N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima et al., The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, Cell, vol.66, issue.2, pp.233-243, 1991.
DOI : 10.1016/0092-8674(91)90614-5

H. Loetscher, Y. E. Pan, H. Lahm, R. Gentz, M. Brockhaus et al., Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor, Cell, vol.61, issue.2, pp.351-359, 1990.
DOI : 10.1016/0092-8674(90)90815-V

&. Dixit and V. M. , Identification and functional characterization of DR6, a novel death domaincontaining TNF receptor, FEBS Letters, vol.431, pp.351-356, 1998.

B. Trauth, C. Klas, A. Peters, S. Matzku, P. Moller et al., Monoclonal antibody-mediated tumor regression by induction of apoptosis, Science, vol.245, issue.4915, pp.301-305, 1989.
DOI : 10.1126/science.2787530

T. Chtanova, S. G. Tangye, R. Newton, N. Frank, M. R. Hodge et al., T Follicular Helper Cells Express a Distinctive Transcriptional Profile, Reflecting Their Role as Non-Th1/Th2 Effector Cells That Provide Help for B Cells, The Journal of Immunology, vol.173, issue.1, pp.68-78, 2004.
DOI : 10.4049/jimmunol.173.1.68

R. Basu, D. B. O-'quinn, D. J. Silberger, T. R. Schoeb, L. Fouser et al., Th22 Cells Are an Important Source of IL-22 for Host Protection against Enteropathogenic Bacteria, Th22 Cells Are an Important Source of IL-22 for Host Protection against Enteropathogenic Bacteria, pp.1061-1075, 2012.
DOI : 10.1016/j.immuni.2012.08.024

K. Gerlach, Y. Hwang, A. Nikolaev, R. Atreya, H. Dornhoff et al., TH9 cells that express the transcription factor PU.1 drive T cell???mediated colitis via IL-9 receptor signaling in intestinal epithelial cells, TH9 cells that express the transcription factor PU.1 drive T cell?mediated colitis via IL-9 receptor signaling in intestinal epithelial cells, pp.676-686, 2014.
DOI : 10.1038/ni.2208

A. Strasser, P. J. Jost, and S. Nagata, The Many Roles of FAS Receptor Signaling in the Immune System, Immunity, vol.30, issue.2, pp.180-92, 2009.
DOI : 10.1016/j.immuni.2009.01.001

S. A. Marsters, R. M. Pitti, C. J. Donahue, S. Ruppert, K. D. Bauer et al., Activation of apoptosis by Apo-2 ligand is independent of FADD but blocked by CrmA, Current Biology, vol.6, issue.6, pp.750-752, 1996.
DOI : 10.1016/S0960-9822(09)00456-4

A. Ratner and W. R. Clark, Role of TNF-alpha in CD8+ cytotoxic T lymphocyte-mediated lysis, J Immunol, vol.150, pp.4303-4317, 1993.

J. L. Chu, Massive upregulation of the Fas ligand in lpr and gld mice: implications for Fas regulation and the graft-versus-host disease-like wasting syndrome, Journal of Experimental Medicine, vol.181, issue.1, pp.393-398, 1995.
DOI : 10.1084/jem.181.1.393

S. Nagata and P. Golstein, The Fas death factor, Science, vol.165, issue.5, pp.1449-56, 1995.
DOI : 10.1084/jem.165.5.1371

Y. Yang, Fas and activation-induced Fas ligand mediate apoptosis of T cell hybridomas: inhibition of Fas ligand expression by retinoic acid and glucocorticoids, Journal of Experimental Medicine, vol.181, issue.5, pp.1673-1682, 1995.
DOI : 10.1084/jem.181.5.1673

M. Lu, D. A. Lawrence, S. Marsters, D. Acosta-alvear, P. Kimmig et al., Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis, Science, vol.1, issue.0, pp.98-101, 2014.
DOI : 10.7554/eLife.00048

E. S. Alnemri, D. J. Livingston, D. W. Nicholson, G. Salvesen, N. A. Thornberry et al., Human ICE/CED-3 Protease Nomenclature, Cell, vol.87, issue.2, p.171, 1996.
DOI : 10.1016/S0092-8674(00)81334-3

URL : https://doi.org/10.1016/s0092-8674(00)81334-3

G. Papoff, P. Hausler, A. Eramo, M. G. Pagano, G. Di-leve et al., Identification and Characterization of a Ligand-independent Oligomerization Domain in the Extracellular Region of the CD95 Death Receptor, Journal of Biological Chemistry, vol.2, issue.53, pp.38241-38250, 1999.
DOI : 10.1006/jmbi.1994.1371

R. M. Siegel, J. K. Frederiksen, D. A. Zacharias, F. K. Chan, M. Johnson et al., Fas Preassociation Required for Apoptosis Signaling and Dominant Inhibition by Pathogenic Mutations, Science, vol.288, issue.5475, pp.2354-2361, 2000.
DOI : 10.1126/science.288.5475.2354

V. Edmond, B. Ghali, A. Penna, J. Taupin, S. Daburon et al., Precise Mapping of the CD95 Pre-Ligand Assembly Domain, Precise Mapping of the CD95 Pre-Ligand Assembly Domain, p.46236, 2012.
DOI : 10.1371/journal.pone.0046236.g004

URL : https://hal.archives-ouvertes.fr/hal-00873708

M. P. Boldin, E. E. Varfolomeev, Z. Pancer, I. L. Mett, J. H. Camonis et al., A Novel Protein That Interacts with the Death Domain of Fas/APO1 Contains a Sequence Motif Related to the Death Domain, Journal of Biological Chemistry, vol.211, issue.14, pp.7795-7798, 1995.
DOI : 10.1002/prot.340090107

A. M. Chinnaiyan, K. O-'rourke, M. Tewari, and V. M. Dixit, FADD, a novel death domain-containing protein, interacts with the death domain of fas and initiates apoptosis, Cell, vol.81, issue.4, pp.505-512, 1995.
DOI : 10.1016/0092-8674(95)90071-3

F. C. Kischkel, S. Hellbardt, I. Behrmann, M. Germer, M. Pawlita et al., Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor, Embo J, vol.14, pp.5579-88, 1995.

