioanalysis, vol.4, issue.18, pp.2239-2286, 2012.

E. J. Want, I. D. Wilson, H. Gika, G. Theodoridis, R. S. Plumb et al., Global metabolic profiling procedures for urine using UPLC-MS, Nat. Protoc, vol.5, issue.6, pp.1005-1018, 2010.

P. Kiefer, N. Delmotte, and J. A. Vorholt, Nanoscale Ion-Pair Reversed-Phase HPLC?MS for Sensitive Metabolome Analysis, Anal. Chem, vol.83, issue.3, pp.850-855, 2011.

R. Garcia-villalba, A. Carrasco-pancorbo, G. Zurek, M. Behrens, C. Bassmann et al., Nano and rapid resolution liquid chromatography-electrospray ionization-time of flight mass spectrometry to identify and quantify phenolic compounds in olive oil, J. Sep. Sci, vol.33, issue.14, pp.2069-78, 2010.

Y. Yang, C. Cruickshank, M. Armstrong, S. Mahaffey, R. Reisdorph et al., New sample preparation approach for mass spectrometry-based profiling of plasma results in improved coverage of metabolome, J Chromatogr A, vol.1300, pp.217-243, 2013.

S. Tulipani, R. Llorach, M. Urpi-sarda, and C. Andres-lacueva, Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: when less is more, Anal Chem, vol.85, issue.1, pp.341-349, 2013.

F. Michopoulos, L. Lai, H. Gika, G. Theodoridis, and I. Wilson, UPLC-MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction, J Proteome Res, vol.8, issue.4, pp.2114-2135, 2009.

D. Vuckovic, Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry, Anal. Bioanal. Chem, vol.403, issue.6, pp.1523-1548, 2012.

R. Raterink, P. W. Lindenburg, R. J. Vreeken, R. Ramautar, and T. Hankemeier, Recent developments in sample-pretreatment techniques for mass spectrometry-based metabolomics, TrAC, Trends Anal. Chem, vol.61, issue.0, pp.157-167, 2014.

P. Yin and G. Xu, Current state-of-the-art of nontargeted metabolomics based on liquid chromatography-mass spectrometry with special emphasis in clinical applications, J. Chromatogr. A, vol.1374, issue.0, pp.1-13, 2014.

A. Berlioz-barbier, A. Bulete, A. Fildier, J. Garric, and E. Vulliet, Non-targeted investigation of benthic invertebrates (Chironomus riparius) exposed to wastewater treatment plant effluents using nanoliquid chromatography coupled to high-resolution mass spectrometry, Chemosphere, vol.196, pp.347-353, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744706

Y. H. Yang, C. Cruickshank, M. Armstrong, S. Mahaffey, R. Reisdorph et al., New sample preparation approach for mass spectrometry-based profiling of plasma results in improved coverage of metabolome, J. Chromatogr. A, vol.1300, pp.217-226, 2013.

E. Gionfriddo, E. Boyaci, and J. Pawliszyn, New Generation of Solid-Phase Microextraction Coatings for Complementary Separation Approaches: A Step toward Comprehensive Metabolomics and Multiresidue Analyses in Complex Matrices, Anal Chem, vol.89, issue.7, pp.4046-4054, 2017.

F. David and P. Sandra, Stir bar sorptive extraction for trace analysis, J Chromatogr A, vol.1152, issue.1-2, pp.54-69, 2007.

M. Abdel-rehim, Recent advances in microextraction by packed sorbent for bioanalysis, J Chromatogr A, vol.1217, issue.16, pp.2569-80, 2010.

B. Bojko, N. Reyes-garcés, V. Bessonneau, K. Gory?ski, F. Mousavi et al., Solid-phase microextraction in metabolomics, TrAC Trends in Analytical Chemistry, vol.61, pp.168-180, 2014.

X. Luo and L. Li, Metabolomics of Small Numbers of Cells: Metabolomic Profiling of 100, 1000 and 10000 Human Breast Cancer Cells, Anal Chem, 2017.

M. J. Gouveia, P. J. Brindley, L. L. Santos, J. M. Da-costa, P. Gomes et al., Mass spectrometry techniques in the survey of steroid metabolites as potential disease biomarkers: A review, vol.62, pp.1206-1217, 2013.

