
  

   Page 1 

 

On the origin of epileptic High Frequency Oscillations 

observed on clinical electrodes 

  
 

Mohamad SHAMAS
1,2,3

, Pascal BENQUET
1,2

, Isabelle MERLET
1,2

, Mohamad KHALIL
3,5

, 

Wassim EL FALOU
3,5

,  Anca NICA
1,4

, Fabrice WENDLING
1,2

 

 

 

1 INSERM U1099, LTSI, Campus de Beaulieu -  35042 Rennes Cedex - France 

2 Université de Rennes 1, LTSI, Campus de Beaulieu -  35042 Rennes Cedex - France 

3 AZM center-EDST, Lebanese University, El mitein street, 1300 Tripoli, Lebanon 

4 Neurology Dpt, Functional Explorations Dpt, Epilepsy Surgery Unit, CHU Rennes 16 bd 

Bulgarie, 35203 RENNES CEDEX 2, France 

5 CRSI research center, Faculty of Engineering, Lebanese University, al-Kubba street, 1300 

Tripoli Lebanon 

 

Corresponding Author: 

Fabrice Wendling  

INSERM U1099 - LTSI - UNIVERSITE DE RENNES 1 

Campus de Beaulieu -  35042 Rennes Cedex - France 

Tel : (33) 2 23 23 56 05 or (33) 2 23 23 62 20 - Fax : (33) 2 23 23 69 17 

Email: fabrice.wendling@univ-rennes1.fr – http://perso.univ-rennes1.fr/fabrice.wendling/ 

  

mailto:fabrice.wendling@univ-rennes1.fr
http://perso.univ-rennes1.fr/fabrice.wendling/


  

   Page 2 

 

Abstract  

Objective: In this study we aim to identify the key (patho)physiological mechanisms and biophysical 

factors which impact the observability and  spectral features of High Frequency Oscillations (HFOs).  

Methods: In order to accurately replicate HFOs we developed virtual-brain / virtual-electrode 

simulation environment combining novel neurophysiological models of neuronal populations with 

biophysical models for the source/sensor relationship. Both (patho)physiological mechanisms 

(synaptic transmission, depolarizing GABAA effect, hyperexcitability) and physical  factors (geometry 

of extended cortical sources, size and position of electrodes) were taken into account. Simulated HFOs 

were compared to real HFOs extracted from intracerebral recordings of 2 patients. 

Results: Our results revealed that HFO pathological activity is being generated by feed-forward 

activation of cortical interneurons that produce fast depolarizing GABAergic post-synaptic potentials 

(PSPs) onto pyramidal cells. Out of phase patterns of depolarizing GABAergic PSPs explained the 

shape, entropy and spatiotemporal features of real human HFOs. 

Conclusions: The terminology “high-frequency oscillation” (HFO) might be misleading as the fast 

ripple component (200-600Hz) is more likely a “high-frequency activity” (HFA), the origin of which 

is independent from any oscillatory process. 

Significance: New insights regarding the origins and observability of HFOs along depth-EEG 

electrodes were gained in terms of spatial extent and 3D geometry of neuronal sources.  

 

Keywords: High frequency oscillations, Depolarizing GABA, Depth-EEG, Neuronal 

population model, Generation mechanisms. 
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Highlights 

 High-frequency oscillations (HFOs) on depth-EEG clinical macroelectrodes originate 

from non-oscillatory post-synaptic processes. 

 The synchronization level of neuronal populations explains the switch from HFOs to 

epileptic spikes. 

 Observability of HFOs depends on intracerebral electrode position relative to cortical 

3D geometry.  
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Abbreviations: 

EZ: Epileptogenic Zone  

PCs: Pyramidal Cells 

FPs: Lead Field Potentials 

PSPs: Post-Synaptic Potentials  

dGABA: depolarizing GABA 

HFA: High Frequency Activity  
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1. Introduction 

In drug-resistant partial epilepsies, resective surgery is the treatment of choice to suppress 

seizures, provided that the epileptogenic zone (EZ) is clearly identified and that it can be 

safely removed. In this context, the capacity to rely on objective biomarkers of the EZ is 

fundamental to define the optimal surgical approach in the specific context of each patient. 

Prior to surgery, patients may benefit from pre-surgical investigations, among which depth-

EEG recordings which play a key role as the use of intracranial electrodes offer the unique 

opportunity to directly and locally record field potentials from brain areas with an excellent 

temporal resolution (sub-millisecond). Thus depth-EEG signals convey crucial information in 

the form of electrophysiological markers that must be “decoded” in order to get insight into 

pathophysiological processes characterizing the EZ.  

Among these markers, high-frequency oscillations (HFOs) that occur in the 120-600 Hz 

frequency range, on depth-EEG electrodes, have been a topic of increasing interest for the 

past twenty years  (Staba et al. , 2014) since the early clinical reports in mesial temporal lobe 

epilepsy (Bragin et al. , 1999) that were then followed by many clinical studies demonstrating 

the potentially-high diagnostic value of HFOs in focal epilepsies (Cimbalnik et al. , 2016). 

However, the relationship between the EZ, on the one hand, and the features of HFOs as 

observed on multi-contact macroelectrodes classically used for pre-surgical evaluation, on the 

other hand, is not straightforward and there is still a lack of understanding on the specific 

information that is carried by HFOs (Engel et al. , 2012). This situation is explained by both 

neurophysiological and biophysical factors.  

