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Abstract: The higher reactivity of C4-H bond as compared to C5-H bond of 1,2,3-trifluorobenzene in palladium-catalyzed
direct arylation allows the selective synthesis of 4-aryl-1,2,3-trifluorobenzenes in moderate to high yields. In most cases,
phosphine-free Pd(OAc), catalyst and inexpensive KOAc base were employed. Then, from these 4-aryl-1,2,3-
trifluorobenzenes, the palladium-catalyzed C-H bond functionalization of the C6-position allows the synthesis of the

corresponding 4,6-diarylated 1,2,3-trifluorobenzenes. We also applied these reaction conditions to the regioselective direct

C3-arylation of 1,2,4-trifluorobenzene.

Introduction

Several bioactive compounds contain a (poly)fluorobiphenyl motif, such as Diflunisal which exhibits analgesic and anti-
inflamatory activity. Therefore, the discovery of simple, but general routes to (poly)fluorobiphenyls has potential for
medicinal chemistry. The Pd-catalyzed direct arylation of a wide variety of (hetero)aromatics, via a C—H bond activation

step, has brought a synthesis revolution in the preparation of bi(hetero)aryls in recent years. Such couplings are very
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attractive, compared to the more classical Pd-catalysed reactions such as Stille, Suzuki or Negishi couplings as they do not

require the preliminary synthesis of organometallic derivatives.' Several examples of metal-catalyzed arylations via a C-H

bond activation® of polyfluorobenzenes with aryl halides have been reported.” Fagnou et al. and a few other groups have

already reported examples of Pd-catalyzed direct arylations of tetra-and penta-fluorobenzenes.*® They observed that the C-H

bonds flanked by two fluoro substituents such as in pentafluorobenzene, 1,2,4,5-tetrafluorobenzene or even 1,3,5-

trifluorobenzene, could be easily arylated with aryl halides.** 1In contrast, to our knowledge, a single example of metal-

catalyzed direct arylation of 1,2,3-trifluorobenzene has been reported (Scheme 1, top).” For this reaction, Larrosa et al.

employed [Ru(-BuCN)¢][BF4], as the catalyst and (NMey)(4-FCsH4CO,) (0.35 equiv.), (NMey)OPiv (0.4 equiv.),

(NMe4)(OC(CF3);) (2.5 equiv) as additives. The coupling product was obtained as a mixture of two regioisomers (C4:C5

77:23) in 29 % yield. To our knowledge, the regioselective metal-catalyzed direct arylation of 1,2,3-trifluorobromobenzene

has not yet been described (Scheme 1, bottom).

[Previous work” )
H H

Me
@ ) ~ )
F F

[Ru(t-BuCN)g][BF4l2 4 mol%
G G 6 412 Me

10 equiv.  (NMe4)(4-FCgH4CO,) (0.35 equiv.), 229,
+ (NMe,4)OPiv (0.4 equiv.), . Me
Me  (NMe4)(OC(CF 3)3) (2.5 equiv),

F
tBUCN (3 equiv.), 115 °C, 16 h ¢ Q
Br
9 F

. 7% e

o - A
® B Pd(OAC)22moI%¥ F O O

1.5 equiv. KOPiv (2 equiv.),

N DMA, 150 °C, 16 h FF
Br@ PACI(C3Hs)(dppb) 2 mol%,| A5
R KOPIv (2 equiv.), DMA,
150 °C, 16 h

Scheme 1. Metal-catalyzed arylations of 1,2,3-trifluorobenzene
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As the discovery of an effective method, for the arylation of such trifluorobenzene derivatives, especially using easily
available catalyst and base is highly desirable, the reactivity and regioselectivity for direct arylation using 1,2,3-
trifluorobromobenzene in the presence of palladium catalysts needed to be investigated. Here, we report (i) on the
regioselectivity of the palladium-catalyzed direct arylation of 1,2,3-trifluorobenzene using a low loading of a phosphine-free
palladium catalyst; (ii) on the scope of the reaction; (iii) on the subsequent reactivity of these 4-aryl-1,2,3-trifluorobenzenes
in Pd-catalysed C-H bond functionalization; and (iv) on the reactivity in direct arylation of 1,2,4-trifluorobenzene using a

phosphine-free catalyst.

