D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit et al., Nanocarriers as an emerging platform for cancer therapy, Nature Nanotechnology, vol.8, issue.12, pp.751-760, 2007.
DOI : 10.1038/bjc.1996.587

S. Shen, Y. Wu, Y. Liu, and D. Wu, High drug-loading nanomedicines: progress, current status, and prospects, International Journal of Nanomedicine, vol.12, pp.4085-4109, 2017.
DOI : 10.2147/IJN.S132780

URL : https://www.dovepress.com/getfile.php?fileID=36760

N. Singh, N. Tandan, S. P. Singh, and S. P. Singh, Nanoparticles as Drug Delivery System in Modern Trends, Word Journal of Pharmacy and Pharmaceutical Sciences, vol.5, issue.2, pp.1177-1193, 2016.

. Chiappetta, Polymeric mixed micelles as nanomedicines: Achievements and perspectives, European Journal of Pharmaceutics and Biopharmaceutics, vol.113, pp.211-228, 2017.

A. Gothwall, I. Khan, and U. Gupta, Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs, Pharmaceutical Research, vol.93, issue.1, pp.18-39
DOI : 10.1038/sj.bjc.6602772

X. Guo, L. Wang, X. Wei, and S. Zhou, Polymer-based drug delivery systems for cancer treatment, Journal of Polymer Science Part A: Polymer Chemistry, vol.27, issue.22, pp.3525-3550, 2016.
DOI : 10.1016/0032-3861(86)90269-7

F. F. Davis, The origin of pegnology, Advanced Drug Delivery Reviews, vol.54, issue.4, pp.457-458, 2002.
DOI : 10.1016/S0169-409X(02)00021-2

K. K. Bawa and J. K. Oh, Stimulus-Responsive Degradable Polylactide-Based Block

S. Cammas-marion and P. Guérin, Design of malolactonic acid esters with a large spectrum of specified pendant groups in the engineering of biofunctional and hydrolyzable polyesters, Macromolecular Symposia, vol.153, issue.1, pp.167-186, 2000.
DOI : 10.1002/1521-3900(200003)153:1<167::AID-MASY167>3.0.CO;2-Q

S. Cammas, M. M. Bear, A. Harada, P. Guérin, and K. Kataoka, New macromolecular micelles based on degradable amphiphilic block copolymers, Macromolecular Chemistry and Physics, vol.201201, issue.3, pp.355-641521, 2000.

Z. W. Huang, V. Laurent, G. Chetouani, J. Y. Ljubimova, E. Holler et al., New functional degradable and bio-compatible nanoparticles based on poly(malic acid) derivatives for site-specific anti-cancer drug delivery, International Journal of Pharmaceutics, vol.423, issue.1, pp.83-92, 2012.
DOI : 10.1016/j.ijpharm.2011.04.035

URL : https://hal.archives-ouvertes.fr/inserm-00864846

P. Loyer, W. Bedhouche, Z. W. Huang, and S. Cammas-marion, Degradable and biocompatible nanoparticles decorated with cyclic RGD peptide for efficient drug delivery to hepatoma cells in vitro, International Journal of Pharmaceutics, vol.454, issue.2, pp.727-737, 2013.
DOI : 10.1016/j.ijpharm.2013.05.060

URL : https://hal.archives-ouvertes.fr/hal-00861299

P. Loyer and S. Cammas-marion, Natural and synthetic poly(malic acid)-based derivates: a family of versatile biopolymers for the design of drug nanocarriers, Journal of Drug Targeting, vol.20, issue.7, pp.556-575, 2014.
DOI : 10.1016/j.ejmech.2008.04.021

URL : https://hal.archives-ouvertes.fr/hal-01063205

. Loyer, In vitro Toxicity Evaluation and in vivo Biodistribution of Polymeric Micelles Derived from Poly(ethylene glycol)-b-poly(benzyl malate) Copolymers, Pharmaceutical Nanotechnology, vol.4, issue.1, pp.24-37, 2016.