From a neurophysiological viewpoint, various neuronal mechanisms have been showed to 

contribute to both physiological and pathological oscillations in the ripple (120-250 Hz) and 

in the fast ripple (250-600 Hz) frequency bands (Jefferys et al. , 2012), including the 
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contribution of action potentials during weakly-synchronized firing of pyramidal cells (PCs) 

(Foffani et al. , 2007) or inhibitory synaptic potentials occurring rhythmically in the 

perisomatic region of PCs (Shiri et al. , 2015), or both. 

From a biophysical viewpoint, many factors are likely to impact the local field potentials 

(LFPs) recorded at the level of depth electrodes, including the size and geometry of electrode 

contacts   (Worrell et al. , 2008, Crepon et al. , 2010). 

So far, very few studies have specifically addressed the issue of the observability of HFOs as 

recorded with clinical macroelectrodes with no additional embedded microcontacts. Since the 

pioneer work of Bancaud and Talairach (Bancaud et al. , 1973), these electrodes are 

classically used for depth-EEG investigation prior to surgery. They differ with other “hybrid 

electrode” designs like, for instance, the UCLA depth electrode (Bragin et al. , 2002) (Staba et 

al. , 2002) that includes 4 to 9 40-µm microwires (for multi-unit activity) in addition to 

millimetric macrocontacts (for LFPs). A previous study conducted by Worrell et al. showed 

significant differences in terms of frequency and detection rate of fast ripples simultaneously 

recorded by micro- and macroelectrodes (Worrell et al. , 2008). Therefore, when recorded by 

macro-electrodes, HFOs can hardly be explained by a major contribution of action potentials, 

as it is the case when microelectrodes are being used, as reported in many in vivo (Bragin et 

al. , 1999) or in vitro (Foffani et al. , 2007) studies. Consequently, the origin of 

macroelectrode-recorded HFOs remains an open question that is addressed in this study. 

In order to jointly account for (patho)physiological mechanisms and for biophysical factors, 

we combined novel computational models of neural masses with virtual brain and virtual 

electrode models for accurately replicating HFOs as observed on clinical macro-electrodes 

used in presurgical evaluation of patients with pharmaco-resistant epilepsy. 

From this modeling approach, we report new insights regarding the observability of HFOs 

along clinical depth-EEG macroelectrodes. Key mechanisms involve feed-forward activation 
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of interneurons mediating depolarizing GABAA post-synaptic potentials and key factors 

include the spatial extent and the 3D geometry (open- vs. closed field) of neuronal sources 

comprised in recorded cortical areas.  

2. Materials and Methods 

2.1. Data Acquisition 

Depth-EEG intracerebral signals were stereotaxically recorded from two patients suffering 

from drug resistant epilepsy in the Neurology department of the University Hospital of 

Rennes in France. The monitoring with intracranial electrodes was conducted during the pre-

surgical evaluation of these patients in order to accurately delineate the epileptogenic zone 

and evaluate the patient’s candidacy for surgery. Both patients gave informed approval for 

participation in research studies. A 256-channel Brain Quick® Micromed System was used to 

record depth-EEG signals at a sampling rate of 2048Hz. A hardware high pass filter with 0.1 

Hz as cutoff frequency was used to eliminate the offset of the base line. Intracerebral 

electrodes were composed of 8 to 18 cylindrical contacts (DIXI Microdeep electrodes, length: 

2 mm, diameter: 0.8 mm, 1.5 mm apart, platine-iridium). Electrode insertion points for the 

first patient are given in Fig. 1A and B. For second patient, information is provided in 

supplementary Figure SF1. The detection of HFOs was done according to four steps. First the 

data for all electrodes were examined on an EEG reviewing software developed in our Lab 

(Amadeus (Wendling, 2015)), and contacts showing clear HFOs on the ongoing background 

were chosen (Fig. 1C and D). Then the three hours data sets were fed to an automatic detector 

to detect and classify fast activities into five classes, namely gamma, high gamma, ripples, 

fast ripples and spike-artifact (Jrad et al. , 2017). Finally, ripples (120-200 Hz) and fast ripples 

(200-600Hz) were visually examined and 50 HFOs from each patient (total of 100 HFOs) 

were extracted to be used as a template for target signals (Fig. 1E and F). 
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2.2. HFO computational model: spatial features 

Real post-implantation 3D Magnetic Resonance Imaging (MRI) images for patients who 

underwent stereotaxic EEG (Bancaud et al. , 1970) were used to construct high resolution 

triangulated meshes describing with high degree of precision the anatomical structure of the 

cerebral cortex. To proceed, the open source software “freesurfer” (Fischl, 2012) was used to 

segment the 3D MRI images, extract gray matter and build a triangulated mesh. This mesh 

was converted (vtk file format) to be used afterwards in the virtual brain environment 

specifically designed for simulating depth-EEG signals. The epileptic region responsible for 

the generation of epileptiform activity was modelled by spatially adjacent elementary 

triangles each of an average area of 0.5 mm
2
. Due to this high resolution, we were able to 

delineate relatively small compact cortical areas corresponding to abnormal brain regions with 

area ranging from 25 to 60 mm
2
 i.e. 50 to 120 neural populations. To obtain more realistic 

HFOs, we considered a larger cortical patch surrounding the epileptic cluster for the 

background activity. We managed to match virtual electrodes to the exact geometry of the real 

intracranial electrodes in terms of contact length (2 mm), number of contacts (10-15), 

diameter (0.8 mm), position and orientation relative to the cortical surface.   

