H. Alfonsa, E. Merricks, N. Codadu, M. Cunningham, K. Deisseroth et al., The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity, Journal of Neuroscience, vol.35, issue.20, pp.7715-7741, 2015.
DOI : 10.1523/JNEUROSCI.4105-14.2015

URL : http://www.jneurosci.org/content/jneuro/35/20/7715.full.pdf

M. Avoli, Mechanisms of Epileptiform Synchronization in Cortical Neuronal Networks, Current Medicinal Chemistry, vol.21, issue.6, pp.653-62, 2014.
DOI : 10.2174/0929867320666131119151136

URL : http://europepmc.org/articles/pmc4880466?pdf=render

J. Bancaud, R. Angelergues, C. Bernouilli, A. Bonis, M. Bordas-ferrer et al., Functional stereotaxic exploration (SEEG) of epilepsy, Electroencephalogr Clin Neurophysiol, vol.28, pp.85-91, 1970.

J. Bancaud and J. Talairach, Methodology of stereo EEG exploration and surgical intervention in epilepsy], Rev Otoneuroophtalmol, vol.45, pp.315-343, 1973.

M. Banks, J. White, and R. Pearce, Interactions between Distinct GABAA Circuits in Hippocampus, Neuron, vol.25, issue.2, pp.449-57, 2000.
DOI : 10.1016/S0896-6273(00)80907-1

URL : https://doi.org/10.1016/s0896-6273(00)80907-1

G. Barmashenko, S. Hefft, A. Aertsen, T. Kirschstein, and R. Köhling, Positive shifts of the GABAA receptor reversal potential due to altered chloride homeostasis is widespread after status epilepticus, Epilepsia, vol.557, issue.Pt 6, pp.1570-1578, 2011.
DOI : 10.1113/jphysiol.2004.062471

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1528-1167.2011.03247.x/pdf

C. Bedard, H. Kroger, and A. Destexhe, Model of low-pass filtering of local field potentials in brain tissue, Physical Review E, vol.24, issue.5, p.51911, 2006.
DOI : 10.1016/S0014-4886(63)80005-9

URL : https://hal.archives-ouvertes.fr/hal-00120637

Y. Ben-ari, I. Khalilov, K. Kahle, and E. Cherubini, The GABA Excitatory/Inhibitory Shift in Brain Maturation and Neurological Disorders, The Neuroscientist, vol.4, issue.3, pp.467-86, 2012.
DOI : 10.1016/j.eplepsyres.2008.02.005

J. Bourien, F. Bartolomei, J. Bellanger, M. Gavaret, P. Chauvel et al., A method to identify reproducible subsets of co-activated structures during interictal spikes. Application to intracerebral EEG in temporal lobe epilepsy, Clinical Neurophysiology, vol.116, issue.2, pp.443-55, 2005.
DOI : 10.1016/j.clinph.2004.08.010

A. Bragin, J. Engel, J. Wilson, C. Fried, I. Mathern et al., Hippocampal and Entorhinal Cortex High-Frequency Oscillations (100-500 Hz) in Human Epileptic Brain and in Kainic Acid-Treated Rats with Chronic Seizures, Epilepsia, vol.37, issue.2, pp.127-164, 1999.
DOI : 10.1016/0920-1211(89)90030-2

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1528-1157.1999.tb02065.x/pdf

A. Bragin, C. Wilson, R. Staba, M. Reddick, I. Fried et al., Interictal high-frequency oscillations (80-500Hz) in the human epileptic brain: Entorhinal cortex, Annals of Neurology, vol.79, issue.4, pp.407-422, 2002.
DOI : 10.1016/0013-4694(91)90054-8

R. Canolty, E. Edwards, S. Dalal, M. Soltani, S. Nagarajan et al., High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex, Science, vol.313, issue.5793, pp.1626-1634, 2006.
DOI : 10.1126/science.1128115

URL : http://europepmc.org/articles/pmc2628289?pdf=render

J. Cimbalnik, M. Kucewicz, and G. Worrell, Interictal high-frequency oscillations in focal human epilepsy, Current Opinion in Neurology, vol.29, issue.2, pp.175-81, 2016.
DOI : 10.1097/WCO.0000000000000302

URL : http://europepmc.org/articles/pmc4941960?pdf=render

I. Cohen, V. Navarro, S. Clemenceau, M. Baulac, and R. Miles, On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro, Science, vol.298, issue.5597, pp.1418-1439, 2002.
DOI : 10.1126/science.1076510

B. Crepon, V. Navarro, D. Hasboun, S. Clemenceau, J. Martinerie et al., Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy, Brain, vol.127, issue.1, pp.33-45, 2010.
DOI : 10.1093/brain/awh149