The free energy of activation for direct arylation in the presence of palladium-catalysts via Concerted Metalation
Deprotonation (CMD)**pathway for several poly(fluoro)benzenes has been calculated by Gorelsky (Figure 1). C-H bonds
flanked by two fluoro-substituents such as in pentafluorobenzene, 1,3,5-trifluorobenzene or even 1,3-difluorobenzene are
generally very reactive, as their energy of activation is quite low (<26 kcal mol™). Conversely, for 1,2,3-trifluorobenzene, the
energy of activation of the C-H bonds adjacent to one fluorine atom is higher (28.8 kcal mol™), and the other C-H bond has
an energy of activation of 31.7 kcal mol™. Therefore, due to the lower energy of activation of the C-H bonds adjacent to one
fluorine atoms of 1,2,3-trifluorobenzene, for reactions which proceed via a Pd-catalyzed CMD mechanism, we expected to be

able to control the regioselectivity of their functionalization using Pd-catalysis instead of Ru-catalysis.

R F H F
F H F H
21.9 24.5
FF H F
290(H F R F
32.4(H H F@—H 28.8
25.4

H F H H 31.7
Figure 1. Free energy of activation (AG*yg, keal mol™') for direct arylation via the CMD pathway involving an

acetate ligand with the [Pd(C¢Hs)(PMe;)(OAc)] catalyst.8

Results and discussion

4-Bromopropiophenone (1 equiv.) and 1,2,3-trifluorobenzene (1.5 equiv.) were employed as model substrates for our study
(Table 1). We initially examined the influence of the nature of the base on the aryl bromide conversion and on the

regioselectivity of the reaction using 2 mol% Pd(OAc), catalyst and DMA as the solvent. We had previously observed that
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this catalyst precursor associated to this solvent promoted the coupling of several polyfluorobenzenes with aryl bromides in

high yields."” Cs,CO;, K,CO; or NaOAc bases, led to high conversions of 4-bromopropiophenone, but the desired product

1a was only obtained in trace amount (Table 1, entries 1-3). The use of the acetate salts, KOAc or CsOAc, afforded 1a in

higher yields; however, the yields remained moderate, even when an higher catalyst loading (5 mol%) or a palladium-

diphosphine catalyst were used (Table 1, entries 4-7). PivOK was found to be the most effective base for this reaction, as 1a

was obtained in 41% yield (Table 1, entry 8). The good performance of pivalate as base/ligand is consistent with a CMD

pathway.*’ Finally, the use of 3 equiv. of 1,2,3-trifluorobenzene in the presence of 2 mol% Pd(OAc), catalyst and PivOK as

base in DMA afforded 1a in 54% yield (Table 1, entry 11). In all cases, the 4,6-diarylated 1,2,3-trifluorobenzene 1b was

produced in very low yields (<10%) and C5-arylated 1,2,3-trifluorobenzene was not detected.

Table 1: Influence of the reaction conditions on the Pd-catalyzed C4-arylation

of 1,2,3-trifluorobenzene with 4-bromopropiophenone

Br

Entry Catalyst (mol%) Solvent Base  Conv. Ratio 1a:1b Yield
(%) in 1la

(%)

1 Pd(OAc), (2) DMA Cs,CO5; 100 0:0 0

2 Pd(OAc),(2) DMA K,CO; 100 100:0 <5

3 Pd(OAc),(2) DMA NaOAc 100 100:0 <5

4 Pd(OAc), (2) DMA KOAc 100 93:.7 31

5 Pd(OAc), (5) DMA KOAc 88 100:0 21

6 Pd(OAc), (2) DMA CsOAc 50 98:2 14

7 PdCI(C;Hs)(dppb) (2) DMA KOAc 100 100:0 24

8 Pd(OAc), (2) DMA KOPiv 100 91:9 41

9 Pd(OAc), (2) DMF KOAc 100 100:0 8

10  Pd(OAc), (2) DMA KOAc 100 937 37°

11  Pd(OAc), (2) DMA KOPiv 100 95:5 54°

Conditions: 4-Bromopropiophenone (1 equiv.), 1,2,3-trifluorobenzene (1.5 equiv.), base

