, ImPACcell) and the French liver cancer biobanks network, P, vol.2

. Beaujon, . Bordeaux, . Mondor, . Nantes, . Paris-sud et al., Children's Hospital of Philadelphia) and S. Sugano (University of Tokyo) for providing the CASC15 DNA constructs

S. Dr-eano, ;. , and S. Diederichs, Institut de g en etique et d eveloppement de Rennes [IGDR]) for DNA sequencing; and C. Père for reporter sensor cell line analysis, We thank D. Gilot, M.D. Galibert (IGDR, Rennes), B. Fromenty (NuMeCan, Rennes)

J. M. Banales, V. Cardinale, G. Carpino, M. Marzioni, J. B. Andersen et al., Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA), Nat Rev Gastroenterol Hepatol, vol.13, pp.261-280, 2016.

J. Bridgewater, P. R. Galle, S. A. Khan, J. M. Llovet, J. W. Park et al., Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma, J Hepatol, vol.60, pp.1268-1289, 2014.

A. Moeini, D. Sia, N. Bardeesy, V. Mazzaferro, and J. M. Llovet, Molecular pathogenesis and targeted therapies for intrahepatic cholangiocarcinoma, Clin Cancer Res, vol.22, pp.291-300, 2016.

A. E. Sirica, The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma, Nat Rev Gastroenterol Hepatol, vol.9, pp.44-54, 2011.

S. Rizvi and G. J. Gores, Pathogenesis, diagnosis, and management of cholangiocarcinoma, Gastroenterology, vol.145, pp.1215-1229, 2013.

L. Sulpice, M. Rayar, M. Desille, B. Turlin, A. Fautrel et al., Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma, Hepatology, vol.58, pp.1992-2000, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01068717

, Massague J. TGFbeta in cancer. Cell, vol.134, pp.215-230, 2008.

M. A. Nieto, R. Y. Huang, R. A. Jackson, J. P. Thiery, and . Emt, Cell, vol.166, pp.21-45, 2016.

H. Ikushima and K. Miyazono, TGFbeta signalling: a complex web in cancer progression, Nat Rev Cancer, vol.10, pp.415-424, 2010.

J. Massague, TGFbeta signalling in context, Nat Rev Mol Cell Biol, vol.13, pp.616-630, 2012.

E. J. Richards, G. Zhang, Z. P. Li, J. Permuth-wey, S. Challa et al., Long non-coding RNAs (LncRNA) regulated by transforming growth factor (TGF) beta. LncRNA-HIT-mediated TGF-induced epithelial to mesenchymal transition in mammary epithelia, J Biol Chem, vol.291, p.22860, 2016.

J. H. Yuan, F. Yang, F. Wang, J. Z. Ma, Y. J. Guo et al., A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma, Cancer Cell, vol.25, pp.666-681, 2014.

M. Klingenberg, A. Matsuda, S. Diederichs, and T. Patel, Non-coding RNA in hepatocellular carcinoma: mechanisms, biomarkers and therapeutic targets, J Hepatol, vol.67, pp.603-618, 2017.

J. R. Prensner and A. M. Chinnaiyan, The emergence of lncRNAs in cancer biology, Cancer Discov, vol.1, pp.391-407, 2011.

C. Allain, G. Angenard, B. Clement, and C. Coulouarn, Integrative genomic analysis identifies the core transcriptional hallmarks of human hepatocellular carcinoma, Cancer Res, vol.76, pp.6374-6381, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01375429

C. Coulouarn, A. Corlu, D. Glaise, I. Guenon, S. S. Thorgeirsson et al., Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma, Cancer Res, vol.72, pp.2533-2542, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00864206

H. Dubois-pot-schneider, K. Fekir, C. Coulouarn, D. Glaise, C. Aninat et al., Inflammatory cytokines promote the retrodifferentiation of tumor-derived hepatocyte-like cells to progenitor cells, Hepatology, vol.60, pp.2077-2090, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01134747

M. R. Russell, A. Penikis, D. A. Oldridge, J. R. Alvarez-dominguez, L. Mcdaniel et al., CASC15-S is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus, Cancer Res, vol.75, pp.3155-3166, 2015.

L. Lessard, M. Liu, D. M. Marzese, H. Wang, K. Chong et al., The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching, J Invest Dermatol, vol.135, pp.2464-2474, 2015.