URL : https://hal.archives-ouvertes.fr/hal-00795781

S. Demont-guignard, P. Benquet, U. Gerber, A. Biraben, B. Martin et al., Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes, Annals of Neurology, vol.554, issue.pt 12, pp.342-52, 2012.
DOI : 10.1113/jphysiol.2003.052662

URL : https://hal.archives-ouvertes.fr/inserm-00700398

S. Demont-guignard, P. Benquet, U. Gerber, and F. Wendling, Analysis of Intracerebral EEG Recordings of Epileptic Spikes: Insights From a Neural Network Model, IEEE Transactions on Biomedical Engineering, vol.56, issue.12, pp.2782-95, 2009.
DOI : 10.1109/TBME.2009.2028015

URL : https://hal.archives-ouvertes.fr/inserm-00426352

A. Destexhe and C. Bedard, Local field potential, Scholarpedia, vol.8, issue.8, p.10713, 2013.
DOI : 10.4249/scholarpedia.10713

K. Diba, H. Lester, and C. Koch, Intrinsic Noise in Cultured Hippocampal Neurons: Experiment and Modeling, Journal of Neuroscience, vol.24, issue.43, pp.9723-9756, 2004.
DOI : 10.1523/JNEUROSCI.1721-04.2004

URL : http://www.jneurosci.org/content/jneuro/24/43/9723.full.pdf

V. Dzhala and K. Staley, Mechanisms of Fast Ripples in the Hippocampus, Journal of Neuroscience, vol.24, issue.40, pp.8896-906, 2004.
DOI : 10.1523/JNEUROSCI.3112-04.2004

URL : http://www.jneurosci.org/content/jneuro/24/40/8896.full.pdf

G. Einevoll, C. Kayser, N. Logothetis, and S. Panzeri, Modelling and analysis of local field potentials for studying the function of cortical circuits, Nature Reviews Neuroscience, vol.382, issue.11, pp.770-85, 2013.
DOI : 10.1038/382363a0

T. Ellender, J. Raimondo, A. Irkle, K. Lamsa, and C. Akerman, Excitatory Effects of Parvalbumin-Expressing Interneurons Maintain Hippocampal Epileptiform Activity via Synchronous Afterdischarges, Journal of Neuroscience, vol.34, issue.46, pp.15208-15230, 2014.
DOI : 10.1523/JNEUROSCI.1747-14.2014

URL : http://www.jneurosci.org/content/jneuro/34/46/15208.full.pdf

J. Engel, J. Da-silva, and F. , High-frequency oscillations ??? Where we are and where we need to go, Progress in Neurobiology, vol.98, issue.3, pp.316-324, 2012.
DOI : 10.1016/j.pneurobio.2012.02.001

URL : http://europepmc.org/articles/pmc3374035?pdf=render

B. Fischl and . Freesurfer, FreeSurfer, NeuroImage, vol.62, issue.2, pp.774-81, 2012.
DOI : 10.1016/j.neuroimage.2012.01.021

G. Foffani, Y. Uzcategui, B. Gal, and L. Menendez-de-la-prida, Reduced Spike-Timing Reliability Correlates with the Emergence of Fast Ripples in the Rat Epileptic Hippocampus, Neuron, vol.55, issue.6, pp.930-971, 2007.
DOI : 10.1016/j.neuron.2007.07.040

B. Frauscher, N. Von-ellenrieder, T. Ferrari-marinho, M. Avoli, F. Dubeau et al., Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves, Brain, vol.138, issue.6, pp.1629-1670, 2015.
DOI : 10.1002/ana.22548

URL : https://academic.oup.com/brain/article-pdf/138/6/1629/13799650/awv073.pdf

S. Gliske, W. Stacey, E. Lim, K. Holman, and C. Fink, Emergence of Narrowband High Frequency Oscillations from Asynchronous, Uncoupled Neural Firing, International Journal of Neural Systems, vol.22, issue.16, p.1650049, 2017.
DOI : 10.1038/nrn1198

URL : http://europepmc.org/articles/pmc5101151?pdf=render

G. Huberfeld, L. Wittner, S. Clemenceau, M. Baulac, K. K. Miles et al., Perturbed Chloride Homeostasis and GABAergic Signaling in Human Temporal Lobe Epilepsy, Journal of Neuroscience, vol.27, issue.37, pp.9866-73, 2007.
DOI : 10.1523/JNEUROSCI.2761-07.2007

URL : https://hal.archives-ouvertes.fr/inserm-00173026

J. Ibarz, G. Foffani, E. Cid, M. Inostroza, and L. Menendez-de-la-prida, Emergent Dynamics of Fast Ripples in the Epileptic Hippocampus, Journal of Neuroscience, vol.30, issue.48, pp.16249-61, 2010.
DOI : 10.1523/JNEUROSCI.3357-10.2010