(2 equiv.), 16 h, 150 °C, conversion of 4-bromopropiophenone, isolated yields. * 3 equiv.

of 1,2,3-trifluorobenzene.
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Then, 1,2,3-trifluorobenzene was coupled with a set of (hetero)aryl bromides in the presence of 2 mol% Pd(OAc),,
KOPiv as the base in DMA (Scheme 2). Very regioselective C4-arylations and quite good yields in 2-7 were obtained using
aryl bromides bearing nitro, cyano, formyl, acetyl, ester or trifluoromethyl para-substitutents. In all cases, a regioselective
arylation at the C-H adjacent to a C-F bond was observed, and low amounts of diarylated 1,2,3-trifluorobenzene were
observed by GC/MS and "H NMR analysis of the crude mixtures. Similar yields were obtained for the coupling of the
electron-rich aryl bromides, 4-bromotoluene and 4-bromoanisole with 1,2,3-trifluorobenzene to give 8 and 9 in 48% and 64%
yield, respectively. Nitro-, nitrile-, formyl-, acetyl- and ester-substituents at meta-position on the aryl bromides were also
tolerated giving access to 10-14 in 40-67% yield. Reactions with the more hindered substrates, 2-bromobenzonitrile and 1-
bromonaphthalene were also successful. The use of the N-containing heterocycles, 3-bromopyridine and 3-bromoquinoline
afforded the desired C4-arylated trifluorobenzene derivatives 17 and 18 in 64% and 72% yields, respectively. In all cases, no
formation of the C5-arylated 1,2,3-trifluorobenzenes was detected by GC/MS analysis of the crude mixture. It should be
noted that in a few cases such as for the preparation of 3, 4 and 15, the use of KOAc as base led to higher yields than with

PivOK, due to cleaner reactions.

H
F H R
F F Pd(OAc), 2mol%_ ¢ Q 0
3 equiv. KOPiv (2 equiv.),
+ DMA, 150 °C, 16 h F F

o~
R R Yield (%)

#NO, 2 37,34 F O O
4'-CN 3 51, 57*

4-CHO 4 4#1,52* F F O
4-COMe 5 52 16 56%
4-CO.Et 6 53 =N
4CF; 7 55 F

4'-Me 8 48 \_7
4'-MeO 9 o4 F F

3-NO, 10 60 17 64%
3'-CN 11 67, 57** N

3-CHO 12 40 . O
3'COMe 13 54 \
3-CO,Me 14 60 ¢ %

2'-CN 15 54, 68 18 72%

*: KOAc (2 equiv.), 1,2,3-trifluorobenzene (1.5 equiv.)
**. KOACc (2 equiv.), 1,2,3-trifluorobenzene (3 equiv.)

Scheme 2. Scope of the C4-arylation of 1,2,3-trifluorobenzene
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The one pot synthesis of 4,6-diarylated 1,2,3-trifluorobenzene from 1,2,3-trifluorobenzene was then examined (Scheme 3).
As seen in the table 1 and in the scheme 2, the 4,6-diarylation of this trifluorobenzene derivative using only one equiv. of aryl
bromide is generally observed in trace amount, revealing that the second arylation is much slower than the first one. The use
of an excess of the electron-rich aryl bromides, 4-bromotoluene and 4-bromoanisole (3 equiv.) in the presence of 2 mol%
Pd(OACc), catalyst afforded the desired product 19 and 20 in 63% and 31% yields, respectively. Lower yields in 21 and 22
were obtained from 2-bromobenzonitrile and 1-bromonaphthalene. In all cases, no arylation at the C5-position of 1,2,3-

trifluorobenzene was detected.