S. Horn, M. A. Hughes, R. Schilling, C. Sticht, T. Tenev et al., Caspase-10 Negatively Regulates Caspase-8-Mediated Cell Death, Switching the Response to CD95L in Favor of NF-??B Activation and Cell Survival, Cell Reports, vol.19, issue.4, pp.785-797, 2017.
DOI : 10.1016/j.celrep.2017.04.010

M. A. Hughes, N. Harper, M. Butterworth, K. Cain, G. M. Cohen et al., Reconstitution of the Death-Inducing Signaling Complex Reveals a Substrate Switch that Determines CD95-Mediated Death or Survival, Molecular Cell, vol.35, issue.3, pp.265-79, 2009.
DOI : 10.1016/j.molcel.2009.06.012

P. Li, D. Nijhawan, I. Budihardjo, S. M. Srinivasula, M. Ahmad et al., Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade, Cell, vol.91, issue.4, pp.479-89, 1997.
DOI : 10.1016/S0092-8674(00)80434-1

C. Scaffidi, Two CD95 (APO-1/Fas) signaling pathways, The EMBO Journal, pp.1675-1687, 1998.

A. Algeciras-schimnich, E. M. Pietras, B. C. Barnhart, P. Legembre, S. Vijayan et al., Two CD95 tumor classes with different sensitivities to antitumor drugs, Proceedings of the National Academy of Sciences, vol.9, issue.5, pp.11445-50, 2003.
DOI : 10.1016/S1097-2765(02)00510-5

B. Chaigne-delalande, W. Mahfouf, S. Daburon, J. F. Moreau, and P. Legembre, CD95 engagement mediates actin-independent and -dependent apoptotic signals, Cell Death & Differentiation, vol.181, issue.12, pp.1654-64, 2009.
DOI : 10.4049/jimmunol.181.11.7630

URL : http://www.nature.com/cdd/journal/v16/n12/pdf/cdd2009111a.pdf

C. Scaffidi, S. Fulda, A. Srinivasan, C. Friesen, F. Li et al., Two CD95 (APO-1/Fas) signaling pathways, The EMBO Journal, vol.17, issue.6, pp.1675-87, 1998.
DOI : 10.1093/emboj/17.6.1675

URL : http://emboj.embopress.org/content/embojnl/17/6/1675.full.pdf

X. M. Yin, Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways, Cell Research, vol.21, issue.3, pp.161-168, 2000.
DOI : 10.1097/00003246-199310001-00002

X. M. Yin, K. Wang, A. Gross, Y. Zhao, S. Zinkel et al., Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis, Nature, vol.5, issue.6747, pp.886-91, 1999.
DOI : 10.1038/sj.cdd.4400449

P. J. Jost, S. Grabow, D. Gray, M. D. Mckenzie, U. Nachbur et al., XIAP discriminates between type I and type II FAS-induced apoptosis, Nature, vol.139, issue.7258, pp.1035-1044, 2009.
DOI : 10.1038/nature08229

URL : http://europepmc.org/articles/pmc2956120?pdf=render

N. Roy, Q. L. Deveraux, R. Takahashi, G. S. Salvesen, and J. C. Reed, The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases, The EMBO Journal, vol.16, issue.23, pp.6914-6939, 1997.
DOI : 10.1093/emboj/16.23.6914

Q. L. Deveraux, R. Takahashi, G. S. Salvesen, and J. C. Reed, X-linked IAP is a direct inhibitor of cell-death proteases, Nature, vol.384, issue.6639, pp.300-304, 1997.
DOI : 10.1038/384368a0

Q. L. Deveraux, N. Roy, H. R. Stennicke, T. Van-arsdale, Q. Zhou et al., IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases, The EMBO Journal, vol.17, issue.8, pp.2215-2238, 1998.
DOI : 10.1093/emboj/17.8.2215

Y. Suzuki, Y. Nakabayashi, and R. Takahashi, Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death, Proceedings of the National Academy of Sciences, vol.18, issue.22, pp.8662-8669, 2001.
DOI : 10.1093/emboj/18.22.6455

C. Du, M. Fang, Y. Li, L. Li, and X. Wang, Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition, Cell, pp.33-42, 2000.

X. M. Sun, S. B. Bratton, M. Butterworth, M. Macfarlane, and G. M. Cohen, Inhibit CD95-mediated Apoptosis by Preventing Mitochondrial Release of Smac/DIABLO and Subsequent Inactivation of X-linked Inhibitor-of-Apoptosis Protein, Journal of Biological Chemistry, vol.61, issue.13, pp.11345-51, 2002.
DOI : 10.1038/5517

M. Beneteau, M. Pizon, B. Chaigne-delalande, S. Daburon, P. Moreau et al., Localization of Fas/CD95 into the Lipid Rafts on Down-Modulation of the Phosphatidylinositol 3-Kinase Signaling Pathway, Molecular Cancer Research, vol.6, issue.4, pp.604-617, 2008.
DOI : 10.1158/1541-7786.MCR-07-0331

URL : https://hal.archives-ouvertes.fr/hal-00674377

J. W. Peacock, J. Palmer, D. Fink, S. Ip, E. M. Pietras et al., PTEN Loss Promotes Mitochondrially Dependent Type II Fas-Induced Apoptosis via PEA-15, Molecular and Cellular Biology, vol.29, issue.5, pp.1222-1256, 2009.
DOI : 10.1128/MCB.01660-08

A. S. Varadhachary, M. Edidin, A. M. Hanlon, M. E. Peter, P. H. Krammer et al., Phosphatidylinositol 3'-Kinase Blocks CD95 Aggregation and Caspase-8 Cleavage at the Death-Inducing Signaling Complex by Modulating Lateral Diffusion of CD95, The Journal of Immunology, vol.166, issue.11, pp.6564-6573, 2001.
DOI : 10.4049/jimmunol.166.11.6564

M. Pizon, H. Rampanarivo, S. Tauzin, B. Chaigne-delalande, S. Daburon et al., Actin-independent exclusion of CD95 by PI3K/AKT signalling: Implications for apoptosis, European Journal of Immunology, vol.9, issue.8, pp.2368-78, 2011.
DOI : 10.1038/sj.cdd.4400960

URL : https://hal.archives-ouvertes.fr/hal-00680900

G. Condorelli, G. Vigliotta, A. Cafieri, A. Trencia, P. Andalo et al., PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis, Oncogene, vol.18, issue.31, pp.4409-4424, 1999.
DOI : 10.1038/sj.onc.1202831

URL : http://www.nature.com/onc/journal/v18/n31/pdf/1202831a.pdf

H. Renganathan, H. Vaidyanathan, A. Knapinska, and J. W. Ramos, Phosphorylation of PEA-15 switches its binding specificity from ERK/MAPK to FADD, Biochemical Journal, vol.390, issue.3, pp.729-764, 2005.
DOI : 10.1042/BJ20050378

A. Trencia, A. Perfetti, A. Cassese, G. Vigliotta, C. Miele et al., Protein Kinase B/Akt Binds and Phosphorylates PED/PEA-15, Stabilizing Its Antiapoptotic Action, Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action, pp.4511-4532, 2003.
DOI : 10.1128/MCB.23.13.4511-4521.2003

A. Strasser, A. W. Harris, D. C. Huang, P. H. Krammer, and S. Cory, Bcl-2 and Fas/APO- 1 regulate distinct pathways to lymphocyte apoptosis, Embo J, vol.14, pp.6136-6183, 1995.

