A. P. Ramirez, R. J. Cava, and J. Krajewski, Colossal magnetoresistance in Cr-based chalcogenide spinels, Nature, vol.386, pp.156-159, 1997.

S. Krohns, F. Schrettle, P. Lunkenheimer, V. Tsurkan, and A. Loidl, Colossal magnetocapacitive effect in differently synthesized and doped CdCr 2 S 4, Physica B, vol.403, pp.4224-4227, 2008.

V. N. Antonov, V. P. Antropov, B. N. Harmon, A. N. Yaresko, A. Ya et al., Fully relativistic spinpolarized LMTO calculations of the magneto-optical Kerr effect of d and f ferromagnetic materials. I. Chromium spinel chalcogenides, Phys. Rev. B, vol.59, pp.14552-14560, 1999.

E. O. Wollan and W. C. Koehler, Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La,xCa]MnO 3, Phys. Rev, vol.100, pp.545-563, 1955.

R. Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Giant negative magnetoresistance in perovskitelike La 2/3 Ba 1/3 MnO x ferromagnetic film, Phys. Rev. Lett, vol.71, pp.2331-2333, 1993.

K. Das, P. Dasgupta, A. Poddar, and I. Das, Significant enhancement of magnetoresistance with the reduction of particle size in nanometer scale, Sci. Rep, vol.6, p.20351, 2016.

Y. Fujimoto, T. Fujita, S. Mitsudo, T. Idehara, Y. Kawashima et al., High-frequency ESR studies of colossal magnetoresistance system Cu(Cr 1-x Zr x ) 2 S 4, J. Magn. Magn. Mater, vol.310, pp.1991-1993, 2007.

F. K. Lotgering, Ferromagnetism in spinels: CuCr 2 S 4 and CuCr 2 Se 4, Solid State Commun, vol.2, pp.90573-90576, 1964.

T. Saha-dasgupta, M. De-raychaudhury, and D. D. Sarma, Ferromagnetism in metallic chalcospinels CuCr 2 S 4 and CuCr 2 Se 4, Phys. Rev. B, vol.76, p.54441, 2007.

H. Sims, K. Ramasamy, W. H. Butler, and A. Gupta, Electronic structure of magnetic semiconductor CuCr 2 Te 4 : A possible spin-dependent symmetry filter, Appl. Phys. Lett, vol.103, p.192402, 2013.

P. Barahona, A. Galdámez, F. López-vergara, V. Manríquez, and O. Peña, Crystal structure and magnetic properties of titanium-based CuTi 2-x M x S 4 and CuCr 2-x Ti x Se 4 chalcospinels, J. Solid State Chem, vol.212, pp.114-120, 2014.

K. Belakroum, Z. Ouili, A. Leblanc-soreau, M. Hemmida, H. A. Krug-von et al., Magnetic properties of CuCrZrSe 4, J. Magn. Magn. Mater, vol.334, pp.130-135, 2013.

H. Yamamoto, Y. Kawashima, K. Hondou, S. Ebisu, and S. Nagata, Spin-liquid behavior in the spinel-type Cu(Cr 1-x Zr x ) 2 S 4, J. Magn. Magn. Mater, vol.310, pp.426-428, 2007.

Y. Iijima, Y. Kamei, N. Kobayashi, J. Awaka, T. Iwasa et al., A new ferromagnetic thiospinel CuCrZrS 4 with re-entrant spin-glass behaviour, Philos. Mag, vol.83, pp.2521-2530, 2003.

E. Maci??ek, E. Malicka, A. G?gor, Z. Stok?osa, T. Gro? et al., Semiconducting-metallic transition of singlecrystalline ferromagnetic Hf-doped CuCr 2 Se 4 spinels, Phys. B: Condens. Matter, vol.520, pp.116-122, 2017.

S. Bruker and . Saintplus, , 2000.

, Area-Detector Absorption Correction, SADABS, 1996.

A. Bruker and . Saint, , 2016.

R. H. Blessing, An empirical correction for absorption anisotropy, Acta Cryst. A51, pp.33-38, 1995.

G. M. , Sheldrick: Crystal structure refinement with SHELXL, Acta Cryst, vol.71, pp.3-8, 2015.

H. Dolomanov, O. V. Bourhis, L. J. Gildea, R. J. Howard, and J. A. Puschmann, Olex 2: A complete structure solution, refinement and analysis program, J. Appl. Cryst, vol.42, pp.339-341, 2009.

A. L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Cryst, vol.36, pp.7-13, 2003.

I. Okonska-kozlowska, J. Kopyczok, H. D. Lutz, and T. Stingl, Single-crystal structure refinement of spinel-type CuCr 2 Se 4, Acta Cryst, vol.49, pp.1448-1449, 1993.

V. S. Strick, G. Eulenberger, and H. Hahn, Über einige quaternäre Chalkogenide mit Spinellstruktur, Z. Anorg. All. Chem, vol.357, pp.338-344, 1968.

D. Mähl, J. Pickardt, and B. Reuter, Züchtung und untersuchung von einkristallen der verbindungen CuCrZrSe 4 und CuCrSnSe 4, Z. Anorg. Allg. Chem, vol.508, pp.197-200, 1984.

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst, vol.32, pp.751-767, 1976.

W. H. Baur, The geometry of polyhedral distortions. Predictive relationships for the phosphate group, Acta Cryst, vol.30, pp.1195-1215, 1974.

M. Wildner, On the geometry of Co(II)O 6 polyhedra in inorganic compounds, Z. Kristallogr, vol.202, 1992.

K. Robinson, G. V. Gibbs, and P. H. Ribbe, Quadratic elongation: a quantitative measure of distortion in coordination polyhedra, Science, vol.172, pp.567-570, 1971.

V. G. Ivanov, M. N. Iliev, Y. A. Wang, and A. Gupta, Ferromagnetic spinel CuCr 2 Se 4 studied by Raman spectroscopy and lattice dynamics calculations, Phys. Rev. B, vol.81, p.224302, 2010.

M. Iliev, G. Güntherodt, and H. Pink, Resonant Raman scattering of CdCr 2 Se 4, Solid State Commun, vol.27, pp.863-866, 1978.

K. Fajans, Struktur und deformation der Elektronenhüllen in ihrer Bedeutung für die chemischen und optischen Eigenschaften anorganischer Verbindungen, vol.11, pp.165-172, 1923.

I. Jendrzejewska, P. Zajdel, J. Mrozi?ski, E. Maci??ek, T. Goryczka et al., X-ray investigations and magnetic properties of CuCr 2-x Sn x Se 4-compounds, Solid State Phenom, vol.163, pp.208-212, 2010.

J. Krok-kowalski, J. Warczewski, P. Gusin, T. ?liwi?ska, G. Urban et al., Antimony valence and the magnetization processes in the spinels (Cu)[CrSb]Se 4, J. Alloy. Compd, vol.478, pp.14-18, 2009.