F F Pd(OAc), 2 mol% R Yield (%)

N KOPiv (3 equiv.), 4-Me ;g 63
DMA, 150 °C, 16 h  4-MeO 31

2-CN 21 16
Br
R
3 equiv. O

22 23%

Scheme 3. Scope of the one pot 4,6-diarylation of 1,2,3-trifluorobenzene

Then, the reactivity for C6-arylation, via a C-H bond activation of the trifluorobenzene moiety of some of the previously
obtained C4-arylated trifluorobenzene derivatives was evaluated (Scheme 4). The reaction of 9 with 4-bromobenzonitrile
using 5 mol% PdCI(C;Hs)(dppb) catalyst and KOPiv as base afforded 23 in 48% yield; whereas the use of Pd(OAc), catalyst
led to a low yield. From 8 and 4-bromobenzonitrile, under the same conditions, the desired product 24 was obtained in 51%
yield. Conversely, the reaction of 3 and 4-bromotoluene was quite sluggish affording 24 in <10% yield revealing that 1,2,3-
trifluorobenzene derivatives bearing an electron-deficient benzene unit at C4-position are poorly reactive for C6-arylation.
Therfore, for the preparation of non-symmetrically substituted 4,6-diaryl-1,2,3-trifluorobenzenes, the most electron-rich arene

should be introduced in the first step.
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H
PACICaHs)dppb)  F Q O R
F F 5 mol% .

3,80r9 KOPiv (2 equiv.), F F

DMA, 150 °C, 16 h R R' Yield (%)

11 MeO CN 23 48
Br@R‘ Me CN 24 51

12 CN Me 24 <10

1.5 equiv. Me NO, 25 37
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Scheme 4. Scope of the C6-arylation of 1,2,3-trifluoro-4-aryl-benzenes

The reactivity of two 1,2,3-trifluorobenzene derivatives bearing a functional group at C4-position was also studied (Scheme
5). For the coupling reactions with 1-methoxy-2,3,4-trifluorobenzene, both C5 and C6 positions might have been arylated
(Scheme 5, top). However, with both 2-bromobenzonitrile and 3-bromopyridine, only the C-H bond adjacent to one fluorine
25 atom was arylated to give 26 and 27 in 61% and 48% yields, respectively. This is certainly due to the higher acidity of this
27 position. Conversely, the reaction of 2,3,4-trifluoroaniline, under the same reaction conditions, gave no coupling product;
29 whereas, the use of the thermally more stable catalyst PACI(C;Hs)(dppb)'? associated to KOAc as base led exclusively to the
31 amination product 28 in low yield (Scheme 5, bottom). This amination product 28 could be obtained in a higher yield of 62%

33 using Cs,COs as base.
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MeQ NC

Q ~=0)
Pd(OAc), 2 mol%

F F 26 61%
KOPiv (2 equiv.), MeO
DMA, 150 °C, 16 h —N

+
F
Br@ or gl \ \ 7
—N F F 27 48%

NC

Q F
PdCI(C3Hs)(dppb)

F F Not detected

1. 5 equiv.

2 mol%
1.5 equiv. KOACc (2 equiv.),

DMA, 150 °C, 16 h
o)
NC

Scheme 5. Reactivity of 1-methoxy-2,3,4-trifluorobenzene and 2,3,4-trifluoroaniline

NH

M ;O
pd

*: 2 equiv. of F F
Cs,COzas base 28 24% 62%*

Very few results concerning the Pd-catalyzed direct C3-arylation of 1,2,4-trifluorobenzene,’ especially using aryl halides as
aryl source,” have been reported so far. A single example was reported by Cazin et al. in 2014.” They described that from
this trifluorobenzene derivative and 4-bromotoluene, using a dual metal system involving Cu(Cl)(NHC) and
Pd(Cl)(cinnamyl)(NHC) as catalyst, the C3-arylated trifluorobenzene could be obtained in good yield. As our “ligand-free”
catalytic system was quite efficient for the regioselective C4-arylation of 1,2,3-trifluorobenzene, we also investigated its
efficiency for the arylation of 1,2,4-trifluorobenzene (Scheme 6). In all cases, we observed a highly regioselective arylation
at C3-position of 1,2,4-trifluorobenzene, as no other regioisomers could be detected by GC/MS analysis of the crude
mixtures. Both electron-donating and electron-withdrawing sustituents on the aryl bromide were tolerated affording the
desired products 29-34 in 53-70% yields. From 3-bromopyridine and 3-bromoquinoline, the expected products 35 and 36
were also regioselectively obtained in good yields. For most of these reactions, the formation of side-products in low yields
arising from the aryl-bromides homo-coupling and from the diarylation of 1,2,4-trifluorobenzene was also observed by