V. Lacronique, A. Mignon, M. Fabre, B. Viollet, N. Rouquet et al., Bcl???2 protects from lethal hepatic apoptosis induced by an ant???Fas antibody in mice, Nature Medicine, vol.128, issue.1, pp.80-86, 1996.
DOI : 10.1038/nm0196-80

S. M. Kang, D. B. Schneider, Z. Lin, D. Hanahan, D. A. Dichek et al., Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction, Nature Medicine, vol.26, issue.7, pp.738-781, 1997.
DOI : 10.1074/jbc.271.47.29969

J. J. Chen, Y. Sun, and G. J. Nabel, Regulation of the proinflammatory effects of Fas ligand (CD95L), Science, pp.1714-1721, 1998.

S. Buonocore, V. Flamand, N. Claessen, P. Heeringa, M. Goldman et al., Dendritic cells overexpressing Fas-ligand induce pulmonary vasculitis in mice, Clinical & Experimental Immunology, vol.166, issue.1, pp.74-80, 2004.
DOI : 10.4049/jimmunol.166.11.6964

H. Matsuno, K. Yudoh, Y. Watanabe, F. Nakazawa, H. Aono et al., Stromelysin-1 (MMP-3) in synovial fluid of patients with rheumatoid arthritis has potential to cleave membrane bound Fas ligand, J Rheumatol, vol.28, pp.22-30, 2001.

T. Vargo-gogola, H. C. Crawford, B. Fingleton, and L. M. Matrisian, Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand, Archives of Biochemistry and Biophysics, vol.408, issue.2, pp.155-161, 2002.
DOI : 10.1016/S0003-9861(02)00525-8

M. Kiaei, K. Kipiani, N. Calingasan, E. Wille, J. Chen et al., Matrix metalloproteinase-9 regulates TNF-?? and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis, Experimental Neurology, vol.205, issue.1, pp.74-81, 2007.
DOI : 10.1016/j.expneurol.2007.01.036

V. Kirkin, N. Cahuzac, F. Guardiola-serrano, S. Huault, K. Lückerath et al., The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells, Cell Death and Differentiation, pp.1678-1687, 2007.

M. Schulte, K. Reiss, M. Lettau, T. Maretzky, A. Ludwig et al., ADAM10 regulates FasL cell surface expression and modulates FasLinduced cytotoxicity and activation-induced cell death, Cell Death and Differentiation, 2007.
DOI : 10.1038/sj.cdd.4402101

URL : http://www.nature.com/cdd/journal/v14/n5/pdf/4402101a.pdf

N. Holler, A. Tardivel, M. Kovacsovics-bankowski, S. Hertig, O. Gaide et al., Two Adjacent Trimeric Fas Ligands Are Required for Fas Signaling and Formation of a Death-Inducing Signaling Complex, Molecular and Cellular Biology, vol.23, issue.4, pp.1428-1440, 2003.
DOI : 10.1128/MCB.23.4.1428-1440.2003

P. Schneider, N. Holler, J. Bodmer, M. Hahne, K. Frei et al., Conversion of Membrane-bound Fas(CD95) Ligand to Its Soluble Form Is Associated with Downregulation of Its Proapoptotic Activity and Loss of Liver Toxicity, The Journal of Experimental Medicine, vol.8, issue.8, pp.1205-1213, 1998.
DOI : 10.1126/science.2787530

T. Suda, H. Hashimoto, M. Tanaka, T. Ochi, and S. Nagata, Membrane Fas Ligand Kills Human Peripheral Blood T Lymphocytes, and Soluble Fas Ligand Blocks the Killing, The Journal of Experimental Medicine, vol.54, issue.12, pp.2045-2050, 1997.
DOI : 10.1172/JCI118789

S. Tauzin, B. Chaigne-delalande, E. Selva, N. Khadra, S. Daburon et al., The Naturally Processed CD95L Elicits a c-Yes/Calcium/PI3K-Driven Cell Migration Pathway, PLoS Biology, vol.52, issue.Pt 3, 2011.
DOI : 10.1371/journal.pbio.1001090.s010

URL : https://hal.archives-ouvertes.fr/hal-00681970

L. , O. R. Tai, L. Lee, L. Kruse, E. A. Grabow et al., Membranebound Fas ligand only is essential for Fas-induced apoptosis, Nature, vol.461, pp.659-63, 2009.

A. Poissonnier, D. Sanseau, L. Gallo, M. Malleter, M. Levoin et al., CD95-Mediated Calcium Signaling Promotes T Helper 17 Trafficking to Inflamed Organs in Lupus-Prone Mice, Immunity, vol.45, issue.1, pp.209-232, 2016.
DOI : 10.1016/j.immuni.2016.06.028

URL : https://hal.archives-ouvertes.fr/hal-01359568

S. P. Cullen, C. M. Henry, C. J. Kearney, S. E. Logue, M. Feoktistova et al., Fas/CD95-Induced Chemokines Can Serve as ???Find-Me??? Signals for Apoptotic Cells, Molecular Cell, vol.49, issue.6, pp.1034-1082, 2013.
DOI : 10.1016/j.molcel.2013.01.025

D. R. Green, A. Oberst, C. P. Dillon, R. Weinlich, and G. S. Salvesen, RIPK-Dependent Necrosis and Its Regulation by Caspases: A Mystery in Five Acts, Molecular Cell, vol.44, issue.1, pp.9-16, 2011.
DOI : 10.1016/j.molcel.2011.09.003

W. J. Kaiser, J. W. Upton, A. B. Long, D. Livingston-rosanoff, L. P. Daley-bauer et al., RIP3 mediates the embryonic lethality of caspase-8-deficient mice, Nature, vol.181, issue.7338, pp.368-72, 2011.
DOI : 10.4049/jimmunol.181.9.6427

A. Oberst, C. P. Dillon, R. Weinlich, L. L. Mccormick, P. Fitzgerald et al., Catalytic activity of the caspase-8???FLIPL complex inhibits RIPK3-dependent necrosis, Nature, vol.24, issue.7338, pp.363-370, 2011.
DOI : 10.1074/jbc.270.18.10377

J. Senft, B. Helfer, and S. M. Frisch, Caspase-8 interacts with the p85 subunit of phosphatidylinositol 3-kinase to regulate cell adhesion and motility, Cancer Res, pp.11505-11514, 2007.