2.3. HFO computational model: temporal dynamics 

The electrical contribution of each neural population was represented by a dipole located at 

the center of each mesh triangle and oriented perpendicularly to its surface. The time varying 

potential induced by each dipole is determined as the output of an existing neural mass model 

previously used for simulating various types of signals such as sporadic spikes, rhythmic 

discharges, normal and ictal activity (Wendling et al. , 2002). In order to generate HFOs 

several modifications of this previous model were achieved. Firstly, we implemented the 

feedforward inhibition which is shown to be a crucial element in the fundamental 

organization of brain circuits entitled for transfer of information between the thalamus and the 
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cortex (Womelsdorf et al. , 2014). In line with previous modeling studies (Mina et al. , 2013), 

the excitatory input activating the PCs also activates the interneurons. Secondly, we 

considered the postsynaptic downregulation of chloride transfer, known as depolarizing 

GABA, which has been detected in many neurological disorders, including epilepsy, and was 

proved to be necessary for generating epileptic discharges in a recently-published 

computational model (Kurbatova et al. , 2016). Briefly, populations of interneurons receive 

subcortical excitatory input and generate either feedforward GABAergic excitation or 

inhibition depending on the (dys)funtional nature of pyramidal cells GABA receptors. 

2.4. Detailed description of the (patho)physiological model 

The model is intended to reproduce the activity recorded by a clinical depth electrode arising 

from a patch of neocortex (comprising N neuronal populations) in response to subcortical 

input. All model parameters are documented in Table 1. 

2.4.1 Neuronal population model. The neuronal population model structure is detailed in 

Fig. 2B. The model consists in 3 types of interacting neuronal sub-populations:  

1. Pyramidal Cells (PCs) are the main component of the model from which the LFPs are 

reconstructed, as the summation of excitatory/inhibitory PSPs. PCs are excited by subcortical 

input and receive inhibitory PSPs from GABAergic dendritic-projecting ( 1IN ) and somatic-

projecting ( 2IN ) local interneurons, as well as abnormal excitatory GABA PSPs in the case 

where the depolarizing GABA effect is simulated. PCs mediate excitatory PSPs on each and 

every type of local interneuron and neighboring PCs as well. 

2. Dendritic-targeting inhibitory local Interneurons ( 1IN ) mediate inhibitory PSPs onto PCs. 

They are characterized by a relatively low firing rate and play an important role in the 

morphology of the overshoot following an HFO. They are excited by PSPs from the PCs and 

by excitatory input from subcortical regions. 
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3. Somatic-targeting Interneurons ( 2IN ) integrate PSPs from three different sources: 

glutamatergic EPSPs from PCs, GABAergic IPSPs from 1IN  and EPSPs mediated by the 

thalamic input. In healthy tissue, most of somatic-targeting GABAergic interneurons induce 

IPSPs on PCs. However, it has been shown that in epileptic brain tissue the reversal potential 

for chloride is shifted toward a more depolarized potential (Barmashenko et al. , 2011), in this 

case GABAergic PSPs become depolarizing. In the proposed neural mass model, the reversal 

potential for chloride was not explicitly implemented, rather excitatory GABAergic PSPs onto 

PCs were represented. In this study, we symbolized this mechanism in subpopulations of 

interneurons denoted as '

2IN . This hypothesis has already been considered in some 

computational models of epileptiform activity (see recent review in (Wendling et al. , 2016)). 

As a result, we considered that PCs were receiving inhibitory GABAergic PSPs from one type 

of somatic-targeting interneurons denoted by 2IN   and excitatory GABAergic PSPs from a 

second type denoted by '

2IN . The delineated “epileptic” patch could contain “normal” 

populations where the somatic-targeting interneurons are of only 2IN type, and “abnormal” 

populations where the somatic-targeting interneurons are of both 2IN and '

2IN type, thus 

mediating a dual excitatory/inhibitory GABAergic PSPs on the PCs. Readers may refer to 

Supplementary Material (SM1) for detailed mathematical description of the model. 

2.4.2 Subcortical input. The model input denoted by P(t) is illustrated in Fig. 2D. It 

represents the afferent input to the cortical patch modeled as set of signals Pk(t), each denoting 

a density of action potentials (APs) targeting a neuronal population in the patch. Each Pk(t) is 

a combination of 2 components one of which is a Gaussian noise  , nN    with   as mean 

and n  as standard deviation (n stands for noise), and the other is an short-duration pulse 

AP  that accounts for an abrupt increase-decrease of action potentials (APs). The 
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occurrence time of each AP  in P(t) obeys a Gaussian distribution with mean 0t  (center of 

simulated HFO) and standard deviation j  (where j stands for “jitter”). This jitter parameter 

j  allows for controlling the synchronization level of the input.  

For a detailed description on the combination of spatial and temporal parameters readers can 

refer to Supplementary Material section (SM2). 

All Signal processing and feature extraction methods are detailed in Supplementary Material 

(SM3). 

3. Results 

3.1 Real human HFOs. 

 Event of interest were automatically detected using a signal processing method based on 

Gabor function applied to monopolar depth-EEG signals recorded from depth electrodes (Fig. 

1A-C). HFOs were visually validated. Typical examples are shown in Fig. 1D-F. As depicted, 

HFOs presented as transient events of an average duration of 100 ms and characterized by a 

fast oscillation occurring during the decaying phase of a slower large amplitude wave. 