GC/MS analysis of the crude mixtures.
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: Oaw.
R

" i 0 F F
1.5 equiv. Pd(OAc)2 2 mol%_

- Yield (%)
KOAc (2 equiv.), 3
DMA, 150 °C, 16 h 4NO2 29 53,66

4-CN 30 70
9 Br@ 4-CHO 31 56, 53*
R 4-COMe 32 60

4-Me 33 61
2-CN 34 59
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F F
—N =N
17 F F FF

18 35 72% 36 58%
19 *: KOPiv (2 equiv.), 1,2,4-trifluorobenzene (2 equiv.)

Scheme 6. Scope of the C3-arylation of 1,2,4-trifluorobenzene

24 In summary, the use of a Pd-catalyst instead of a Ru-catalyst for the direct arylation of 1,2,3-trifluorobenzene allowed its
26 regioselective functionalization at C4-position. We demonstrated that, using only 2 mol% of easily available Pd(OAc),
28 catalyst precursor and KOAc or KOPiv as inexpensive bases, a wide variety of 4-(hetero)arylated 1,2,3-trifluorobenzenes can
30 be obtained with high regioselectivities and good yields. This strategy allowed the straightforward synthesis of C4-arylated
32 1,2,3-trifluorobenzenes in only one step from commercially available compounds. The access to a few symmetrical and non-
34 symmetrical 4,6-diaryl-1,2,3-trifluorobenzenes in moderate yields via successive C-H bond functionalizations is also
described. This “phosphine-free” catalyst procedure was also successfully employed for the regioselective C3-arylation of

1,2,4-trifluorobenzene.
41 Experimental section

45 General procedure for palladium-catalyzed direct (di)arylations of trifluorobenzenes

47 The reaction of the aryl bromide, trifluorobenzene derivative and KOPiv or KOAc in the presence of Pd(OAc), or
49 PdCI(C3Hs)(dppb)™® (see schemes) at 150 °C during 16 h in DMA (4 mL) under argon affords the coupling
51 products 1-36 after evaporation of the solvent and purification on silica gel. Eluent heptane:ethyl acetate 9:1 for
compounds 1-6, 10-15, 20, 21, 23-26, 28, 30-32, 34; heptane:ethyl acetate 4:1 for compounds 17, 18, 35, 36;

heptane:ethyl acetate 1:1 for compound 27; heptane for compounds 7-9, 16, 19, 22, 29, 33.

58 1-(2',3",4'-Trifluoro-[1,1"-biphenyl]-4-yl)propan-1-one (1a)
60 ACS Paragon Pﬁjs Environment
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From 4-bromopropiophenone (0.213 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2
mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 1a was
obtained in 54% yield (0.142 g) as a white solid: mp 89-92 °C.

'H NMR (400 MHz, CDCl5): § 8.05 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.23-7.02 (m, 2H), 3.03 (q, J = 7.6
Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H). °C NMR (100 MHz, CDCl5): § 200.2, 150.9 (ddd, J = 251.8, 10.0, 3.0 Hz), 148.8
(ddd, J = 252.6, 10.7, 3.3 Hz), 140.2 (dt, J = 251.7, 15.5 Hz), 138.4, 136.4, 129.0 (d, J = 3.0 Hz), 128.3, 125.6 (dd,
J =10.5, 3.7 Hz), 123.8 (m), 112.5 (dd, J = 17.5, 4.0 Hz), 31.9, 8.23. Anal. Calcd for C4sH/F30 (264.25): C,
68.18; H, 4.20. Found: C, 67.98; H, 4.00.