URL : http://www.jneurosci.org/content/jneuro/30/48/16249.full.pdf

J. Jefferys, L. Menendez-de-la-prida, F. Wendling, A. Bragin, M. Avoli et al., Mechanisms of physiological and epileptic HFO generation, Progress in Neurobiology, vol.98, issue.3, pp.250-64, 2012.
DOI : 10.1016/j.pneurobio.2012.02.005

URL : https://hal.archives-ouvertes.fr/hal-00904848

N. Jrad, A. Kachenoura, I. Merlet, F. Bartolomei, A. Nica et al., Automatic Detection and Classification of High-Frequency Oscillations in Depth-EEG Signals, IEEE Transactions on Biomedical Engineering, vol.64, issue.9, pp.2230-2270, 2017.
DOI : 10.1109/TBME.2016.2633391

URL : https://hal.archives-ouvertes.fr/hal-01618936

K. Kaila, E. Ruusuvuori, P. Seja, J. Voipio, and M. Puskarjov, GABA actions and ionic plasticity in epilepsy, Current Opinion in Neurobiology, vol.26, pp.34-41, 2014.
DOI : 10.1016/j.conb.2013.11.004

URL : https://doi.org/10.1016/j.conb.2013.11.004

A. Kent and W. Grill, Analysis of deep brain stimulation electrode characteristics for neural recording, Journal of Neural Engineering, vol.11, issue.4, p.46010, 2014.
DOI : 10.1088/1741-2560/11/4/046010

URL : http://europepmc.org/articles/pmc4108584?pdf=render

M. Kole, S. Hallermann, and G. Stuart, Single Ih Channels in Pyramidal Neuron Dendrites: Properties, Distribution, and Impact on Action Potential Output, Journal of Neuroscience, vol.26, issue.6, pp.1677-87, 2006.
DOI : 10.1523/JNEUROSCI.3664-05.2006

URL : http://www.jneurosci.org/content/jneuro/26/6/1677.full.pdf

P. Kurbatova, F. Wendling, A. Kaminska, A. Rosati, R. Nabbout et al., Dynamic changes of depolarizing GABA in a computational model of epileptogenic brain: Insight for Dravet syndrome, Experimental Neurology, vol.283, pp.57-72, 2016.
DOI : 10.1016/j.expneurol.2016.05.037

URL : https://hal.archives-ouvertes.fr/inserm-01341764

K. Lillis, M. Kramer, J. Mertz, K. Staley, and J. White, Pyramidal cells accumulate chloride at seizure onset, Neurobiology of Disease, vol.47, issue.3, pp.358-66, 2012.
DOI : 10.1016/j.nbd.2012.05.016

URL : http://europepmc.org/articles/pmc3392473?pdf=render

L. Menendez-de-la-prida and A. Trevelyan, Cellular mechanisms of high frequency oscillations in epilepsy: On the diverse sources of pathological activities, Epilepsy Research, vol.97, issue.3, pp.308-325, 2011.
DOI : 10.1016/j.eplepsyres.2011.02.009

F. Mina, P. Benquet, A. Pasnicu, A. Biraben, and F. Wendling, Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects, Frontiers in Computational Neuroscience, vol.7, p.94, 2013.
DOI : 10.3389/fncom.2013.00094

URL : https://hal.archives-ouvertes.fr/hal-00982265

K. Pettersen and G. Einevoll, Amplitude Variability and Extracellular Low-Pass Filtering of Neuronal Spikes, Biophysical Journal, vol.94, issue.3, pp.784-802, 2008.
DOI : 10.1529/biophysj.107.111179

URL : https://doi.org/10.1529/biophysj.107.111179

M. Reimann, C. Anastassiou, R. Perin, S. Hill, H. Markram et al., A Biophysically Detailed Model of Neocortical Local Field Potentials Predicts the Critical Role of Active Membrane Currents, Neuron, vol.79, issue.2, pp.375-90, 2013.
DOI : 10.1016/j.neuron.2013.05.023

A. Roopun, J. Simonotto, M. Pierce, A. Jenkins, C. Nicholson et al., A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex, Proceedings of the National Academy of Sciences, vol.1, issue.3, pp.338-381, 2010.
DOI : 10.1109/IEMBS.2006.259694

URL : http://www.pnas.org/content/107/1/338.full.pdf

Z. Shiri, F. Manseau, M. Levesque, S. Williams, and M. Avoli, Interneuron activity leads to initiation of low-voltage fast-onset seizures, Annals of Neurology, vol.33, issue.3, pp.541-547, 2015.
DOI : 10.1016/S0896-6273(02)00586-X