3.2. Simulated HFOs.  

Simulation results are displayed in Fig. 2 (see also the methods section for technical details 

about the computational model). A patch was defined on the 3D high-resolution mesh of the 

neocortex. A virtual intracerebral electrode of realistic geometry was inserted in this cortical 

patch, orthogonally to its surface (Fig. 2A). The local field potential (LFP) of each neuronal 

population over this patch was simulated by a neural mass model comprising sub-populations 

of glutamatergic pyramidal cells (PCs) targeted by two types of GABAergic interneurons 

(INs) producing post-synaptic potentials (PSPs) with slow (IN1, dendritic-projecting) and fast 

kinetics (IN2, somatic-projecting). In the second sub-population IN2, a subset of interneurons 
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(IN2’) could be defined to generate excitatory PSPs onto PCs, referred to as depolarizing 

GABA (dGABA) PSPs. It is worth mentioning that this dGABA effects is a characteristic 

property of the epileptogenic tissue (see (Kaila et al. , 2014) for review). Based on the dipole 

theory, the forward problem of depth-EEG was solved (see methods) to simulate signals along 

the virtual electrode sensors (Fig. 2C). Then, by adjusting the jitter of the densities of 

excitatory action potentials (Fig. 2D) afferent to the cortical patch, simulated HFOs could be 

produced (Fig. 2E), showing both the slow and the ripple components (Fig. 2E) that 

qualitatively resembled actual HFO in shape, duration, and frequency.  The kinetics of the 

PSPs mediated by each of the subpopulations and their overall contribution to the collected 

PSP on the PCs are illustrated in Supplementary Figure SF2. Simulated responses are 

consistent with experimentally-recorded values (Banks et al. , 2000) (Wu et al. , 2004) 

(Struber et al. , 2015). 

3.4. Real vs. simulated HFOs.  

Quantitative comparison is provided in Fig. 3. Both time-series and spectrograms of simulated 

signals (Fig. 3A) indicated that the model was able to accurately reproduce the features and 

the diversity of HFOs recorded in patients. This visual inspection of the time-frequency 

content of analyzed signals was also confirmed by signal processing. The first quantitative 

index revealed that the ratio of the energy in the fast ripple band (200-600Hz) to the total 

energy (Ehf/Etot) was similar (p=0.20, Wilcoxon-test) in both the actual (n=100) and 

simulated (n=360) events (Fig. 3B). The second quantitative index (NSE) showed that the 

irregularity, complexity and randomness in the power spectrum of simulated signals strongly 

matched the same features in real signals, as no statistical difference (p=0.41, Wilcoxon-test) 

was found between NSE values (Fig. 3C). Finally, the third index quantifying the phase-

amplitude coupling was found to be similar in simulated and real signals (p=0.49, Wilcoxon-

test). This result indicates that the increase of energy associated with the fast ripple 
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component occurred at the right phase on the slow component in simulations, when compared 

to real data. 

 

3.5. Mechanistic insights on HFO features. 

 We performed extensive simulations (n=6600 simulated events) in order to determine what 

key (patho)physiological mechanisms (represented in the model) were directly impacting the 

HFO features, namely the energy ratio (Ehf/Etot), the spectral entropy (NSE), the duration of 

the slow component ( and the median frequency of the fast ripple component (fmed).  As 

reported in Fig. 4A, the increase of amplitude of PSPs mediated by depolarizing GABA 

(dGABA) onto pyramidal cells dramatically i) increased both the energy and the median 

frequency associated with the fast ripple component (Fig. 4-A1 and A2), ii) increased the 

spectral entropy of simulated HFOs (Fig. 4-A3) and iii) decreased the duration of the slow 

component (Fig. 4-A4). We then investigated the influence of the percentage of neuronal 

populations that implement this dGABA effect (Fig. 4B). We found that a minimum 

percentage of 30% is a necessary condition to get events with realistic slow and fast 

components. In addition, and in contrast with Fig. 4A, we found that this percentage had a 

light impact on the energy ratio (Fig. 4-B1) and on the spectral entropy (Fig. 4-B3) and no 

effect on the median frequency of the fast ripple component (Fig. 4-B2) and on  (Fig. 4-B4). 

Finally, the jitter of the excitatory input (Fig. 4C) was also found to have a strong impact on 

spectral and morphological features (energy ratio and the duration of the slow component, 

Fig. 4-C1 and C4). No effect was evidenced regarding the spectral entropy and the median 

frequency (Fig. 4-C2 and C3). Interestingly, as shown in Fig. 4D, when this jitter parameter 

was gradually reduced from 16 ms to 3 ms (while keeping all other parameters constant), a 

switch from HFO events to epileptic spikes was observed in simulated LFPs. 
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3.6. From multichannel HFOs to source geometry. 

In order to address the central clinical question of why and how the folded nature of the 

neocortex impacts the observability of HFOs on intracerebral recordings, we performed 

specific simulations where we could accurately control the electrode position w.r.t. the 3D 

geometry of the cortical surface. As illustrated in Fig. 5A, there was a strong difference 

between simulated LFPs obtained in an “open-field” vs. those arising from a “closed-field”. 

In the open-field configuration, dipole vectors are, on average, oriented parallel to each other 

in such a way that they tend to sum up. In contrast, the closed-field configuration corresponds 

to the case where these vectors are, to a large extent, oriented opposite to each other and tend 

to cancel out. In the first case, simulated HFOs were clearly visible on 5 to 6 electrode 

contacts (Fig. 5A) while they were focalized on 1 to 2 contacts in the closed-field case (Fig. 

5B). Interestingly, actual depth-EEG recordings exhibit signal features such as 1) 

presence/absence of HFOs on contiguous contacts and 2) HFO-to-background ratio, that 

strongly match simulations, when electrode contacts are in an “open-field” (Fig. 5C) or 

“closed-field” configuration (Fig. 5D). Finally, we quantified the “HFO-to-BKG” ratio (see 

methods) in both conditions. As depicted in Fig. 5E, this ratio was higher by +9 dB, i.e. more 

than 7 times, when the epileptic source was located over a gyrus than when it was inside a 

sulcus.  As discussed in the next section, the model provided a clear explanation about actual 

values of the HFO-to-BKG ratio (Fig. 5F) in term of respective contribution of “pathological” 

sources, producing HFOs, and “normal” sources, producing background activity, onto 

electrode contacts.  

