S. Schiaffino, K. A. Dyar, S. Ciciliot, B. Blaauw, and M. Sandri, Mechanisms regulating skeletal muscle growth and atrophy, FEBS J, vol.280, pp.4294-4314, 2013.

S. C. Bodine, Disuse-induced muscle wasting, Int J Biochem Cell Biol, vol.45, pp.2200-2208, 2013.

M. B. Reid, A. R. Judge, and S. C. Bodine, CrossTalk opposing view: The dominant mechanism causing disuse muscle atrophy is proteolysis, J Physiol, vol.592, pp.5345-5347, 2014.

M. D. Gomes, S. H. Lecker, R. T. Jagoe, A. Navon, and A. L. Goldberg, Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy, Proc Natl Acad Sci, vol.98, pp.14440-14445, 2001.

S. C. Bodine, Identification of ubiquitin ligases required for skeletal muscle atrophy, Science, vol.294, pp.1704-1708, 2001.

V. Kedar, Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I, Proc Natl Acad Sci, vol.101, pp.18135-18140, 2004.

H. H. Li, Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex, J Clin Invest, vol.114, pp.1058-1071, 2004.

S. H. Lecker, A. L. Goldberg, and W. E. Mitch, Protein degradation by the ubiquitin-proteasome pathway in normal and disease states, J Am Soc Nephrol, vol.17, pp.1807-1819, 2006.

S. C. Bodine, Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo, Nat Cell Biol, vol.3, pp.1014-1019, 2001.

T. Ogawa, Ubiquitin ligase gene expression in healthy volunteers with 20-day bedrest, Muscle Nerve, vol.34, pp.463-469, 2006.

R. Nakao, Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading, Mol Cell Biol, vol.29, pp.4798-4811, 2009.

P. Bonaldo and M. Sandri, Cellular and molecular mechanisms of muscle atrophy, Dis Model Mech, vol.6, pp.25-39, 2012.

T. Nikawa, Skeletal muscle gene expression in space-flown rats, Faseb J, vol.18, pp.522-524, 2004.

M. Sandri, Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy, Cell, vol.117, pp.399-412, 2004.

C. Mammucari, FoxO3 controls autophagy in skeletal muscle in vivo, Cell Metab, vol.6, pp.458-471, 2007.

D. Cai, IKKbeta/NF-kappaB activation causes severe muscle wasting in mice, Cell, vol.119, pp.285-298, 2004.

L. Brocca, Is oxidative stress a cause or consequence of disuse muscle atrophy in mice? A proteomic approach in hindlimbunloaded mice, Exp Physiol, vol.95, pp.331-350, 2009.

M. A. Pellegrino, Redox homeostasis, oxidative stress and disuse muscle atrophy, J Physiol, vol.589, pp.2147-2160, 2011.

K. J. Davies, M. E. Delsignore, and S. W. Lin, Protein damage and degradation by oxygen radicals. II. Modification of amino acids, J Biol Chem, vol.262, pp.9902-9907, 1987.

M. C. Gomez-cabrera, Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation, Am J Physiol Regul Integr Comp Physiol, vol.298, pp.2-8, 2010.

M. C. Gomez-cabrera, Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats, J Physiol, vol.567, pp.113-120, 2005.

M. C. Gomez-cabrera, Oxidative stress in marathon runners: interest of antioxidant supplementation, Br J Nutr, vol.96, issue.1, pp.31-33, 2006.

M. C. Gomez-cabrera, F. V. Pallardo, J. Sastre, J. Vina, and L. Garcia-del-moral, Allopurinol and markers of muscle damage among participants in the Tour de France, Jama, vol.289, pp.2503-2504, 2003.

F. Derbre, Inhibition of Xanthine Oxidase by Allopurinol Prevents Skeletal Muscle Atrophy: Role of p38 MAPKinase and E3 Ubiquitin Ligases, PLoS One, vol.7, p.46668, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01159428

H. Akima, Inactivity and muscle: effect of resistance training during bed rest on muscle size in the lower limb, Acta Physiol Scand, vol.172, pp.269-278, 2001.

H. Akima, Leg-press resistance training during 20 days of 6 degrees head-down-tilt bed rest prevents muscle deconditioning, Eur J Appl Physiol, vol.82, pp.30-38, 2000.

H. Akima, Resistance training during unweighting maintains muscle size and function in human calf, Med Sci Sports Exerc, vol.35, pp.655-662, 2003.

B. A. Alkner and P. A. Tesch, Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise, Eur J Appl Physiol, vol.93, pp.294-305, 2004.

T. N. Burks, Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia, Sci Transl Med, vol.3, pp.82-119, 2011.

C. Tsatsanis, A. Androulidaki, M. Venihaki, and A. N. Margioris, Signalling networks regulating cyclooxygenase-2, Int J Biochem Cell Biol, vol.38, pp.1654-1661, 2006.

D. L. Simmons, R. M. Botting, and T. Hla, Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition, Pharmacol Rev, vol.56, pp.387-437, 2004.

D. J. Glass, Molecular mechanisms modulating muscle mass, Trends Mol Med, vol.9, pp.344-350, 2003.

M. Konishi, Febuxostat improves outcome in a rat model of cancer cachexia, J Cachexia Sarcopenia Muscle, vol.6, pp.174-180, 2015.

A. M. Hanson, B. C. Harrison, M. H. Young, L. S. Stodieck, and V. L. Ferguson, Longitudinal characterization of functional, morphologic, and biochemical adaptations in mouse skeletal muscle with hindlimb suspension, Muscle Nerve, vol.48, pp.393-402, 2013.