D. Finlay, A. Howes, and K. Vuori, Critical Role for Caspase-8 in Epidermal Growth Factor Signaling, Cancer Research, vol.69, issue.12, pp.5023-5032, 2009.
DOI : 10.1158/0008-5472.CAN-08-3731

C. M. Henry and S. J. Martin, Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory ???FADDosome??? Complex upon TRAIL Stimulation, Molecular Cell, vol.65, issue.4, pp.715-729, 2017.
DOI : 10.1016/j.molcel.2017.01.022

T. Fernandes-alnemri, R. C. Armstrong, J. Krebs, S. M. Srinivasula, L. Wang et al., In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains., Proceedings of the National Academy of Sciences, vol.93, issue.15, pp.7464-7473, 1996.
DOI : 10.1073/pnas.93.15.7464

M. Muzio, A. M. Chinnaiyan, F. C. Kischkel, K. O-'rourke, A. Shevchenko et al., FLICE, A Novel FADD-Homologous ICE/CED-3???like Protease, Is Recruited to the CD95 (Fas/APO-1) Death-Inducing Signaling Complex, Cell, vol.85, issue.6, pp.817-844, 1996.
DOI : 10.1016/S0092-8674(00)81266-0

P. J. Dupont and A. N. Warrens, Fas ligand exerts its pro-inflammatory effects via neutrophil recruitment but not activation, Immunology, vol.282, issue.1, pp.133-142, 2007.
DOI : 10.4049/jimmunol.167.11.6217

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265864

A. Villalba, CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger their recruitment to the inflammatory site, Immunity, vol.32, pp.240-52, 2010.

M. Malleter, S. Tauzin, A. Bessede, R. Castellano, A. Goubard et al., CD95L Cell Surface Cleavage Triggers a Prometastatic Signaling Pathway in Triple-Negative Breast Cancer, Cancer Research, vol.73, issue.22, pp.6711-6732, 2013.
DOI : 10.1158/0008-5472.CAN-13-1794

URL : https://hal.archives-ouvertes.fr/hal-00873634

L. Gao, G. S. Gulculer, L. Golbach, H. Block, A. Zarbock et al., Endothelial cell-derived CD95 ligand serves as a chemokine in induction of neutrophil slow rolling and adhesion, Elife, 2016.

M. Rescigno, V. Piguet, B. Valzasina, S. Lens, R. Zubler et al., FAS Engagement Induces the Maturation of Dendritic Cells (Dcs), the Release of Interleukin (Il)-1??, and the Production of Interferon ?? in the Absence of IL-12 during Dc???T Cell Cognate Interaction, The Journal of Experimental Medicine, vol.154, issue.11, pp.1661-1669, 2000.
DOI : 10.1073/pnas.94.8.3943

P. B. Stranges, J. Watson, C. J. Cooper, C. M. Choisy-rossi, A. C. Stonebraker et al., Elimination of Antigen-Presenting Cells and Autoreactive T Cells by Fas Contributes to Prevention of Autoimmunity, Immunity, vol.26, issue.5, pp.629-670, 2007.
DOI : 10.1016/j.immuni.2007.03.016

I. Mabrouk, S. Buart, M. Hasmim, C. Michiels, E. Connault et al., Prevention of Autoimmunity and Control of Recall Response to Exogenous Antigen by Fas Death Receptor Ligand Expression on T Cells, Immunity, vol.29, issue.6, pp.922-955, 2008.
DOI : 10.1016/j.immuni.2008.10.007

O. Reilly, L. A. Tai, L. Lee, L. Kruse, E. A. Grabow et al., Membrane-bound Fas ligand only is essential for Fas-induced apoptosis, Nature, vol.166, issue.7264, pp.659-63, 2009.
DOI : 10.4049/jimmunol.166.7.4627

S. Tauzin, B. Chaigne-delalande, E. Selva, N. Khadra, S. Daburon et al., The Naturally Processed CD95L Elicits a c-Yes/Calcium/PI3K-Driven Cell Migration Pathway, PLoS Biology, vol.52, issue.Pt 3, 2011.
DOI : 10.1371/journal.pbio.1001090.s010

URL : https://hal.archives-ouvertes.fr/hal-00681970

V. Varanasi, A. A. Khan, and A. V. Chervonsky, Loss of the death receptor CD95 (Fas) expression by dendritic cells protects from a chronic viral infection, Proceedings of the National Academy of Sciences, vol.323, issue.5913, pp.8559-64, 2014.
DOI : 10.1126/science.1163612

A. Lundqvist, T. Nagata, R. Kiessling, and P. Pisa, Mature dendritic cells are protected from Fas/CD95-mediated apoptosis by upregulation of Bcl-X(L), Cancer Immunol Immunother, pp.139-183, 2002.

S. T. Ju, D. J. Panka, H. Cui, R. Ettinger, M. Khatib et al., Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation, Nature, vol.373, issue.6513, pp.444-452, 1995.
DOI : 10.1038/373444a0

M. R. Alderson, R. J. Armitage, E. Maraskovsky, T. W. Tough, E. Roux et al., Fas transduces activation signals in normal human T lymphocytes, Journal of Experimental Medicine, vol.178, issue.6, pp.2231-2236, 1993.
DOI : 10.1084/jem.178.6.2231

N. J. Kennedy, T. Kataoka, J. Tschopp, and R. C. Budd, Caspase Activation Is Required for T Cell Proliferation, The Journal of Experimental Medicine, vol.14, issue.12, pp.1891-1897, 1999.
DOI : 10.1038/40657

A. Lepple-wienhues, C. Belka, T. Laun, A. Jekle, B. Walter et al., Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids, Proceedings of the National Academy of Sciences, vol.180, issue.4, pp.13795-800, 1999.
DOI : 10.1084/jem.180.4.1547

A. Krueger, S. C. Fas, S. Baumann, and P. H. Krammer, The role of CD95 in the regulation of peripheral T-cell apoptosis, Immunological Reviews, vol.163, issue.1, pp.58-69, 2003.
DOI : 10.1002/(SICI)1521-4141(199903)29:03<1041::AID-IMMU1041>3.3.CO;2-R

P. H. Krammer, CD95's deadly mission in the immune system, Nature, vol.887, issue.6805, pp.789-95, 2000.
DOI : 10.1111/j.1749-6632.1999.tb07934.x

P. Bouillet, D. Metcalf, D. C. Huang, D. M. Tarlinton, T. W. Kay et al., Proapoptotic Bcl-2 Relative Bim Required for Certain Apoptotic Responses, Leukocyte Homeostasis, and to Preclude Autoimmunity, Science, vol.286, issue.5445, pp.1735-1743, 1999.
DOI : 10.1126/science.286.5445.1735

D. A. Hildeman, Y. Zhu, T. C. Mitchell, P. Bouillet, A. Strasser et al., Activated T Cell Death In Vivo Mediated by Proapoptotic Bcl-2 Family Member Bim, Immunity, vol.16, issue.6, pp.759-67, 2002.
DOI : 10.1016/S1074-7613(02)00322-9