4,4"-Di(propionyl)-4',5",6'-trifluoro-1,1":3',1"-terphenyl (1b) was also isolated in low yield: 'H NMR (400 MHz,
CDCls): 6 8.07 (d, J = 8.5 Hz, 4H), 7.64 (d, J = 8.5 Hz, 4H), 7.30 (td, J = 7.7, 2.3 Hz, 1H), 3.05 (q, J = 7.5 Hz, 4H),

1.26 (t, J = 7.5 Hz, 6H).

2,3,4-Trifluoro-4'-nitro-1,1"-biphenyl (2)

From 4-bromonitrobenzene (0.202 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2 mmol)
in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 2 was obtained in
37% yield (0.093 g) as a yellow solid: mp 145-148 °C.

'H NMR (400 MHz, CDCl3): 6 8.32 (d, J = 8.7 Hz, 2H), 7.68 (d, J = 8.7 Hz, 2H), 7.25-7.04 (m, 2H). *C NMR (100
MHz, CDCl3): 6 151.4 (ddd, J = 253.1, 10.0, 3.1 Hz), 148.9 (ddd, J = 253.0, 10.0, 3.4 Hz), 147.6 (m), 140.5 (dt, J =
252.6, 15.5 Hz), 140.4, 129.7 (d, J = 3.1 Hz), 124.5 (dd, J = 10.5, 3.9 Hz), 123.9, 123.8 (m), 112.8 (dd, J = 17.6,

4.0 Hz). Anal. Calcd for C4,HgF3NO, (253.18): C, 56.93; H, 2.39; N, 5.53. Found: C, 56.98; H, 2.21; N, 5.78.

2',3",4'-Trifluoro-[1,1'-biphenyl]-4-carbonitrile (3)

From 4-bromobenzonitrile (0.182 g, 1 mmol), 1,2,3-trifluorobenzene (0.198 g, 1.5 mmol), KOAc (0.196 g, 2 mmol)
in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 3 was obtained in
57% yield (0.133 g) as a white solid: mp 132-135 °C.

'H NMR (400 MHz, CDCl3): 6 7.75 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.3 Hz, 2H), 7.22-7.03 (m, 2H). "*C NMR (100
MHz, CDCl3): 6 151.1 (ddd, J = 251.3, 10.1, 3.0 Hz), 148.8 (ddd, J = 252.6, 10.7, 3.3 Hz), 140.4 (dt, J = 252.4,
15.5 Hz), 138.6, 132.5, 129.5 (d, J = 3.1 Hz), 124.8 (dd, J = 10.4, 3.7 Hz), 123.8 (m), 118.4, 112.7 (dd, J = 17.5,

4.1 Hz), 112.1. Anal. Calcd for C13HgsF3N (233.19): C, 66.96; H, 2.59; N, 6.01. Found: C, 66.70; H, 2.41; N, 6.12.

2',3",4'-Trifluoro-[1,1'-biphenyl]-4-carbaldehyde (4)
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From 4-bromobenzaldehyde (0.185 g, 1 mmol), 1,2,3-trifluorobenzene (0.198 g, 1.5 mmol), KOAc (0.196 g, 2
mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 4 was
obtained in 52% yield (0.123 g) as a white solid: mp 153-156 °C.

'H NMR (400 MHz, CDCl5):  10.08 (s, 1H), 7.97 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.23-7.04 (m, 2H).
3C NMR (100 MHz, CDCl5): 6 191.7, 151.0 (ddd, J = 252.2, 10.3, 3.0 Hz), 148.9 (ddd, J = 252.9, 10.7, 3.3 Hz),
140.3 (dt, J = 252.1, 15.5 Hz), 140.0, 135.9, 130.0, 129.5 (d, J = 3.0 Hz), 125.5 (dd, J = 10.5, 3.7 Hz), 123.9 (m),
112.5 (dd, J = 17.4, 4.1 Hz). Anal. Calcd for C43H,F30 (236.19): C, 66.11; H, 2.99 66.30; H, 3.21.
4,4"-Di(formyl)-4',5',6'-trifluoro-1,1":3',1"-terphenyl was also isolated in low yield in an impure form: H NMR

(400 MHz, CDCly): § 10.07 (s, 2H), 7.98 (d, J = 8.2 Hz, 4H), 7.71 (d, J = 8.2 Hz, 4H), 7.32 (td, J = 7.7, 2.3 Hz, 1H).