R. K. Singh, S. Gupta, S. Dastidar, and A. Ray, Cysteinyl Leukotrienes and Their Receptors: Molecular and Functional Characteristics, Pharmacology, vol.85, issue.6, pp.336-349, 2010.

S. Fernández-arroyo, A. Gómez-martínez, L. Rocamora-reverte, R. Quirantes-piné, A. Seguracarretero et al., Application of nanoLC-ESI-TOF-MS for the metabolomic analysis of phenolic compounds from extra-virgin olive oil in treated colon-cancer cells, J. Pharm. Biomed. Anal, vol.63, pp.128-134, 2012.

M. Ciebiada, P. Gorski, and A. Antczak, Eicosanoids in exhaled breath condensate and bronchoalveolar lavage fluid of patients with primary lung cancer, Dis. Markers, vol.32, issue.5, pp.329-364, 2012.

T. Uehara, A. Yokoi, K. Aoshima, S. Tanaka, T. Kadowaki et al., Quantitative Phosphorus Metabolomics Using Nanoflow Liquid Chromatography-Tandem Mass Spectrometry and Culture-Derived Comprehensive Global Internal Standards, Anal Chem, vol.81, issue.10, pp.3836-3842, 2009.

S. M. Rappaport, D. K. Barupal, D. Wishart, P. Vineis, and A. Scalbert, The blood exposome and its role in discovering causes of disease, Environ Health Perspect, vol.122, issue.8, pp.769-74, 2014.

C. P. Wild, The exposome: from concept to utility, International Journal of Epidemiology, vol.41, issue.1, pp.24-32, 2012.

R. García-villalba, A. Carrasco-pancorbo, C. Oliveras-ferraros, J. A. Menéndez, A. Seguracarretero et al., Uptake and metabolism of olive oil polyphenols in human breast cancer cells using nano-liquid chromatography coupled to electrospray ionization-time of flight-mass spectrometry, Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol.898, pp.69-77, 2012.

Q. Liu, J. S. Cobb, J. L. Johnson, Q. Wang, and J. N. Agar, Performance Comparisons of Nano-LC Systems, Electrospray Sources and LC-MS-MS Platforms, J. Chromatogr. Sci, vol.52, pp.120-127, 2013.

C. X. Zhao, Z. M. Wu, G. Xue, J. Wang, Y. N. Zhao et al.,

G. W. Cai and . Xu, Ultra-high capacity liquid chromatography chip/quadrupole time-of-flight mass spectrometry for pharmaceutical analysis, J. Chromatogr. A, vol.1218, issue.23, pp.3669-3674, 2011.

J. Hernandez-borges, G. Orazio, Z. Aturki, and S. Fanali, Nano-liquid chromatography analysis of dansylated biogenic amines in wines, J. Chromatogr. A, vol.1147, issue.2, pp.192-199, 2007.

J. Y. Lee, J. Y. Kim, G. W. Park, M. H. Cheon, K. H. Kwon et al., Targeted Mass Spectrometric Approach for Biomarker Discovery and Validation with Nonglycosylated Tryptic Peptides from N-linked Glycoproteins in Human Plasma, vol.10, pp.111-009290, 2011.

P. P. Parte, P. Rao, S. Redij, V. Lobo, S. J. Souza et al., Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MSE) reveals altered proteomic signatures in asthenozoospermia, J. Proteomics, vol.75, issue.18, pp.5861-5871, 2012.

S. H. Hsieh, H. Y. Huang, and S. Lee, Determination of eight penicillin antibiotics in pharmaceuticals, milk and porcine tissues by nano-liquid chromatography, J. Chromatogr. A, vol.1216, issue.43, pp.7186-7194, 2009.

K. Lanckmans, A. Van-eeckhaut, S. Sarre, I. Smolders, and Y. Michotte, Capillary and nano-liquid chromatography-tandem mass spectrometry for the quantification of small molecules in microdialysis samples: Comparison with microbore dimensions, J. Chromatogr. A, vol.1131, issue.1-2, pp.166-175, 2006.