4. Discussion 

Over the past decade, HFOs (HFOs, 80-600 Hz) have been a topic of increasing interest. 

Regarding the upper frequency band (250-600 Hz), a number of experimental studies, 
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combined with computational modeling, have led to a number of hypotheses regarding the 

cellular and network mechanisms involved in the generation of FRs: i) major contribution of 

interneurons and non-synaptic gap junction couplings between excitatory cells (Roopun et al. 

, 2010); ii) “out-of-phase” firing patterns of small clusters of neurons (Foffani et al. , 2007) 

(Ibarz et al. , 2010) and iii) weakly-synchronized “hyperexcitable” neurons featuring 

depolarizing GABA IPSPs (Demont-Guignard et al. , 2012). In all these studies, signals were 

observed at the level of microelectrodes implanted in non-folded brain tissue. In contrast, and 

despite the increasing number of clinical studies investigating HFOs in patients candidate to 

surgery, the neurophysiological and biophysical mechanisms governing their observability on 

clinical depth macroelectrodes has received much less attention. 

 Progress in this field would lead to better interpretation of HFOs and potential use of the 

information derived from electrophysiological signals for the care of epileptic patients, 

typically for the definition of the optimal surgical approach.  

In this study, we used computational modeling and simulation of brain signals as an efficient 

approach to address this issue and get insights about mechanisms of generation of 

pathological HFOs, on the one side, and observability conditions on clinical electrodes, on the 

other side. 

To the best of our knowledge, the present study is the first aimed at accurately replicating 

HFOs as recorded by clinical electrodes with physiologically-grounded models. To proceed, 

we developed a novel computational model at mesoscopic scale. This model fully describes 

the activity of a neocortical patch recorded by a nearby intracerebral multiple-lead electrode 

of realistic dimension. It allows for simulation of depth-EEG signals while accounting for 

both the spatial features and the temporal dynamics of neuronal populations comprised in the 

considered neocortical patch with folded geometry accurately described by a 3D mesh 

obtained from MRI data. Interestingly, at the level of cortical neuronal populations, some 
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mechanisms potentially impacting HFO features were implemented. Key model features 

include afferent input with tunable synchronization, feed-forward inhibition, tunable 

excitability level (via collateral excitation among PCs and slow/fast feedback inhibition) and 

depolarizing GABA currents. The main findings obtained with this model are summarized in 

Fig. 6 and discussed below. 

4.1. Post-synaptic origin of macroelectrode-recorded HFOs  

The contribution of APs to pathological HFOs (fast ripples) is an accepted fact. Several 

studies reported that APs of quasi-synchronously bursting PCs are essential components of 

HFOs detected on microwires (Bragin et al. , 1999) (Ibarz et al. , 2010) (Dzhala et al. , 2004). 

The relation between HFOs and APs in LFPs has been investigated in microelectrodes 

recordings only. In contrast, when macroelectrodes are being used the relationship between 

membrane potentials at cellular level and depth-EEG signals is more elusive. In this study, we 

propose a hypothesis alternative to ‘APs’ for mechanisms leading to HFOs observed on 

macro-contacts. Due to their large size, both close and far neuronal sources, extending over a 

considerably large spatial area, contribute to the measured signal. It is admitted that (1) the 

electric fields produced by APs can only be detected at a proximity of a few tens of 

micrometers from its source (Bedard et al. , 2006) and that (2) the amplitude of spike-related 

currents are subjected to a steep decay exponentially proportional to the distance (1/r
n
) where 

n>2(Pettersen et al. , 2008). In addition, (3) the non-homogenous low-conductive and 

capacitive nature of the extracellular medium results in a low pass filtering effect. According 

to the three above considerations, it is unlikely that APs directly contribute to the EEG signal 

recorded by macro-contacts. In contrast, it is more likely that slower post-synaptic currents 

recorded farther from the electrode contact significantly mask the attenuated fast 

transmembrane ionic currents involved in APs (Destexhe et al. , 2013). This hypothesis 

contrasts with a previous simulation study (Reimann et al. , 2013) which reports that active 
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membrane conductance contribute to extracellular LFPs and can surpass the effect of PSPs 

even for high frequencies beyond 100 Hz. However, it is worth noting that LFPs were 

estimated on virtual “point” electrodes situated in the extracellular medium almost at the 

contact of simulated neurons. This contrasts with our model in which (1) the real size of 

macro-contacts and (2) distant sources are accounted for. Finally, additional evidence is 

brought by simultaneous microwire and clinical macroelectrode recordings (Worrell et al. , 

2008) reporting that HFOs detected by microelectrodes are much faster (very high frequency 

350-700 Hz) and more abundant on microelectrodes. Overall, our modeling results, in line 

with the above studies, suggest that the mechanisms which underlie HFOs observed on micro-

contacts may differ from those underlying HFOs on macro-contacts.  

4.2 Key role of feed-forward activation of GABAergic interneurons.  

In case of epileptic brain tissue, it is well established that reversal potential for chloride can be 

depolarized in some pyramidal cells, leading to excitatory synaptic GABAergic PSP (Cohen 

et al. , 2002) (Huberfeld et al. , 2007) (Ben-Ari et al. , 2012). Depolarizing GABAergic 

(dGABA) synaptic potential contribute to epileptic spikes (Huberfeld et al. , 2007), high-

frequency oscillations (200-600 Hz) (Alfonsa et al. , 2015) and seizure onset (Lillis et al. , 

2012). 

