Skip to Main content Skip to Navigation
Conference papers

Classification model of spikes morphology using principal components analysis in drug-resistant epilepsy

Abstract : Epilepsy is one of the diseases that are more subject to consultation in neurological clinics. To help neurologists to accurately diagnose this disease, several technological tools have been developed. Electroencephalography (EEG) of scalp or deep is a signal acquisition tool from electrical discharges of the brain areas. These signals are often accompanied by transient events commonly called interictal paroxystic events (IPE) or spikes of short durations. Analysis of these IPE could help with the diagnosis of drug-resistant epilepsy. With this intention, we will first of all seek to detect IPE, by separating them from the basic activity of signal EEG. In this paper, we propose spike detection method based on Smoothed Nonlinear Energy Operator (SNEO) using adaptive threshold. Then we will implement a new approach using principal components analysis (PCA) before classification to separate the events detected according to their morphologies. The objective in the long term is to characterize their space-time distribution over all the duration of the EEG signal. ©ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018.
Document type :
Conference papers
Complete list of metadatas
Contributor : Laurent Jonchère <>
Submitted on : Wednesday, March 21, 2018 - 4:24:28 PM
Last modification on : Thursday, January 14, 2021 - 11:16:54 AM




O. Khouma, M.L. Ndiaye, I. Diop, S. Diaw, A.K. Diop, et al.. Classification model of spikes morphology using principal components analysis in drug-resistant epilepsy. 1st International Conference on Innovation and Interdisciplinary Solutions for Underserved Areas, InterSol 2017 and co-located with the 6th Collogue National sur la Recherche en Informatique et ses Applications, CNRIA 2017, Apr 2017, Dakar, Senegal. pp.292-303, ⟨10.1007/978-3-319-72965-7_27⟩. ⟨hal-01740214⟩



Record views