A. Aderem and D. M. Underhill, Mechanisms of Phagocytosis in Macrophages, Annu. Rev. Immunol, vol.17, pp.593-623, 1999.

M. D. Carrithers, Expression of the voltage-gated sodium channel NaV1.5 in the macrophage late endosome regulates endosomal acidification, J. Immunol. Baltim. Md, vol.178, pp.7822-7832, 1950.

L. M. Carrithers, P. Hulseberg, M. Sandor, and M. D. Carrithers, The human macrophage sodium channel NaV1.5 regulates mycobacteria processing through organelle polarization and localized calcium oscillations, FEMS Immunol. Med. Microbiol, vol.63, pp.319-327, 2011.

D. J. Hackam, O. D. Rotstein, A. Schreiber, W. Zhang, and S. Grinstein, Rho is Required for the Initiation of Calcium Signaling and Phagocytosis by Fc? Receptors in Macrophages, J. Exp. Med, vol.186, pp.955-966, 1997.

T. Hishikawa, J. Y. Cheung, R. V. Yelamarty, and D. W. Knutson, Calcium transients during Fc receptor-mediated and nonspecific phagocytosis by murine peritoneal macrophages, J. Cell Biol, vol.115, pp.59-66, 1991.
DOI : 10.1083/jcb.115.1.59

URL : http://jcb.rupress.org/content/115/1/59.full.pdf

J. D. Young, S. S. Ko, and Z. A. Cohn, The increase in intracellular free calcium associated with IgG gamma 2b/gamma 1 Fc receptorligand interactions: role in phagocytosis, Proc. Natl. Acad. Sci. USA, vol.81, p.5430, 1984.

T. M. Link, TRPV2 has a pivotal role in macrophage particle binding and phagocytosis, Nat. Immunol, vol.11, pp.232-239, 2010.
DOI : 10.1038/ni.1842

URL : http://europepmc.org/articles/pmc2840267?pdf=render

G. Santoni, The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses, Inflammation, vol.4, p.34, 2013.

A. Perálvarez-marín, P. Doñate-macian, and R. Gaudet, What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel?, FEBS J, vol.280, pp.5471-5487, 2013.

, SCientifiC REPORTs |, 2018.

M. Nagasawa, Y. Nakagawa, S. Tanaka, and I. Kojima, Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages, J. Cell. Physiol, vol.210, pp.692-702, 2007.

É. Sághy, Evidence for the role of lipid rafts and sphingomyelin in Ca2 +-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals, Pharmacol. Res, vol.100, pp.101-116, 2015.

B. Svobodova and K. Groschner, Mechanisms of lipid regulation and lipid gating in TRPC channels, Cell Calcium, vol.59, pp.271-279, 2016.

A. Magenau, Phagocytosis of IgG-Coated Polystyrene Beads by Macrophages Induces and Requires High Membrane Order, Traffic, vol.12, pp.1730-1743, 2011.

H. Matsui, Evidence for Periciliary Liquid Layer Depletion, Not Abnormal Ion Composition, the Pathogenesis of Cystic Fibrosis Airways Disease, vol.95, pp.1005-1015, 1998.

A. , N. E. Muhlebach, M. S. Peden, D. B. Noah, and T. L. , Attenuation of host defense function of lung phagocytes in young cystic fibrosis patients, J. Cyst. Fibros, vol.5, pp.17-25, 2006.

L. V. Deriy, Disease-causing Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator Determine the Functional Responses of Alveolar Macrophages, J. Biol. Chem, vol.284, pp.35926-35938, 2009.

A. Di, CFTR regulates phagosome acidification in macrophages and alters bactericidal activity, Nat. Cell Biol, vol.8, pp.933-944, 2006.

K. Simonin-le-jeune, Impaired Functions of Macrophage from Cystic Fibrosis Patients: CD11b, TLR-5 Decrease and sCD14, Inflammatory Cytokines Increase, PLoS One, vol.8, p.75667, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00872278

M. Lévêque, S. Le-trionnaire, P. Del-porto, and C. Martin-chouly, The impact of impaired macrophage functions in cystic fibrosis disease progression, J. Cyst. Fibros, 2016.

E. Pernet, Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity, Nat. Commun, vol.5, p.5105, 2014.

L. Nie, Y. Oishi, I. Doi, H. Shibata, and I. Kojima, Inhibition of proliferation of MCF-7 breast cancer cells by a blocker of Ca(2+)permeable channel, Cell Calcium, vol.22, pp.75-82, 1997.

E. Hisanaga, Regulation of Calcium-Permeable TRPV2 Channel by Insulin in Pancreatic ?-Cells, Diabetes, vol.58, p.174, 2009.

Y. Iwata, Blockade of sarcolemmal TRPV2 accumulation inhibits progression of dilated cardiomyopathy, Cardiovasc. Res, vol.99, pp.760-768, 2013.

M. Nabissi, Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner, Int. J. Cancer, vol.137, pp.1855-1869, 2015.

N. Qin, TRPV2 Is Activated by Cannabidiol and Mediates CGRP Release in Cultured Rat Dorsal Root Ganglion Neurons, J. Neurosci, vol.28, pp.6231-6238, 2008.