K. Baar and K. Esser, Phosphorylation ofp70(S6k) correlates with increased skeletal muscle mass following resistance exercise, Am J Physiol, vol.276, pp.120-127, 1999.

K. M. Lai, Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy, Mol Cell Biol, vol.24, pp.9295-9304, 2004.

M. J. Tisdale, The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting, J Support Oncol, vol.3, pp.209-217, 2005.

F. Sanchis-gomar, Allopurinol prevents cardiac and skeletal muscle damage in professional soccer players, Scand J Med Sci Sports, vol.25, pp.110-115, 2015.

L. A. Beveridge, L. Ramage, M. E. Mcmurdo, J. George, and M. D. Witham, Allopurinol use is associated with greater functional gains in older rehabilitation patients, Age Ageing, vol.42, pp.400-404, 2013.

, SCIENtIFIC RePORtS |, vol.8, 2018.

K. M. Baldwin, Musculoskeletal adaptations to weightlessness and development of effective countermeasures, Med Sci Sports Exerc, vol.28, pp.1247-1253, 1996.

K. Schulze, P. Gallagher, and S. Trappe, Resistance training preserves skeletal muscle function during unloading in humans, Med Sci Sports Exerc, vol.34, pp.303-313, 2002.

N. Hotta, The effect of intense interval cycle-training on unloading-induced dysfunction and atrophy in the human calf muscle, J Physiol Anthropol, vol.30, pp.29-35, 2011.

Y. Matuszczak, S. Arbogast, and M. B. Reid, Allopurinol mitigates muscle contractile dysfunction caused by hindlimb unloading in mice, Aviat Space Environ Med, vol.75, pp.581-588, 2004.

M. A. Whidden, Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction, J Appl Physiol, vol.106, pp.385-394, 2009.

J. Springer, Inhibition of xanthine oxidase reduces wasting and improves outcome in a rat model of cancer cachexia, Int J Cancer, vol.131, pp.2187-2196, 2012.

A. R. Kelleher, S. L. Pereira, L. S. Jefferson, and S. R. Kimball, REDD2 expression in rat skeletal muscle correlates with nutrientinduced activation of mTORC1: responses to aging, immobilization, and remobilization, Am J Physiol Endocrinol Metab, vol.308, pp.122-129, 2014.

F. W. Booth and M. J. Seider, Early change in skeletal muscle protein synthesis after limb immobilization of rats, J Appl Physiol Respir Environ Exerc Physiol, vol.47, pp.974-977, 1979.

H. Langet, Compressed sensing dynamic reconstruction in rotational angiography, Med Image Comput Comput Assist Interv, vol.15, pp.223-230, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00756119

A. A. Ferrando, H. W. Lane, C. A. Stuart, J. Davis-street, and R. R. Wolfe, Prolonged bed rest decreases skeletal muscle and whole body protein synthesis, Am J Physiol, vol.270, pp.627-633, 1996.

E. I. Glover, Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion, J Physiol, vol.586, pp.6049-6061, 2008.

M. Murata, R. Kosaka, K. Kurihara, S. Yamashita, and H. Tachibana, Delphinidin prevents disuse muscle atrophy and reduces stressrelated gene expression, Biosci Biotechnol Biochem, vol.80, pp.1636-1640, 2016.

R. Krogh-madsen, A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity, J Appl Physiol, vol.108, pp.1034-1040, 1985.

Y. J. Choi, Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis, FASEB J, vol.28, pp.3197-3204, 2014.

L. Brocca, FoxO-dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension, J Physiol, vol.595, pp.1143-1158, 2017.

M. C. Gomez-cabrera, J. Vina, and L. L. Ji, Role of Redox Signaling and Inflammation in Skeletal Muscle Adaptations toTraining, Antioxidants (Basel), vol.5, p.48, 2016.

T. Ohtsubo, I. I. Rovira, M. F. Starost, C. Liu, and T. Finkel, Xanthine oxidoreductase is an endogenous regulator of cyclooxygenase-2, Circ Res, vol.95, pp.1118-1124, 2004.

L. Feng, Y. Xia, G. E. Garcia, D. Hwang, and C. B. Wilson, Involvement of reactive oxygen intermediates in cyclooxygenase-2 expression induced by interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide, J Clin Invest, vol.95, pp.1669-1675, 1995.

R. Chinery, Antioxidants reduce cyclooxygenase-2 expression, prostaglandin production, and proliferation in colorectal cancer cells, Cancer Res, vol.58, pp.2323-2327, 1998.

E. R. Morey-holton and R. K. Globus, Hindlimb unloading rodent model: technical aspects, J Appl Physiol, vol.92, pp.1367-1377, 2002.

J. S. Beckman, D. A. Parks, J. D. Pearson, P. A. Marshall, and B. A. Freeman, A sensitive fluorometric assay for measuring xanthine dehydrogenase and oxidase in tissues, Free Radic Biol Med, vol.6, pp.607-615, 1989.

L. L. Ji, M. C. Gomez-cabrera, N. Steinhafel, and J. Vina, Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle, Faseb J, vol.18, pp.1499-1506, 2004.

M. Romagnoli, Xanthine oxidase-induced oxidative stress causes activation of NF-kappaB and inflammation in the liver of type I diabetic rats, Free Radic Biol Med, vol.49, pp.171-177, 2010.

J. D. Dignam, R. M. Lebovitz, and R. G. Roeder, Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei, Nucleic Acids Res, vol.11, pp.1475-1489, 1983.