V. P. Torchilin, Multifunctional nanocarriers???, Advanced Drug Delivery Reviews, vol.58, issue.14, pp.1532-1555, 2006.
DOI : 10.1016/j.addr.2006.09.009

J. H. Park, S. Lee, J. H. Kim, K. Park, K. Kim et al., Polymeric nanomedicine for cancer therapy, Progress in Polymer Science, vol.33, issue.1, pp.113-137, 2008.
DOI : 10.1016/j.progpolymsci.2007.09.003

A. S. Hoffman, The origins and evolution of ???controlled??? drug delivery systems, Journal of Controlled Release, vol.132, issue.3
DOI : 10.1016/j.jconrel.2008.08.012

B. D. Umery, L. S. Nair, C. T. Laurencin, and A. M. Kasko, Polymeric biomaterials with engineered degradation, J. Polym

H. G. Schil, Poly(N-isopropylacrylamide): experiment, theory and application, Progress in Polymer Science, vol.17, issue.2, pp.163-249, 1992.
DOI : 10.1016/0079-6700(92)90023-R

. Hennink, Synthesis and characterization of tailorable biodegradable thermoresponsive methacryloylamide polymers based on L-serine and L-threonime alkyl esters, Polymer, pp.2479-2485, 2010.

Y. Hao, L. Wang, Y. Zhao, D. Meng, D. Li et al., Targeted Imaging and Chemo-Phototherapy of Brain Cancer by a Multifunctional Drug Delivery System, Macromolecular Bioscience, vol.5, issue.11, pp.1571-1585, 2015.
DOI : 10.1021/nn201100m

]. F. Kong, Z. Liang, D. Luan, X. Liu, K. Xu et al., A Glutathione (GSH)-Responsive Near-Infrared (NIR) Theranostic Prodrug for Cancer Therapy and Imaging, Analytical Chemistry, vol.88, issue.12, 2016.
DOI : 10.1021/acs.analchem.6b01135

M. A. Kim, S. D. Yoon, and C. M. Lee, A drug release system induced by near infrared laser using alginate microparticles containing melanin, International Journal of Biological Macromolecules, vol.103, pp.839-844, 2017.
DOI : 10.1016/j.ijbiomac.2017.05.139

S. H. Kim, I. In, and S. Y. Park, pH-Responsive NIR-Absorbing Fluorescent Polydopamine with Hyaluronic Acid for Dual Targeting and Synergistic Effects of Photothermal and Chemotherapy, Biomacromolecules, vol.18, issue.6, 2017.
DOI : 10.1021/acs.biomac.7b00267

G. Chen, R. Jaskula-sztul, C. R. Esquibel, I. Lou, Q. Zheng et al., Neuroendocrine Tumor-Targeted Upconversion

J. L. Colla, Targeting tumors with cyclic RGD-conjugated lipid nanoparticles loaded with an IR780 NIR dye: In vitro and in vivo evaluation, International Journal of Pharmaceutics, vol.17, pp.378-5173, 2017.

A. Li, Y. Wang, T. Chen, W. Zhao, A. Zhang et al., NIR-laser switched ICG/DOX loaded thermo-responsive polymeric capsule for chemo-photothermal targeted therapy, European Polymer Journal, vol.92, pp.51-60, 2017.
DOI : 10.1016/j.eurpolymj.2017.04.019

X. Zhang, N. Zhao, B. Wang, Z. Tian, Y. Dai et al., Structure-inherent nearinfrared fluorescent probe mediates apoptosis imaging and targeted drug delivery in vivo, Dyes and Pigments, 2017.
DOI : 10.1016/j.dyepig.2016.11.022

X. Q. Zhang, X. Xu, N. Bertrand, E. Pridgen, A. Swami et al., Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine, Advanced Drug Delivery Reviews, vol.64, issue.13, pp.1363-1384, 2012.
DOI : 10.1016/j.addr.2012.08.005

S. Shen, B. Ding, S. Zhang, X. Qi, K. Wang et al., Near-infrared light-responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor, Nanomedicine: Nanotechnology, Biology and Medicine, vol.13, issue.5, pp.1607-1616, 2017.
DOI : 10.1016/j.nano.2017.02.014

C. Liu, Y. Zhang, M. Liu, Z. Chen, Y. Lin et al., A NIRcontrolled cage mimicking system for hydrophobic drug mediated cancer therapy
DOI : 10.1016/j.biomaterials.2017.06.008

R. Guo, Y. Tian, Y. Wang, and W. Yang, Near-Infrared Laser-Triggered Nitric Oxide Nanogenerators for the Reversal of Multidrug Resistance in Cancer, Advanced Functional Materials, vol.19, issue.13, 2017.
DOI : 10.1002/adfm.200801655

C. Liu, Y. Zhang, M. Liu, Z. Chen, Y. Lin et al., A NIRcontrolled cage mimicking system for hydrophobic drug mediated cancer therapy
DOI : 10.1016/j.biomaterials.2017.06.008

C. Zheng, M. Zheng, P. Gong, D. Jia, P. Zhang et al., Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in??vitro and in??vivo imaging, Biomaterials, vol.33, issue.22, pp.5603-5609, 2012.
DOI : 10.1016/j.biomaterials.2012.04.044

A. Wilk, K. Zieli?ska, J. Pietkiewicz, N. Sko?ucka, A. Choroma?ska et al., Photo-oxidative action in MCF-7 cancer cells induced by hydrophobic cyanines loaded in biodegradable microemulsion-templated nanocapsules, Int. J. Oncol, vol.41, pp.105-116, 2012.