A. Hennino, M. Berard, P. H. Krammer, and T. Defrance, Flice-Inhibitory Protein Is a Key Regulator of Germinal Center B Cell Apoptosis, The Journal of Experimental Medicine, vol.157, issue.4, pp.447-58, 2001.
DOI : 10.1038/32681

D. Butt, T. D. Chan, K. Bourne, J. R. Hermes, A. Nguyen et al., FAS Inactivation Releases Unconventional Germinal Center B Cells that Escape Antigen Control and Drive IgE and Autoantibody Production, FAS Inactivation Releases Unconventional Germinal Center B Cells that Escape Antigen Control and Drive IgE and Autoantibody Production, pp.890-902, 2015.
DOI : 10.1016/j.immuni.2015.04.010

URL : https://doi.org/10.1016/j.immuni.2015.04.010

L. Gattinoni, E. Lugli, Y. Ji, Z. Pos, C. M. Paulos et al., A human memory T cell subset with stem cell???like properties, Nature Medicine, vol.79, issue.10, pp.1290-1297, 2011.
DOI : 10.1002/cyto.a.21015

C. A. Klebanoff, C. D. Scott, A. J. Leonardi, T. N. Yamamoto, A. C. Cruz et al., Memory T cell???driven differentiation of naive cells impairs adoptive immunotherapy, M. & Restifo, N. P. (2016) Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy, pp.318-352
DOI : 10.1172/JCI81217DS1

E. Bettelli, T. Korn, and V. K. Kuchroo, Th17: the third member of the effector T cell trilogy, Current Opinion in Immunology, vol.19, issue.6, pp.652-659, 2007.
DOI : 10.1016/j.coi.2007.07.020

P. J. Ratcliffe, M. L. Coleman, M. Bix, D. Tantin, H. Park et al., Dynamic regulatory network controlling TH17 cell differentiation, Nature, vol.496, pp.461-469, 2013.

D. R. Green, A. Oberst, C. P. Dillon, R. Weinlich, . Salvesen et al., RIPK-Dependent Necrosis and Its Regulation by Caspases: A Mystery in Five Acts, Molecular Cell, vol.44, issue.1, pp.9-16, 2011.
DOI : 10.1016/j.molcel.2011.09.003

W. J. Kaiser, J. W. Upton, A. B. Long, D. Livingston-rosanoff, L. P. Daley-bauer et al., RIP3 mediates the embryonic lethality of caspase-8-deficient mice, Nature, vol.181, issue.7338, pp.368-372, 2011.
DOI : 10.4049/jimmunol.181.9.6427

A. Oberst, C. P. Dillon, R. Weinlich, L. L. Mccormick, P. Fitzgerald et al., Catalytic activity of the caspase-8???FLIPL complex inhibits RIPK3-dependent necrosis, Nature, vol.24, issue.7338, pp.363-367, 2011.
DOI : 10.1074/jbc.270.18.10377

J. Senft, B. Helfer, and S. M. Frisch, Caspase-8 Interacts with the p85 Subunit of Phosphatidylinositol 3-Kinase to Regulate Cell Adhesion and Motility, Cancer Research, pp.11505-11509, 2007.

D. Finlay, A. Howes, and K. Vuori, Critical Role for Caspase-8 in Epidermal Growth Factor Signaling, Cancer Research, pp.5023-5029, 2009.

C. Scaffidi, F. C. Kischkel, P. H. Krammer, M. E. Peter, T. Fernandes-alnemri et al., Analysis of the CD95 (APO-1/Fas) Death-Inducing Signaling Complex by High-Resolution Two-Dimensional Gel Electrophoresis in Methods in Enzymology pp, vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains Proceedings of the National Academy of Sciences, pp.363-373, 1996.

M. Muzio, A. M. Chinnaiyan, F. C. Kischkel, K. O-'rourke, A. Shevchenko et al., FLICE, A Novel FADD-Homologous ICE/CED-3???like Protease, Is Recruited to the CD95 (Fas/APO-1) Death-Inducing Signaling Complex, ) FLICE, A Novel FADD-Homologous ICE/CED-3?like Protease, Is Recruited to the CD95 (Fas/APO- 1) Death-Inducing Signaling Complex, pp.817-827, 1996.
DOI : 10.1016/S0092-8674(00)81266-0

D. W. Chang, Z. Xing, V. L. Capacio, M. E. Peter, and X. Yang, Interdimer processing mechanism of procaspase-8 activation, The EMBO Journal, vol.22, issue.16, pp.4132-4174, 2003.
DOI : 10.1093/emboj/cdg414

M. Beneteau, M. Pizon, B. Chaigne-delalande, S. Daburon, P. Moreau et al., Localization of Fas/CD95 into the Lipid Rafts on Down-Modulation of the Phosphatidylinositol 3-Kinase Signaling Pathway, Localization of Fas/CD95 into the Lipid Rafts on Down-Modulation of the Phosphatidylinositol 3- Kinase Signaling Pathway, pp.604-613, 2008.
DOI : 10.1158/1541-7786.MCR-07-0331

URL : https://hal.archives-ouvertes.fr/hal-00674377

J. W. Peacock, J. Palmer, D. Fink, S. Ip, E. M. Pietras et al., PTEN Loss Promotes Mitochondrially Dependent Type II Fas-Induced Apoptosis via PEA-15, Molecular and Cellular Biology, vol.29, issue.5, pp.1222-1234, 2008.
DOI : 10.1128/MCB.01660-08

M. Pizon, H. Rampanarivo, S. Tauzin, B. Chaigne-delalande, S. Daburon et al., Actin-independent exclusion of CD95 by PI3K/AKT signalling: Implications for apoptosis, European Journal of Immunology, vol.9, issue.8, pp.2368-2378, 2011.
DOI : 10.1038/sj.cdd.4400960

URL : https://hal.archives-ouvertes.fr/hal-00680900

C. Feig, V. Tchikov, S. Schutze, and M. E. Peter, Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling, The EMBO Journal, vol.245, issue.1, pp.221-252, 2007.
DOI : 10.1128/MCB.13.10.6385

K. Chakrabandhu, S. Huault, N. Garmy, J. Fantini, E. Stebe et al., The extracellular glycosphingolipid-binding motif of Fas defines its internalization route, mode and outcome of signals upon activation by ligand, Cell Death & Differentiation, vol.269, issue.12, pp.1824-1861, 2008.
DOI : 10.1111/j.1365-2818.2006.01706.x

URL : https://hal.archives-ouvertes.fr/hal-00318795

F. Renault, E. Formstecher, I. Callebaut, M. P. Junier, and H. Chneiweiss, The multifunctional protein PEA-15 is involved in the control of apoptosis and cell cycle in astrocytes, Biochemical Pharmacology, vol.66, issue.8, pp.1581-1589, 2003.
DOI : 10.1016/S0006-2952(03)00514-8