M. D. Contreras, D. Arráez-román, A. Fernández-gutiérrez, and A. Segura-carretero, Nano-liquid chromatography coupled to time-of-flight mass spectrometry for phenolic profiling: A case study in cranberry syrups, Talanta, vol.132, issue.0, pp.929-938, 2015.

T. Köcher, P. Pichler, M. De-pra, L. Rieux, R. Swart et al., Development and performance evaluation of an ultralow flow nanoliquid chromatography-tandem mass spectrometry set-up, Proteomics, vol.14, pp.1999-2007, 2014.

M. S. Bereman, T. I. Williams, and D. C. Muddiman, Development of a nanoLC LTQ Orbitrap Mass Spectrometric Method for Profiling Glycans Derived from Plasma from Healthy, Benign Tumor Control, and Epithelial Ovarian Cancer Patients, Anal. Chem, vol.81, issue.3, pp.1130-1136, 2008.

X. Duan, R. Young, R. M. Straubinger, B. Page, J. Cao et al., A Straightforward and Highly Efficient Precipitation/On-Pellet Digestion Procedure Coupled with a Long Gradient Nano-LC Separation and Orbitrap Mass Spectrometry for Label-Free Expression Profiling of the Swine Heart Mitochondrial Proteome, J. Proteome Res, vol.8, issue.6, pp.2838-2850, 2009.

S. Ito, S. Yoshioka, I. Ogata, A. Takeda, E. Yamashita et al., Nanoflow gradient generator for capillary high-performance liquid chromatography-nanoelectrospray mass spectrometry, J. Chromatogr. A, vol.1051, issue.1-2, pp.19-23, 2004.

M. Ninonuevo, H. J. An, H. F. Yin, K. Killeen, R. Grimm et al., Nanoliquid chromatography-mass spectrometry of oligosaccharides employing graphitized carbon chromatography on microchip with a high-accuracy mass analyzer, Electrophoresis, vol.26, issue.19, pp.3641-3649, 2005.

Y. Izumi, A. Okazawa, T. Bamba, A. Kobayashi, and E. Fukusaki, Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry, Anal. Chim. Acta, vol.648, issue.2, pp.215-225, 2009.

A. Cappiello, G. Famiglini, F. Mangani, P. Palma, and A. Siviero, Nano-high-performance liquid chromatography-electron ionization mass spectrometry approach for environmental analysis, Anal. Chim. Acta, vol.493, issue.2, pp.125-136, 2003.

J. Masuda, D. A. Maynard, M. Nishimura, T. Uedac, J. A. Kowalak et al., Fully automated micro-and nanoscale one-or two-dimensional high-performance liquid chromatography system for liquid chromatography-mass spectrometry compatible with non-volatile salts for ion exchange chromatography, J. Chromatogr. A, vol.1063, issue.1-2, pp.57-69, 2005.

S. R. Wilson, H. Malerod, A. Holm, P. Molander, E. Lundanes et al., On-line SPE-nano-LCnanospray-MS for rapid and sensitive determination of perfluorooctanoic acid and perfluorooctane sulfonate in river water, J. Chromatogr. Sci, vol.45, issue.3, pp.146-152, 2007.

K. Buonasera, G. Orazio, S. Fanali, P. Dugo, and L. Mondello, Separation of organophosphorus pesticides by using nano-liquid chromatography, J. Chromatogr. A, vol.1216, issue.18, pp.3970-3976, 2009.

A. Rocco, C. Fanali, L. Dugo, and L. Mondello, A nano-LC/UV method for the analysis of principal phenolic compounds in commercial citrus juices and evaluation of antioxidant potential, Electrophoresis, vol.35, issue.11, pp.1701-1708, 2014.

C. Fanali, L. Dugo, and A. Rocco, Nano-liquid chromatography in nutraceutical analysis: Determination of polyphenols in bee pollen, J. Chromatogr. A, vol.1313, pp.270-274, 2013.

C. Fanali, L. Dugo, G. Orazio, M. Lirangi, M. Dacha et al., Analysis of anthocyanins in commercial fruit juices by using nano-liquid chromatography-electrospray-mass spectrometry and high-performance liquid chromatography with UV-vis detector, J. Sep. Sci, vol.34, issue.2, pp.150-159, 2011.