In previous studies, we already proposed computational models implementing the dGABAA 

effect and showed its contribution to epileptic spikes (Demont-Guignard et al. , 2009), fast 

ripple (Demont-Guignard et al. , 2012), fast-onset activity (Kurbatova et al. , 2016) and 

seizure-like activity (Wendling et al. , 2012) (Wendling et al. , 2016).   

In the present study, we go beyond and propose a neural mass model implementing both 

dGABAA and feed-forward inhibition as represented by an excitatory input onto somatic-

projecting GABAergic interneurons. In addition, the implementation of dGABA followed 

recently-published  optogenetic studies showing that i) selective activation of somatic 
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targeting parvalbumin-expressing (PV+) interneurons generated excitatory GABAergic 

responses in pyramidal neurons (Ellender et al. , 2014) and ii) activation of basket-cells 

caused a positive shift in the GABAergic reversal potential measured in pyramidal cells up to 

25 mV, inducing interictal and ictal epileptic activity (Alfonsa et al. , 2015) (Ellender et al. , 

2014). The kinetics of the GABAergic fast inhibitory potentials in physiological condition is 

approximately 1ms in rise time and 11 ms in decay time (Struber et al. , 2015). In fact, as the 

reversal potential value of chloride directly depends on the ratio between extracellular and 

intracellular chloride concentration (Nernst equation), but not on channel properties (as for 

example, the subunit composition of the receptors). Therefore, we kept the same kinetics for 

depolarizing and hyperpolarizing GABAA. To the best of our knowledge, such mechanisms 

have not been jointly considered in computational models of epileptic brain activity. 

Very interestingly, this mechanism of feed-forward excitation of somatic-projecting 

GABAergic interneurons mediating abnormal depolarizing PSPs was found to play a key role 

in the generation of ultra-fast activity in the fast ripple frequency band (around 350 Hz). As 

shown in Figure 4-A2, tuning the GABAA PSPs amplitude linearly affect the dominant 

frequency of simulated HFOs suggesting that there might exist a “continuum” in the 

frequency domain instead of distinct frequency bands, as commonly used in the literature. 

 This result constitutes a sharp prediction strengthened by the accurate replication of 

morphological and spectral features of actual epileptic HFOs. 

4.3. High-frequency “oscillation” vs. “activity”.  

Our modeling results strongly suggest that the high-frequency component in analyzed 

epileptic events originates from depolarizing fast PSPs onto PCs. These “abnormal” PSPs are 

generated, in a de-synchronized manner, by some of the neuronal populations distributed over 

the cortical patch. They directly contribute to the LFP fast component “captured” by clinical 

macro-electrodes. In this regard, the terminology “high-frequency oscillation” (HFO) is 
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somehow misleading as the model indicates that the fast ripple component, regardless of the 

background activity which may – or may not – be oscillatory, more likely corresponds to a 

“high-frequency activity” (HFA) that is not related to any underlying oscillatory process.  

Similar observations were previously described in studies involving gamma patterns, as 

reported by Einevoll et al. (Einevoll et al. , 2013) who suggested that high-gamma LFPs may 

reflect spiking activity rather than genuine network oscillations. This finding is also supported 

by normalized spectral entropy values computed on our simulated signals that are congruent 

with normalized values computed on real HFOs and reported elsewhere (Canolty et al. , 2006) 

(Ibarz et al. , 2010) (Menendez de la Prida et al. , 2011). As compared to a pure oscillation, 

our results strongly suggest that the observed increased entropy originates from the random 

nature of HFA, itself being directly related to sharp fast depolarizing PSPs in response to a 

jitter input (see also next paragraph). In addition, the fact that connectivity among neuronal 

populations was not a necessary condition in the model to produce HFA was an unexpected 

result. However, this result is in line with the recent study reported by Gliske et al. (Gliske et 

al. , 2017) who showed, in a detailed model (cellular level) that narrowband high-frequency 

oscillations can emerge from completely asynchronous and independent activity generated by 

neurons contributing to LFPs. Finally, and for the first time, our results explain the different 

nature of HFA i) as observed on clinical macro-electrodes and stemming from ultrafast de-

synchronized PSPs “captured” by large (mm scale) sensors in a relatively far field and ii) as 

observed on experimental micro-electrodes and originating from de-synchronized signals 

(action potentials and PSPs) “captured” by small (µm scale) sensors located in the close 

vicinity of PCs. 

4.4. Afferent input shapes recorded events.  

The random occurrence times of volleys of afferent action potentials (APs) onto neuronal sub-

populations, characterized by the jitter parameter, was found to dramatically impact both the 
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morphology and the spectral content of simulated HFOs. Specifically, when the jitter 

increases, the ripple component becomes more prominent and the “bell-shape” slow 

component widens. In contrast, when the jitter decreases, the morphology of the simulated 

epileptic event switches from an HFO to a spike. Interestingly, a number of studies have 

reported that both HFOs and epileptic spikes which are very often observed in patients during 

intra-cranial recordings (Zelmann et al. , 2009) can occur either in a separate or in a 

superimposed manner. Our results not only confirm this observation but also go beyond as 

they provide an explanation for the co-occurrence of these two markers of epilepsy: the 

temporal characteristics (distribution of AP volleys) of the input afferent to the cortical 

epileptic zone determines the nature of epileptic events (HFOs vs. epileptic spikes) observed 

in LFPs.  