Y. Wu, M. S. Siadaty, M. E. Berens, G. M. Hampton, and D. Theodorescu, Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein 1E and nicotinamide N-methyltransferase as novel regulators of cell migration, Oncogene, vol.27, pp.6679-6689, 2008.

J. Salzman, R. E. Chen, M. N. Olsen, P. L. Wang, and P. O. Brown, Celltype specific features of circular RNA expression, PLoS Genet, vol.9, p.1003777, 2013.

G. Giannelli, W. Mikulits, S. Dooley, I. Fabregat, A. Moustakas et al., The rationale for targeting TGF-beta in chronic liver diseases, Eur J Clin Invest, vol.46, pp.349-361, 2016.

W. Yang, Y. Li, X. Song, J. Xu, and J. Xie, Genome-wide analysis of long noncoding RNA and mRNA co-expression profile in intrahepatic cholangiocarcinoma tissue by RNA sequencing, Oncotarget, vol.8, pp.26591-26599, 2017.

C. Wang, Z. P. Mao, L. Wang, G. H. Wu, F. H. Zhang et al., Long non-coding RNA MALAT1 promotes cholangiocarcinoma cell proliferation and invasion by activating PI3K/Akt pathway, Neoplasma, vol.64, pp.725-731, 2017.

C. Coulouarn, V. M. Factor, and S. S. Thorgeirsson, Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer, Hepatology, vol.47, pp.2059-2067, 2008.

Y. Y. Wang, Z. Y. Wu, G. C. Wang, K. Liu, X. B. Niu et al., LINC00312 inhibits the migration and invasion of bladder cancer cells by targeting miR-197-3p, Tumour Biol, vol.37, pp.14553-14563, 2016.

M. Li, M. Qiu, Y. Xu, Q. Mao, J. Wang et al., Differentially expressed protein-coding genes and long noncoding RNA in early-stage lung cancer, Tumour Biol, vol.36, pp.9969-9978, 2015.

D. J. Waugh and C. Wilson, The interleukin-8 pathway in cancer, Clin Cancer Res, vol.14, pp.6735-6741, 2008.

Q. Liu, A. Li, Y. Tian, J. D. Wu, Y. Liu et al., The CXCL8-CXCR1/2 pathways in cancer, Cytokine Growth Factor Rev, vol.31, pp.61-71, 2016.

K. Imamura, N. Imamachi, G. Akizuki, M. Kumakura, A. Kawaguchi et al., Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli, Mol Cell, vol.53, pp.393-406, 2014.

R. R. Pandey, T. Mondal, F. Mohammad, S. Enroth, L. Redrup et al., Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatinlevel regulation, Mol Cell, vol.32, pp.232-246, 2008.

G. Hu, Z. Lou, and M. Gupta, The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation, PLoS One, vol.9, p.107016, 2014.

J. U. Marquardt, J. B. Andersen, and S. S. Thorgeirsson, Functional and genetic deconstruction of the cellular origin in liver cancer, Nat Rev Cancer, vol.15, pp.653-667, 2015.

X. Tang, M. Hou, Y. Ding, Z. Li, L. Ren et al., Systematically profiling and annotating long intergenic non-coding RNAs in human embryonic stem cell, BMC Genomics, vol.14, p.3, 2013.

J. B. Demoulin and A. Essaghir, PDGF receptor signaling networks in normal and cancer cells, Cytokine Growth Factor Rev, vol.25, pp.273-283, 2014.

E. J. Steller, D. A. Raats, J. Koster, B. Rutten, K. M. Govaert et al., PDGFRB promotes liver metastasis formation of mesenchymal-like colorectal tumor cells, Neoplasia, vol.15, pp.204-217, 2013.

E. Lasda and R. Parker, Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance, PLoS One, vol.11, p.148407, 2016.

Y. Li, Q. Zheng, C. Bao, S. Li, W. Guo et al., Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis, Cell Res, vol.25, pp.981-984, 2015.

D. Han, J. Li, H. Wang, X. Su, J. Hou et al., Circular RNA circMTO1 acts as the sponge of miR-9 to suppress hepatocellular carcinoma progression, Hepatology, vol.66, pp.1151-1164, 2017.

B. Zhou and J. W. Yu, A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta1, Biochem Biophys Res Commun, vol.487, pp.769-775, 2017.