1-(2',3',4'-Trifluoro-[1,1'-biphenyl]-4-yl)ethan-1-one (5)

From 4-bromoacetophenone (0.199 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2
mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 5§ was
obtained in 52% vyield (0.130 g) as a white solid: mp 69-72 °C.

'H NMR (400 MHz, CDCl3): & 8.05 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.23-7.04 (m, 2H), 2.65 (s, 3H).
3C NMR (100 MHz, CDClg): & 197.5, 150.9 (ddd, J = 251.8, 10.0, 3.0 Hz), 148.8 (ddd, J = 252.6, 10.7, 3.3 Hz),
140.4 (dt, J = 251.8, 15.5 Hz), 138.7, 136.6, 129.0 (d, J = 3.0 Hz), 128.7, 125.6 (dd, J = 11.0, 3.7 Hz), 123.8 (m),

112.5 (dd, J = 17.4, 4.0 Hz), 26.7. Anal. Calcd for C14HgF30 (250.22): C, 67.20; H, 3.63; found: C, 67.34; H, 3.80.

Ethyl 2',3",4'-trifluoro-[1,1'-biphenyl]-4-carboxylate (6)

From ethyl 4-bromobenzoate (0.229 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2
mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 6 was
obtained in 53% vyield (0.148 g) as a white solid: mp 81-84 °C.

'H NMR (400 MHz, CDCl,): & 8.12 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.21-7.02 (m, 2H), 4.41 (q, J=7.6
Hz, 2H), 1.42 (t, J = 7.6 Hz, 3H). "®C NMR (100 MHz, CDCl5): § 166.2, 150.9 (ddd, J = 251.5, 10.2, 2.9 Hz), 148.9
(ddd, J = 252.5, 10.6, 3.4 Hz), 140.3 (dt, J = 251.7, 15.5 Hz), 130.2, 129.9, 128.8 (d, J = 3.0 Hz), 125.7 (dd, J =
10.5, 3.8 Hz), 123.9 (m), 112.4 (dd, J = 17.4, 4.0 Hz), 61.2, 14.3. Anal. Calcd for C45H1F30, (280.25): C, 64.29;

H, 3.96; found: C, 64.07; H, 4.11.

2,3,4-Trifluoro-4'-(trifluoromethyl)-1,1"-biphenyl (7)"
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From 4-bromobenzotrifluoride (0.225 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2
mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 7 was
obtained in 55% yield (0.152 g) as a white solid: mp 64-67 °C.

'H NMR (400 MHz, CDCl,): 6 7.72 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 8.2 Hz, 2H), 7.20-7.03 (m, 2H).
4,4"-Di(trifluoromethyl)-4',5',6'-trifluoro-1,1':3',1"-terphenyl was also isolated in low yield: 'H NMR (400 MHz,

CDCls): 5 7.81 (d, J = 8.3 Hz, 4H), 7.74 (d, J = 8.3 Hz, 4H), 7.37 (td, J = 7.7, 2.3 Hz, 1H).

2,3,4-Trifluoro-4'-methyl-1,1"-biphenyl (8)"

From 4-bromotoluene (0.171 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2 mmol) in the
presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 8 was obtained in 48%
yield (0.106 g) as a white oil.

"H NMR (400 MHz, CDCl,): 8 7.41 (d, J = 7.8 Hz, 2H), 7.28 (d, J = 7.8 Hz, 2H), 7.18-6.97 (m, 2H), 2.44 (s, 3H).

2,3,4-Trifluoro-4'-methoxy-1,1"-biphenyl (9)"*

From 4-bromoanisole (0.187 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2 mmol) in the
presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 9 was obtained in 64%
yield (0.152 g) as a white solid: mp 73-76 °C.

'H NMR (400 MHz, CDCly): § 7.43 (d, J = 8.0 Hz, 2H), 7.15-7.07 (m, 1H), 7.05-6.97 (m, 1H), 6.99 (d, J = 8.0 Hz,

2H), 3.86 (s, 3H).