J. Wang, H. J. Chun, W. Wong, D. M. Spencer, and M. J. Lenardo, Caspase-10 is an initiator caspase in death receptor signaling, Proceedings of the National Academy of Sciences, vol.13, issue.19, pp.13884-13892, 2001.
DOI : 10.1101/gad.13.19.2514

M. R. Sprick, E. Rieser, H. Stahl, A. Grosse-wilde, M. A. Weigand et al., Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8, The EMBO Journal, vol.21, issue.17, pp.4520-4550, 2002.
DOI : 10.1093/emboj/cdf441

F. C. Kischkel, D. A. Lawrence, A. Tinel, H. Leblanc, A. Virmani et al., Death Receptor Recruitment of Endogenous Caspase-10 and Apoptosis Initiation in the Absence of Caspase-8, Journal of Biological Chemistry, vol.43, issue.49, pp.46639-46685, 2001.
DOI : 10.1084/jem.190.7.891

M. Leverkus, M. Neumann, T. Mengling, C. T. Rauch, E. B. Brocker et al., Regulation of tumor necrosis factor-related apoptosis-inducing ligand sensitivity in primary and transformed human keratinocytes, Cancer Res, vol.60, pp.553-562, 2000.

D. Siegmund, P. Hadwiger, K. Pfizenmaier, H. P. Vornlocher, and H. Wajant, Selective inhibition of FLICE-like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL-induced apoptosis, pp.725-757, 2002.

U. Fischer, C. Stroh, and K. Schulze-osthoff, Unique and overlapping substrate specificities of caspase-8 and caspase-10, Oncogene, vol.25, issue.1, pp.152-161, 2006.
DOI : 10.1126/science.290.5497.1761

Y. Tsuchiya, O. Nakabayashi, and H. Nakano, FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP, International Journal of Molecular Sciences, vol.8, issue.12, pp.30321-30362, 2015.
DOI : 10.3390/cancers3021639

A. Golks, D. Brenner, C. Fritsch, P. H. Krammer, and I. N. Lavrik, , a New Regulator of Death Receptor-induced Apoptosis, Journal of Biological Chemistry, vol.60, issue.15, pp.14507-14520, 2005.
DOI : 10.1074/jbc.271.15.8991

K. Schleich, J. H. Buchbinder, S. Pietkiewicz, T. Kahne, U. Warnken et al., Molecular architecture of the DED chains at the DISC: regulation of procaspase-8 activation by short DED proteins c-FLIP and procaspase-8 prodomain, Cell Death & Differentiation, vol.11, issue.4, pp.681-94, 2016.
DOI : 10.1093/nar/gkp889

C. Pop, A. Oberst, M. Drag, B. J. Van-raam, S. J. Riedl et al., induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity, Biochemical Journal, vol.322, issue.3, pp.447-57, 2011.
DOI : 10.1038/82732

M. A. Hughes, I. R. Powley, R. Jukes-jones, S. Horn, M. Feoktistova et al., Co-operative and Hierarchical Binding of c-FLIP and Caspase-8: A Unified Model Defines How c-FLIP Isoforms Differentially Control Cell Fate, Molecular Cell, vol.61, issue.6, pp.834-883, 2016.
DOI : 10.1016/j.molcel.2016.02.023

L. S. Dickens, R. S. Boyd, R. Jukes-jones, M. A. Hughes, G. L. Robinson et al., A Death Effector Domain Chain DISC Model Reveals a Crucial Role for Caspase-8 Chain Assembly in Mediating Apoptotic Cell Death, Death Effector Domain Chain DISC Model Reveals a Crucial Role for Caspase-8 Chain Assembly in Mediating Apoptotic Cell Death, pp.291-305, 2012.
DOI : 10.1016/j.molcel.2012.05.004

C. Pop, A. Oberst, M. Drag, . Van-raam, J. Bram et al., induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity, Biochemical Journal, vol.322, issue.3, pp.447-457, 2011.
DOI : 10.1038/82732

T. Kataoka, R. C. Budd, N. Holler, M. Thome, F. Martinon et al., The caspase-8 inhibitor FLIP promotes activation of NF-??B and Erk signaling pathways, Current Biology, vol.10, issue.11, pp.640-648, 2000.
DOI : 10.1016/S0960-9822(00)00512-1

T. Kataoka and J. Tschopp, N-Terminal Fragment of c-FLIP(L) Processed by Caspase 8 Specifically Interacts with TRAF2 and Induces Activation of the NF-??B Signaling Pathway, Molecular and Cellular Biology, vol.24, issue.7, pp.2627-2663, 2004.
DOI : 10.1128/MCB.24.7.2627-2636.2004

A. Koenig, I. A. Buskiewicz, K. A. Fortner, J. Q. Russell, T. Asaoka et al., Cleavage Product p43FLIP Promotes Activation of Extracellular Signal-regulated Kinase (ERK), Nuclear Factor ??B (NF-??B), and Caspase-8 and T Cell Survival, Journal of Biological Chemistry, vol.54, issue.2, pp.1183-91, 2014.
DOI : 10.1016/j.celrep.2012.03.010

S. M. Kavuri, P. Geserick, D. Berg, D. P. Dimitrova, M. Feoktistova et al., Cellular FLICE-inhibitory Protein (cFLIP) Isoforms Block CD95- and TRAIL Death Receptor-induced Gene Induction Irrespective of Processing of Caspase-8 or cFLIP in the Death-inducing Signaling Complex, Journal of Biological Chemistry, vol.61, issue.19, pp.16631-16677, 2011.
DOI : 10.1074/jbc.M206882200

D. Siegmund, A. Wicovsky, I. Schmitz, K. Schulze-osthoff, S. Kreuz et al., Death Receptor-Induced Signaling Pathways Are Differentially Regulated by Gamma Interferon Upstream of Caspase 8 Processing, Molecular and Cellular Biology, vol.25, issue.15, pp.6363-79, 2005.
DOI : 10.1128/MCB.25.15.6363-6379.2005

J. Majkut, M. Sgobba, C. Holohan, N. Crawford, A. E. Logan et al., Differential affinity of FLIP and procaspase 8 for FADD???s DED binding surfaces regulates DISC assembly, Nature Communications, vol.26, p.3350, 2014.
DOI : 10.1093/bioinformatics/btq444

O. Micheau and J. Tschopp, Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes, Cell, vol.114, issue.2, pp.181-90, 2003.
DOI : 10.1016/S0092-8674(03)00521-X

URL : https://hal.archives-ouvertes.fr/inserm-00527105

E. Varfolomeev, T. Goncharov, A. V. Fedorova, J. N. Dynek, K. Zobel et al., c-IAP1 and c-IAP2 Are Critical Mediators of Tumor Necrosis Factor ?? (TNF??)-induced NF-??B Activation, Journal of Biological Chemistry, vol.7, issue.36, pp.24295-24304, 2008.
DOI : 10.1016/S0092-8674(00)81064-8