S. Fanali, Z. Aturki, G. Orazio, A. Rocco, A. Ferranti et al., Analysis of Aloebased phytotherapeutic products by using nano-LC-MS, J. Sep. Sci, vol.33, pp.2663-2670, 2010.

G. Merola, Z. Aturki, G. Orazio, R. Gottardo, T. Macchia et al., Analysis of synthetic cannabinoids in herbal blends by means of nano-liquid chromatography, J. Pharm. Biomed. Anal, vol.71, pp.45-53, 2012.

L. Hu, K. Boos, M. Ye, R. Wu, and H. Zou, Selective on-line serum peptide extraction and multidimensional separation by coupling a restricted-access material-based capillary trap column with nanoliquid chromatography-tandem mass spectrometry, J. Chromatogr. A, vol.1216, issue.28, pp.5377-5384, 2009.

Y. Shen, N. Tolic, C. Masselon, L. Pasa-tolic, D. G. Camp et al., Ultrasensitive proteomics using high-efficiency on-line micro-SPE-NanoLC-NanoESI MS and MS/MS, Anal. Chem, vol.76, issue.1, pp.144-154, 2004.

D. Thomas, M. Eberle, S. Schiffmann, D. D. Zhang, G. Geisslinger et al., Nano-LC-MS/MS for the quantitation of ceramides in mice cerebrospinal fluid using minimal sample volume, Talanta, vol.116, pp.912-918, 2013.

M. C. Parkin, A. M. Longmoore, S. C. Turfus, R. A. Braithwaite, D. A. Cowan et al., Detection of ketamine and its metabolites in human hair using an integrated nanoflow liquid chromatography column and electrospray emitter fritted with a single porous 10?m bead, J. Chromatogr. A, vol.1277, pp.1-6, 2013.

R. Quirantes-pine, V. Verardo, D. Arraez-roman, S. Fernandez-arroyo, V. Micol et al., Evaluation of different extraction approaches for the determination of phenolic compounds and their metabolites in plasma by nanoLC-ESI-TOF-MS, Anal. Bioanal. Chem, vol.404, issue.10, pp.3081-3090, 2012.

M. L. Chen, X. M. Fu, J. Q. Liu, T. T. Ye, S. Y. Hou et al., Highly sensitive and quantitative profiling of acidic phytohormones using derivatization approach coupled with nano-LC-ESI-Q-TOF-MS analysis, J. Chromatogr. B, vol.905, pp.67-74, 2012.

L. R. Ruhaak, S. L. Taylor, S. Miyamoto, K. Kelly, G. S. Leiserowitz et al., Chip-based nLC-TOF-MS is a highly stable technology for large-scale high-throughput analyses, vol.405, pp.4953-4958, 2013.

L. Wilson, A. Arabshahi, B. Simons, J. K. Prasain, and S. Barnes, Improved high sensitivity analysis of polyphenols and their metabolites by nano-liquid chromatography-mass spectrometry, Arch. Biochem. Biophys, vol.1, issue.0, pp.3-11, 2014.

T. Iven, C. Herrfurth, E. Hornung, M. Heilmann, P. Hofvander et al., Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry, Plant Methods, vol.9, 2013.

A. Berlioz-barbier, A. Buleté, J. Faburé, J. Garric, C. Cren-olivé et al., Multi-residue analysis of emerging pollutants in benthic invertebrates by modified micro-quick-easy-cheap-efficientrugged-safe extraction and nanoliquid chromatography-nanospray-tandem mass spectrometry analysis, J. Chromatogr. A, vol.1367, issue.0, pp.16-32, 2014.

A. Berlioz-barbier, R. Baudot, L. Wiest, M. Gust, J. Garric et al., MicroQuEChERS-nanoliquid chromatography-nanospray-tandem mass spectrometry for the detection and quantification of trace pharmaceuticals in benthic invertebrates, Talanta, vol.132, issue.0, pp.796-802, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01187418

M. Sordet, A. Berlioz-barbier, A. Bulete, J. Garric, and E. Vulliet, Quantification of emerging micropollutants in an amphipod crustacean by nanoliquid chromatography coupled to mass spectrometry using multiple reaction monitoring cubed mode, J Chromatogr A, vol.1456, p.217, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01355585