R. M. König, J. Szeimies, W. Hillenkamp, R. Bäumler, and . Vasold, Light-induced decomposition of indocyanine green, Invest Ophthalmol Vis Sci, vol.49, issue.5, pp.1777-1783, 2008.

Z. Sheng, D. Hu, M. Zheng, P. Zhao, H. Liu et al., Smart Human Serum Albumin-Indocyanine Green Nanoparticles Generated by Programmed Assembly for Dual-Modal Imaging-Guided Cancer Synergistic Phototherapy, ACS Nano, vol.8, issue.12
DOI : 10.1021/nn5062386

S. Guha, S. K. Shaw, G. T. Spence, F. M. Roland, and B. D. Smith, Clean Photothermal Heating and Controlled Release from Near-Infrared Dye Doped Nanoparticles without Oxygen Photosensitization, Langmuir, vol.31, issue.28, pp.31-7826, 2015.
DOI : 10.1021/acs.langmuir.5b01878

URL : http://europepmc.org/articles/pmc4634570?pdf=render

K. Mebrouk, S. Debnath, M. Fourmigué, and F. , Photothermal Control of the Gelation Properties of Nickel Bis(dithiolene) Metallogelators under Near-Infrared Irradiation, Langmuir, vol.30, issue.28
DOI : 10.1021/la501826j

URL : https://hal.archives-ouvertes.fr/hal-01151700

K. Mebrouk, F. Camerel, O. Jeannin, B. Heinrich, B. Donnio et al., High Photothermal Activity within Neutral Nickel Dithiolene Complexes Derived from Imidazolium-Based Ionic Liquids, Inorganic Chemistry, vol.55, issue.3, pp.1296-1303
DOI : 10.1021/acs.inorgchem.5b02648

URL : https://hal.archives-ouvertes.fr/hal-01263047

M. Ciancone and F. , Laser triggered phase transition in photothermal liquid crystals, Chemical Communications, vol.28, issue.47, pp.6339-6342, 2017.
DOI : 10.1002/adma.201602211

URL : https://hal.archives-ouvertes.fr/hal-01544245

. Camerel, Water-soluble nickel-bis(dithiolene) complexes as photothermal agents, Chemical Communications, vol.51, pp.5268-5270, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01114389

M. Bonnemains and F. Fourmigué, Fine and Clean Photothermally-Controlled NIR Drug Delivery from Biocompatible Nickel-bis(dithiolene) Containing Liposomes
URL : https://hal.archives-ouvertes.fr/hal-01640113

S. Cammas, I. Renard, V. Langlois, . Ph, and . Guérin, Poly(??-malic acid): obtaining high molecular weights by improvement of the synthesis route, Polymer, vol.37, issue.18, pp.4215-4220, 1996.
DOI : 10.1016/0032-3861(96)00204-2

R. Perochon, L. Piekara-sady, W. Jurga, R. Clérac, and M. Fourmigué, Amphiphilic paramagnetic neutral gold dithiolene complexes, Dalton Transactions, vol.32, issue.16, pp.3052-3061, 2009.
DOI : 10.1039/b820819k

URL : https://hal.archives-ouvertes.fr/hal-00389629

O. Thioune, H. Fessi, J. P. Devissaguet, and F. Puisieux, Preparation of pseudolatex by nanoprecipitation: Influence of the solvent nature on intrinsic viscosity and interaction constant, International Journal of Pharmaceutics, vol.146, issue.2, pp.233-238, 1997.
DOI : 10.1016/S0378-5173(96)04830-2

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, Journal of Immunological Methods, vol.65, issue.1-2, pp.55-63, 1983.
DOI : 10.1016/0022-1759(83)90303-4

D. K. Roper, W. Ahn, and M. Hoepfner, Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles, The Journal of Physical Chemistry C, vol.111, issue.9, pp.3636-3641, 2007.
DOI : 10.1021/jp064341w

URL : http://europepmc.org/articles/pmc2583113?pdf=render