J. N. Dynek, T. Goncharov, E. C. Dueber, A. V. Fedorova, A. Izrael-tomasevic et al., c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling, The EMBO Journal, vol.7, issue.24, pp.4198-209, 2010.
DOI : 10.1038/nsmb.1605

M. J. Bertrand, S. Milutinovic, K. M. Dickson, W. C. Ho, A. Boudreault et al., cIAP1 and cIAP2 Facilitate Cancer Cell Survival by Functioning as E3 Ligases that Promote RIP1 Ubiquitination, ) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination, pp.689-700, 2008.
DOI : 10.1016/j.molcel.2008.05.014

T. L. Haas, C. H. Emmerich, B. Gerlach, A. C. Schmukle, S. M. Cordier et al., Recruitment of the Linear Ubiquitin Chain Assembly Complex Stabilizes the TNF-R1 Signaling Complex and??Is Required for TNF-Mediated Gene Induction, Molecular Cell, vol.36, issue.5, pp.831-875, 2009.
DOI : 10.1016/j.molcel.2009.10.013

C. K. Ea, L. Deng, Z. P. Xia, G. Pineda, and . Chen, Activation of IKK by TNF?? Requires Site-Specific Ubiquitination of RIP1 and Polyubiquitin Binding by NEMO, Molecular Cell, vol.22, issue.2, pp.245-57, 2006.
DOI : 10.1016/j.molcel.2006.03.026

F. Ikeda, Y. L. Deribe, S. S. Skanland, B. Stieglitz, C. Grabbe et al., SHARPIN forms a linear ubiquitin ligase complex regulating NF-??B activity and apoptosis, Nature, vol.2, issue.7340, pp.637-678, 2011.
DOI : 10.1038/nprot.2007.261

A. Kanayama, R. B. Seth, L. Sun, C. K. Ea, M. Hong et al., TAB2 and TAB3 Activate the NF-??B Pathway through Binding to Polyubiquitin Chains, Molecular Cell, vol.15, issue.4, pp.535-583, 2004.
DOI : 10.1016/j.molcel.2004.08.008

S. Rahighi, F. Ikeda, M. Kawasaki, M. Akutsu, N. Suzuki et al., Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-??B Activation, Cell, vol.136, issue.6, pp.1098-109, 2009.
DOI : 10.1016/j.cell.2009.03.007

Y. Dondelinger, M. Darding, M. J. Bertrand, and H. Walczak, Poly-ubiquitination in TNFR1-mediated necroptosis, Cellular and molecular life sciences : CMLS, pp.2165-76, 2016.

I. N. Lavrik, T. Mock, A. Golks, J. C. Hoffmann, S. Baumann et al., CD95 Stimulation Results in the Formation of a Novel Death Effector Domain Protein-containing Complex, Journal of Biological Chemistry, vol.109, issue.39, pp.26401-26409, 2008.
DOI : 10.1182/blood-2006-03-011585

F. Gonzalvez, D. Lawrence, B. Yang, S. Yee, R. Pitti et al., TRAF2 Sets a Threshold for Extrinsic Apoptosis by Tagging Caspase-8 with a Ubiquitin Shutoff Timer, Molecular Cell, vol.48, issue.6, pp.888-99, 2012.
DOI : 10.1016/j.molcel.2012.09.031

Z. Jin, Y. Li, R. Pitti, D. Lawrence, V. C. Pham et al., Cullin3-Based Polyubiquitination and p62-Dependent Aggregation of Caspase-8 Mediate Extrinsic Apoptosis Signaling, Cell, vol.137, issue.4, pp.721-756, 2009.
DOI : 10.1016/j.cell.2009.03.015

E. Lafont, C. Kantari-mimoun, P. Draber, D. De-miguel, T. Hartwig et al., The linear ubiquitin chain assembly complex regulates TRAIL???induced gene activation and cell??death, The EMBO Journal, vol.36, issue.9, pp.1147-1166, 2017.
DOI : 10.15252/embj.201695699

Z. Jin and W. S. El-deiry, Distinct Signaling Pathways in TRAIL- versus Tumor Necrosis Factor-Induced Apoptosis, Molecular and Cellular Biology, vol.26, issue.21, pp.8136-8184, 2006.
DOI : 10.1128/MCB.00257-06

S. P. Cullen, . Henry, M. Conor, . Kearney, J. Conor et al., Fas/CD95-Induced Chemokines Can Serve as ???Find-Me??? Signals for Apoptotic Cells, Molecular Cell, vol.49, issue.6, pp.1034-1048
DOI : 10.1016/j.molcel.2013.01.025

S. Kleber, I. Sancho-martinez, B. Wiestler, A. Beisel, C. Gieffers et al., Yes and PI3K Bind CD95 to Signal Invasion of Glioblastoma, Cancer Cell, vol.13, issue.3, pp.235-283, 2008.
DOI : 10.1016/j.ccr.2008.02.003

M. Malleter, S. Tauzin, A. Bessede, R. Castellano, A. Goubard et al., CD95L Cell Surface Cleavage Triggers a Prometastatic Signaling Pathway in Triple-Negative Breast Cancer, CD95L Cell Surface Cleavage Triggers a Prometastatic Signaling Pathway in Triple-Negative Breast Cancer, pp.6711-6721, 2013.
DOI : 10.1158/0008-5472.CAN-13-1794

URL : https://hal.archives-ouvertes.fr/hal-00873634

P. Schneider, N. Holler, J. L. Bodmer, M. Hahne, K. Frei et al., Conversion of Membrane-bound Fas(CD95) Ligand to Its Soluble Form Is Associated with Downregulation of Its Proapoptotic Activity and Loss of Liver Toxicity, The Journal of Experimental Medicine, vol.8, issue.8, pp.1205-1218, 1998.
DOI : 10.1126/science.2787530

T. Suda, H. Hashimoto, M. Tanaka, T. Ochi, and S. Nagata, Membrane Fas Ligand Kills Human Peripheral Blood T Lymphocytes, and Soluble Fas Ligand Blocks the Killing, The Journal of Experimental Medicine, vol.54, issue.12, pp.2045-50, 1997.
DOI : 10.1172/JCI118789

S. Tauzin, B. Chaigne-delalande, E. Selva, N. Khadra, S. Daburon et al., The Naturally Processed CD95L Elicits a c-Yes/Calcium/PI3K-Driven Cell Migration Pathway, PLoS Biology, vol.52, issue.Pt 3, 2011.
DOI : 10.1371/journal.pbio.1001090.s010