URL : http://europepmc.org/articles/pmc4880461?pdf=render

I. Song, I. Orosz, I. Chervoneva, Z. Waldman, I. Fried et al., Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy, Epilepsia, vol.44, issue.11, pp.1972-84, 2017.
DOI : 10.1016/j.conb.2017.02.012

R. Staba, M. Stead, and G. Worrell, Electrophysiological Biomarkers of Epilepsy, Neurotherapeutics, vol.42, issue.Suppl. 6, pp.334-380, 2014.
DOI : 10.1016/j.nbd.2011.01.007

URL : http://europepmc.org/articles/pmc3996122?pdf=render

R. Staba, C. Wilson, A. Bragin, I. Fried, J. Engel et al., Quantitative Analysis of High-Frequency Oscillations (80???500 Hz) Recorded in Human Epileptic Hippocampus and Entorhinal Cortex, Journal of Neurophysiology, vol.15, issue.4, pp.1743-52, 2002.
DOI : 10.1016/S0920-1211(98)00063-1

M. Steriade and I. Timofeev, Neuronal Plasticity in Thalamocortical Networks during Sleep and Waking Oscillations, Neuron, vol.37, issue.4, pp.563-76, 2003.
DOI : 10.1016/S0896-6273(03)00065-5

URL : https://doi.org/10.1016/s0896-6273(03)00065-5

M. Struber, J. P. Bartos, and M. , Strength and duration of perisomatic GABAergic inhibition depend on distance between synaptically connected cells, Proceedings of the National Academy of Sciences, vol.17, issue.20, pp.1220-1225, 2015.
DOI : 10.1038/nn.3678

N. Von-ellenrieder, L. Andrade-valenca, F. Dubeau, and J. Gotman, Automatic detection of fast oscillations (40???200Hz) in scalp EEG recordings, Clinical Neurophysiology, vol.123, issue.4, pp.670-80, 2012.
DOI : 10.1016/j.clinph.2011.07.050

N. Von-ellenrieder, B. Frauscher, F. Dubeau, and J. Gotman, Interaction with slow waves during sleep improves discrimination of physiologic and pathologic high-frequency oscillations (80-500 Hz), Epilepsia, vol.137, issue.6, pp.869-78, 2016.
DOI : 10.1093/brain/awu149

F. Wendling and A. Software, Paris: Agence Pour la Protection des Programmes, 2015.

F. Wendling, F. Bartolomei, J. Bellanger, and P. Chauvel, Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition, European Journal of Neuroscience, vol.38, issue.9, pp.1499-508, 2002.
DOI : 10.1016/S0167-8760(00)00173-2

F. Wendling, F. Bartolomei, F. Mina, C. Huneau, and P. Benquet, Interictal spikes, fast ripples and seizures in partial epilepsies - combining multi-level computational models with experimental data, European Journal of Neuroscience, vol.5, issue.2, pp.2164-77, 2012.
DOI : 10.1007/BF02463252

URL : https://hal.archives-ouvertes.fr/inserm-00728701

F. Wendling, P. Benquet, F. Bartolomei, and V. Jirsa, Computational models of epileptiform activity, Journal of Neuroscience Methods, vol.260, pp.233-51, 2016.
DOI : 10.1016/j.jneumeth.2015.03.027

URL : https://hal.archives-ouvertes.fr/hal-01139992

T. Womelsdorf, T. Valiante, N. Sahin, K. Miller, and P. Tiesinga, Dynamic circuit motifs underlying rhythmic gain control, gating and integration, Nature Neuroscience, vol.75, issue.8, pp.1031-1040, 2014.
DOI : 10.1523/JNEUROSCI.0735-13.2013

G. Worrell, A. Gardner, S. Stead, S. Hu, S. Goerss et al., High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings, Brain, vol.127, issue.Pt 11, pp.928-965, 2008.
DOI : 10.1093/brain/awh149

S. Wu, C. Ma, and J. Kelly, Contribution of AMPA, NMDA, and GABAA Receptors to Temporal Pattern of Postsynaptic Responses in the Inferior Colliculus of the Rat, Journal of Neuroscience, vol.24, issue.19, pp.4625-4659, 2004.
DOI : 10.1523/JNEUROSCI.0318-04.2004

R. Zelmann, M. Zijlmans, J. Jacobs, C. Chatillon, and J. Gotman, Improving the identification of High Frequency Oscillations, Clinical Neurophysiology, vol.120, issue.8, pp.1457-64, 2009.
DOI : 10.1016/j.clinph.2009.05.029