A. Perez, CFTR inhibition mimics the cystic fibrosis inflammatory profile, Am. J. Physiol.-Lung Cell. Mol. Physiol, vol.292, pp.383-395, 2007.

T. Ma, Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion, J. Clin. Invest, vol.110, p.1651, 2002.
DOI : 10.1172/jci200216112

URL : http://www.jci.org/articles/view/16112/files/pdf

J. H. Guo, Glucose-induced electrical activities and insulin secretion in pancreatic islet ?-cells are modulated by CFTR, Nat. Commun, vol.5, p.4420, 2014.

M. J. Caterina, T. A. Rosen, M. Tominaga, A. J. Brake, and D. Julius, A capsaicin-receptor homologue with a high threshold for noxious heat, Nature, vol.398, pp.436-441, 1999.

M. Nagasawa and I. Kojima, Translocation of calcium-permeable TRPV2 channel to the podosome: Its role in the regulation of podosome assembly, Cell Calcium, vol.51, pp.186-193, 2012.

K. Abe and R. Puertollano, Role of TRP Channels in the Regulation of the Endosomal Pathway, Physiology, vol.26, pp.14-22, 2011.

M. Saito, P. I. Hanson, and P. Schlesinger, Luminal chloride-dependent activation of endosome calcium channels: patch clamp study of enlarged endosomes, J. Biol. Chem, vol.282, pp.27327-27333, 2007.

L. De-petrocellis, Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation: Plant cannabinoids and TRPV channels, Acta Physiol, vol.204, pp.255-266, 2012.

L. Ambrus, B. Kelemen, T. Szabó, T. Bíró, and B. I. Tóth, Human podocytes express functional thermosensitive TRPV channels, Br. J. Pharmacol, vol.174, pp.4493-4507, 2017.
DOI : 10.1111/bph.14052

URL : https://bpspubs.onlinelibrary.wiley.com/doi/pdf/10.1111/bph.14052

A. Oláh, Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes, J. Clin. Invest, vol.124, pp.3713-3724, 2014.

H. Grassmé, Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts, Nat. Med, vol.9, pp.322-330, 2003.

K. Aoyagi, M. Ohara-imaizumi, C. Nishiwaki, Y. Nakamichi, and S. Nagamatsu, Insulin/phosphoinositide 3-kinase pathway accelerates the glucose-induced first-phase insulin secretion through TrpV2 recruitment in pancreatic ?-cells, Biochem. J, vol.432, pp.375-386, 2010.

P. Zhang, Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyperinflammation, Nat. Commun, vol.6, p.6221, 2015.

K. Jih and T. Hwang, Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle, Proc. Natl. Acad. Sci, vol.110, pp.4404-4409, 2013.

A. Abu-arish, Cholesterol Modulates CFTR Confinement in the Plasma Membrane of Primary Epithelial Cells, Biophys. J, vol.109, pp.85-94, 2015.

M. P. Kowalski and G. B. Pier, Localization of Cystic Fibrosis Transmembrane Conductance Regulator to Lipid Rafts of Epithelial Cells Is Required for Pseudomonas aeruginosa-Induced Cellular Activation, J. Immunol, vol.172, pp.418-425, 2004.

D. Wang, Functional coupling of Gs and CFTR is independent of their association with lipid rafts in epithelial cells. Pflüg. Arch.-Eur, J. Physiol, vol.456, pp.929-938, 2008.

F. Antigny, C. Norez, F. Becq, and C. Vandebrouck, Calcium homeostasis is abnormal in cystic fibrosis airway epithelial cells but is normalized after rescue of F508del-CFTR, Cell Calcium, vol.43, pp.175-183, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00389764

H. Balghi, Enhanced Ca2+ entry due to Orai1 plasma membrane insertion increases IL-8 secretion by cystic fibrosis airways, FASEB J, vol.25, pp.4274-4291, 2011.
DOI : 10.1096/fj.11-187682

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236623/pdf

L. Wei, Functional interaction between TRP4 and CFTR in mouse aorta endothelial cells, BMC Physiol, vol.1, p.3, 2001.

F. Antigny, Transient receptor potential canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis, Am. J. Respir. Cell Mol. Biol, vol.44, pp.83-90, 2011.
DOI : 10.1165/rcmb.2009-0347oc

URL : https://hal.archives-ouvertes.fr/hal-00559252

J. Grevenynghe, Polycyclic Aromatic Hydrocarbons Inhibit Differentiation of Human Monocytes into Macrophages, J. Immunol, vol.170, pp.2374-2381, 2003.

P. Schatzlmaier, Rapid multiplex analysis of lipid raft components with single-cell resolution, Sci Signal, vol.8, pp.11-11, 2015.
DOI : 10.1126/scisignal.aac5584

M. Lévêque, Soluble CD14 acts as a DAMP in human macrophages: origin and involvement in inflammatory cytokine/ chemokine production, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.31, pp.1891-1902, 2017.

, SCientifiC REPORTs |, 2018.

. Mucoviscidose, ) for providing PAO1. This work is supported by the Cystic Fibrosis French Foundation "Vaincre La Mucoviscidose, Rennes University Hospital. We thank Anne Blanc-Potard (UMR5235