URL : https://hal.archives-ouvertes.fr/hal-00681970

I. Lang, A. Fick, V. Schafer, T. Giner, D. Siegmund et al., Signaling Active CD95 Receptor Molecules Trigger Co-translocation of Inactive CD95 Molecules into Lipid Rafts, Journal of Biological Chemistry, vol.103, issue.28, pp.24026-24068, 2012.
DOI : 10.1074/jbc.274.12.7987

T. S. Soderstrom, S. D. Nyberg, and J. E. Eriksson, CD95 capping is ROCK-dependent and dispensable for apoptosis, Journal of Cell Science, vol.118, issue.10, pp.2211-2234, 2005.
DOI : 10.1242/jcs.02343

N. Holler, A. Tardivel, M. Kovacsovics-bankowski, S. Hertig, O. Gaide et al., Two Adjacent Trimeric Fas Ligands Are Required for Fas Signaling and Formation of a Death-Inducing Signaling Complex, Molecular and Cellular Biology, vol.23, issue.4, pp.1428-1468, 2003.
DOI : 10.1128/MCB.23.4.1428-1440.2003

T. Vargo-gogola, H. C. Crawford, B. Fingleton, and L. M. Matrisian, Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand, Archives of Biochemistry and Biophysics, vol.408, issue.2, pp.155-61, 2002.
DOI : 10.1016/S0003-9861(02)00525-8

R. Herrero, O. Kajikawa, G. Matute-bello, Y. Wang, N. Hagimoto et al., The biological activity of FasL in human and mouse lungs is determined by the structure of its stalk region, The Journal of clinical investigation, pp.1174-90, 2011.

R. Alonso, C. Mazzeo, M. C. Rodriguez, M. Marsh, A. Fraile-ramos et al., Diacylglycerol kinase alpha regulates the formation and polarisation of mature multivesicular bodies involved in the secretion of Fas ligand-containing exosomes in T lymphocytes, Cell death and differentiation, pp.1161-73, 2011.

N. R. Bianco, S. H. Kim, A. E. Morelli, and P. D. Robbins, Modulation of the Immune Response Using Dendritic Cell-Derived Exosomes, Methods Mol Biol, vol.380, pp.443-55, 2007.
DOI : 10.1007/978-1-59745-395-0_28

A. J. Abusamra, Z. Zhong, X. Zheng, M. Li, T. E. Ichim et al., Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis, Blood Cells, Molecules, and Diseases, vol.35, issue.2, pp.169-73, 2005.
DOI : 10.1016/j.bcmd.2005.07.001

K. Bajou, H. Peng, W. E. Laug, C. Maillard, A. Noel et al., Plasminogen activator inhibitor-1 protects endothelial cells from FasLmediated apoptosis, Cancer Cell, pp.324-358, 2008.

E. J. Steller, I. H. Borel-rinkes, and O. Kranenburg, How CD95 stimulates invasion, Cell Cycle, pp.3857-3862, 2011.
DOI : 10.4161/cc.10.22.18290

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.10.22.18290?needAccess=true

N. Khadra, L. Bresson-bepoldin, A. Penna, B. Chaigne-delalande, B. Segui et al., CD95 triggers Orai1-mediated localized Ca2+ entry, regulates recruitment of protein kinase C (PKC) ??2, and prevents death-inducing signaling complex formation, Proceedings of the National Academy of Sciences, vol.16, issue.12, pp.19072-19079, 2011.
DOI : 10.1038/cdd.2009.111

URL : https://hal.archives-ouvertes.fr/inserm-00641268

B. J. Chang, A. B. Samal, J. Vlach, T. F. Fernandez, D. Brooke et al., Identification of the Calmodulin-Binding Domains of Fas Death Receptor, PLOS ONE, vol.10, issue.1???3, 2016.
DOI : 10.1371/journal.pone.0146493.s011

Y. J. Lai, V. T. Lin, Y. Zheng, E. N. Benveniste, and F. T. Lin, The Adaptor Protein TRIP6 Antagonizes Fas-Induced Apoptosis but Promotes Its Effect on Cell Migration, Molecular and Cellular Biology, vol.30, issue.23, pp.5582-96, 2010.
DOI : 10.1128/MCB.00134-10

E. J. Steller, L. Ritsma, D. A. Raats, F. J. Hoogwater, B. L. Emmink et al., The death receptor CD95 activates the cofilin pathway to stimulate tumour cell invasion, EMBO reports, vol.60, issue.9, pp.931-938, 2011.
DOI : 10.1002/ijc.23090

B. C. Barnhart, P. Legembre, E. Pietras, C. Bubici, G. Franzoso et al., CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells, The EMBO Journal, pp.3175-3185, 2004.

T. G. Bivona, H. Hieronymus, J. Parker, K. Chang, M. Taron et al., FAS and NF-??B signalling modulate dependence of lung cancers on mutant EGFR, Nature, vol.28, issue.7339, pp.523-526, 2011.
DOI : 10.1038/onc.2009.135

L. Chen, S. Park, A. V. Tumanov, A. Hau, K. Sawada et al., CD95 promotes tumour growth, Nature, vol.14, issue.7297, pp.492-496, 2010.
DOI : 10.1038/nprot.2008.80

URL : http://www.nature.com/nature/journal/v475/n7355/pdf/nature10221.pdf

G. Bellone, C. Smirne, A. Carbone, K. Mareschi, L. Dughera et al., Production and pro-apoptotic activity of soluble CD95 ligand in pancreatic carcinoma, Clin Cancer Res, vol.6, pp.2448-55, 2000.

M. Tanaka, T. Suda, K. Haze, N. Nakamura, K. Sato et al., Fas ligand in human serum, Nature Medicine, vol.2, issue.3, pp.317-322, 1996.
DOI : 10.1016/0378-1119(91)90152-2

H. Hashimoto, M. Tanaka, T. Suda, T. Tomita, K. Hayashida et al., Soluble Fas ligand in the joints of patients with rheumatoid arthritis and osteoarthritis, Arthritis & Rheumatism, pp.657-662, 1998.

H. Das, S. Imoto, T. Murayama, K. Kajimoto, T. Sugimoto et al., Levels of soluble FasL and FasL gene expression during the development of graft-versus-host disease in DLT-treated patients, British Journal of Haematology, vol.148, issue.4, pp.795-800, 1999.
DOI : 10.1084/jem.181.2.781

Y. Kanda, Y. Tanaka, K. Shirakawa, T. Yatomi, N. Nakamura et al., Increased soluble Fas-ligand in sera of bone marrow transplant recipients with acute graft-versus-host disease, Bone marrow transplantation, pp.751-755, 1998.

. Tomokuni, . Otsuki, . Isozaki, . Kita, . Ueki et al., Serum levels of soluble Fas ligand in patients with silicosis, Clinical and Experimental Immunology, vol.68, issue.3, pp.441-444, 1999.
DOI : 10.1016/0091-6749(81)90152-4