The synchronization of the afferent input (i.e. the input jitter) may be affected by several 

factors. First, depending on the power of the input noise, the resting membrane potential of 

the neurons may increase and get closer to threshold value, leading to increase of firing 

probability and subsequently increased level of synchronization (Diba et al. , 2004) (Kole et 

al. , 2006). Second, the vigilance state can also impact the distribution of afferent APs. 

Typically, during slow-wave sleep (SWS), the cortical input from thalamo-cortcial (TC) cells 

is modified compared to the awake state, consisting of alternating phases of depolarized UP 

and hyperpolarized DOWN state (Steriade et al. , 2003). This results in a change of the 

distribution, in time, of volleys of APs to cortical regions, and possibly to increased jitter 

value. Interestingly, some studies have reported higher occurrence rates of HFOs during SWS 

(Frauscher et al. , 2015) (von Ellenrieder et al. , 2016) (Song et al. , 2017). Along the same 

idea, and in accordance with the “low jitter value” prediction of the model, many studies have 

reported that epileptic spikes involve the co-activation of distant structures  (Bourien et al. , 
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2005) with hypersynchronous input from one region to another as, for instance, interictal 

events recorded from CA1 and driven by CA3 (Avoli, 2014). 

4.5. Brain folded surface impacts HFO observability. 

 Our model provided the unique opportunity to explore the intricate relationship between the 

source geometry and the morphological content of signals collected on contiguous clinical 

sensors. Results shed light on one essential factor. Indeed, the intuitive view according to 

which dipolar sources cancel each other in the case of closed-fields is challenged by this 

study. Our modeling results strongly suggest that the observability of HFOs on clinical 

sensors is most affected by the distance between sources and sensors. Simulations showed 

that this distance can be very short between “normal” sources and near-by sensors in the case 

where the electrode goes through a sulcus (close-field). This configuration results in the 

masking of HFOs by background activity, as quantified by HFO-to-BKG ratio and as 

supported by the high similarity of simulated activity along the virtual and actual electrode. 

This result is of high clinical interest as the model bridges between the content of depth-EEG 

signals and the electrode trajectory within the 3D complex geometry of targeted brain regions. 

In addition, the model enhances the interpretation of collected signals showing that “less-

visible” HFOs should not be automatically associated with “less-pathological” sources. 
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4.6. Perspectives 

In its current version the model does not explicitly represent the activity of subcortical regions 

(such as amygdala, hippocampus, and enthorinal cortex) although these are known to play a 

role in generating epileptic activities. Technically, the pipeline presented in this study to 

simulate intracerebral EEG signals can be enhanced to account for deep sources provided that 

the mesial structures are successfully segmented from 3D MRI images and that the 

information about spatial features of their cellular configurations is known.  

Virtual electrodes were modeled to match real clinical electrodes in shape and size 

(conducting cylinders separated by insulators) so that the patient-specific SEEG implantation 

can be reproduced. A simple approach based on infinite volume conductor characterized by 

uniform conductivity was used to reconstruct SEEG signals recorded at each electrode 

contact. Therefore, our model does not account for biophysical effects related to the large 

high conductivity surface in contact with the brain tissue. To overcome this limitation, 

enhanced models could be considered to account for very close populations to the electrode 

contacts (von Ellenrieder et al. , 2012) or for the resistive and capacitive effect induced by the 

electrode-tissue interface (Kent et al. , 2014). 
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Figure Legends 

Figure 1. The complete pipeline for HFO extraction from real depth-EEG recordings 

performed during the presurgical evaluation of patients suffering from drug resistant 

epilepsy. (A) Sagittal view of the brain displaying the reconstructed entry points of 

intracerebral electrodes in one patient. The vertical plane containing electrode C’ is also 

shown. (B) Coronal slice showing the intracerebral electrode C’. Electrodes are composed of 

10-15 cylindrical contacts illustrated in red (length 2 mm, diameter 0.8 mm and 1.5 mm apart) 

recording brain activity from deep to lateral structures. (C) Depth-EEG signals recorded on 

three intracerebral electrodes (A’, B’ and C’) showing epileptic activities including HFOs. (D) 

Two typical examples of automatically-detected HFOs from 2 single channels. (E, F) Zoom 

on the two events shown in (D) to facilitate visual inspection. 

 

Figure 2. Spatio-temporal model used to simulate epileptic HFOs. (A) Virtual brain 

environment in which the epileptic region is delineated inside a sulcus of the temporal lobe 

(green triangles). The surrounding tissue is considered to be a source of background activity 

(cyan triangles). (B) Each elementary triangle represents a neural population. Its temporal 

activity is modeled as a dipole (blue arrows) oriented perpendicularly to the triangle surface. 

The time-varying magnitude of each dipole is obtained from the physiological neuronal 

population model (NPk, where k denotes the k
th
 population) shown on the right. Each NP is 

composed of three types of subpopulations: (1) pyramidal cells (orange), (2) dendritic 

targeting interneurons (green) and (3) somatic targeting interneurons (yellow ellipse) which 

are further divided into interneurons mediating inhibitory GABAergic currents on pyramidal 

cells (blue), and interneurons mediating depolarizing GABAergic currents on pyramidal cells 

(red). (C) Intracerebral electrode inserted in the patch. The forward problem from NPs to 
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electrode contacts is solved to simulate LFPs. (D) The afferent input to the cortical patch is 

modeled as set of signals Pk(t) denoting incoming densities of action potentials (APs). In Pks, 

transient increases in the volleys of APs are represented as rectangular pulses that appear 

randomly in time according to a Gaussian distribution with mean t0 (center of simulated HFO) 

and standard deviation j  (where j stands for “jitter”). j  allows for controlling the 

synchronization level of the input. (E) Example of simulated HFO with corresponding slow 

and fast components.  

 

Figure 3. Qualitative and quantitative comparison between real and simulated HFOs. 

(A) Three different types of real HFOs are compared to simulated ones. Each HFO is 

represented in both time-amplitude and time-frequency (spectrogram) domains. (B) Box plot 

representing the energy ratio between the high frequency component and the total energy for 

real and simulated HFOs. (C) Boxplot representing the normalized spectral entropy of real 

HFOs and simulated HFOs. (D) Boxplot of the modulation index characterizing the phase-

amplitude coupling phenomenon for real and simulated HFOs. Plots in B, C and D were 

obtained from the same real (n=100) and simulated (n=360) HFOs. 

 

Figure 4. Impact of model parameters on HFO features. (A) Effect of the amplitude of the 

dGABA PSP on HFO features: (1) the energy ratio of high frequency to total energy, (2) the 

median frequency, (3) the spectral entropy and (4) the standard deviation ( ) of the bell-

shaped slow component computed on 1650 simulated HFOs. Each plot contains 15 different 

average values obtained from 110 HFOs simulated for each dGABA PSP amplitude value. 

(B) Effect of the percentage of neural populations (within the simulated patch) mediating 

dGABA PSPs onto PCs on the same four features (1-4).  Each plot contains 15 different 
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average values obtained from 110 HFOs simulated for each percentage value starting from 

30% and increasing by 5%. Note that below 30% no HFO is observed in simulated signals. 

(C) Effect of the jitter ( j ) on the same four features (1-4). Each plot contains 25 different 

average values obtained from 110 HFOs simulated for each value of jitter. The error bars in 

all plots represent the standard error (SEM). (D) Simulated signals as a function of the input 

jitter. Simulated and real signals for 3 jitter values are represented. For high jitter value 

(desynchronized input, 16 ms), simulated signals resemble HFO events (left),for a medium 

jitter value (9ms) the simulated signal exhibit half  HFO/spike features and  for low jitter 

value (synchronized inputs, 3 ms) they become similar to real epileptic spikes (right). 

Figure 5. Impact of the 3D source geometry on HFOs. (A) Simulated depth-EEG signals 

on 6 consecutive contacts of a virtual electrode inserted in a cortical gyrus. This case mimicks 

an open-field as the electric contribution of most neuronal populations, represented as blue 

dipoles, have approximately the same orientation, (B) Simulated depth-EEG signals on 6 

consecutive contacts of a virtual electrode inserted between the banks of a sulcus. This case 

mimicks a closed field as the electric contribution of neuronal populations have opposite 

orientations, to a large extent. (C) Real signals on 6 consecutive contacts extracted from real 

depth-EEG recordings. Note that HFOs can be observed on several adjacent contacts and that 

HFOs can be clearly distinguished in the background activity, as predicted in the open field 

configuration. (D) Real signals extracted from depth-EEG recordings in another patient. Here 

HFOs appear only on 2 adjacent contacts. Fast ripples are less prominent w.r.t background, as 

predicted in the closed field configuration. (E) HFO to background ratio (HFO-to-BKG) as a 

function of space (along the electrode).  “HFO-to-BKG” values were computed from 110 

simulations of an open (red) and closed (blue) field case on 6 adjacent contacts. (F) “HFO-to-

BKG” values computed on real recordings on 6 adjacent contacts. 
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Figure 6. The HFO model equation. (A) The simulation of realistic HFOs requires some 

conditions on time and space. Regarding time (B), HFOs stem from pathological depolarizing 

GABAergic synaptic potentials mediated by interneurons onto pyramidal cells in response to 

desynchronized volleys of action potentials (APs). Regarding space (C), open-field 

configurations favor the observability of HFOs w.r.t background activity. 
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Table 1: model parameters interpretation and values. 

 Parameters Significance Epileptic Tissue 
(Background) 
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P
S

P
s
 

   

A (mv) Excitatory PSP of PCs  3 (1) 

B (mv) Inhibitory PSP of dendritic targeting INs 42 (60) 

G (mv) Inhibitory PSP of somatic targeting INs 5 

J (mv) Excitatory PSP of somatic targeting INs (dGABA) 15(5) 

K
in

e
ti

c
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 o
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P
S

P
s
 

   

a (s
-1

) Rate constant of PSP of PCs 100 

b (s
-1

) Rate constant of PSP of dendritic targeting INs 33 

gr (s
-1

) Rate constant for rise time of PSP of somatic targeting INs 3000 

gd  (s
-1

) Rate constant for decay time of PSP of somatic targeting INs 400 
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id
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rs
    

e0 (pulse/s) Maximum firing rate (saturation value) 2.5 

v0 (mv) Threshold average membrane potential 6 

r (mv
-1

) Steepness of the linear  part of sigmoid function 0.56 
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P,P'C ,
P',PC  Between PCs 135, 110 

1P,INC ,
1IN ,PC  Between PCs and dendritic targeting INs 27, 33 

2P,INC ,
2IN ,PC  Between PCs and somatic targeting INs 135, 135 

1 2IN ,INC  Between somatic targeting and dendritic targeting INs 15 
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         Samples of variation in afferent density of action potentials 5 (0) 

   (ms) Standard deviation of jitter 25 (0) 

   (pulse/s) Standard deviation of input density of action potentials 0.1 

µ (pulse/s) mean of input density of action potentials 3 
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rs
    

T (s) Duration of simulation  2 

fs (Hz) Sampling frequency 8192 

fd (Hz) Down-sampling frequency 2048 

   

 

 