2,3,4-Trifluoro-3'-nitro-1,1"-biphenyl (10)

From 3-bromonitrobenzene (0.202 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2 mmol)
in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 10 was obtained
in 60% yield (0.152 g) as a yellow solid: mp 102-105 °C.

'H NMR (400 MHz, CDCls): 6 8.36 (s, 1H), 8.25 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 8.0 Hz,
1H), 7.24-7.05 (m, 2H). °C NMR (100 MHz, CDCl5): § 151.1 (ddd, J = 252.5, 10.1, 3.0 Hz), 148.7 (ddd, J = 252.5,
10.7, 3.4 Hz), 148.5, 140.2 (dt, J = 252.5, 15.5 Hz), 135.6, 134.8 (d, J = 3.3 Hz), 129.7, 124.3 (dd, J = 10.5, 3.8
Hz), 123.9 (m), 123.7 (d, J = 2.7 Hz), 123.1, 112.7 (dd, J = 17.5, 4.1 Hz).Anal. Calcd for C4,H¢F3;NO, (253.18): C,

56.93; H, 2.39; N, 5.53. Found: C, 56.74; H, 2.24; N, 5.47.

2',3",4'-Trifluoro-[1,1'-biphenyl]-3-carbonitrile (11)
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From 3-bromobenzonitrile (0.182 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2 mmol)
in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 11 was obtained
in 67% vyield (0.156 g) as a white solid: mp 92-95 °C.

'H NMR (400 MHz, CDCl3): 6 7.78 (s, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.58 (t, J = 7.8 Hz,
1H), 7.20-7.04 (m, 2H). °C NMR (100 MHz, CDCl5): § 151.0 (ddd, J = 252.3, 10.1, 3.0 Hz), 148.8 (ddd, J = 252.5,
10.7, 3.4 Hz), 140.1 (dt, J = 252.5, 15.5 Hz), 135.3, 133.1 (d, J = 3.0 Hz), 132.3 (d, J = 2.8 Hz), 131.7, 129.6,
124.4 (dd, J = 10.6, 3.7 Hz), 123.7 (m), 118.3, 113.1, 112.8 (dd, J = 17.5, 4.1 Hz). Anal. Calcd for C43HgF3N
(233.19): C, 66.96; H, 2.59; N, 6.01. Found: C, 66.78; H, 2.69; N, 5.92.
3,3"-Dicyano-4',5',6'-trifluoro-1,1":3",1"-terphenyl was also isolated in low yield: "H NMR (400 MHz, CDCly): 6
7.90 (s, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.79 (d, J = 8.0 Hz, 2H), 7.67 (t, J = 7.8 Hz, 2H), 7.32 (td, J = 7.7, 2.3 Hz,

1H).

2',3",4'-Trifluoro-[1,1'-biphenyl]-3-carbaldehyde (12)

From 3-bromobenzaldehyde (0.185 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2
mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 12 was
obtained in 40% vyield (0.094 g) as a white solid: mp 69-72 °C.

'H NMR (400 MHz, CDCl3): 5 10.08 (s, 1H), 8.00 (s, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.64 (t,
J=7.8Hz, 1H), 7.25-7.14 (m, 1H), 7.13-7.04 (m, 1H). >C NMR (100 MHz, CDCl5): § 191.8, 151.0 (ddd, J = 252.3,
10.1, 3.0 Hz), 148.8 (ddd, J = 252.5, 10.6, 3.3 Hz), 140.4 (dt, J = 252.0, 15.5 Hz), 136.8, 135.1, 134.6 (d, J = 3.1
Hz), 129.8 (d, J = 2.5 Hz), 129.5, 129.4, 125.3 (dd, J = 10.7, 3.7 Hz), 123.8 (m), 112.5 (dd, J = 17.4, 4.1 Hz). Anal.

Calcd for C43H7F30 (236.19): C, 66.11; H, 2.99. Found: C, 66.00; H, 2.87.

1-(2',3',4'-Trifluoro-[1,1'-biphenyl]-3-yl)ethan-1-one (13)

From 3-bromoacetophenone (0.199 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2
mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 13 was
obtained in 54% vyield (0.135 g) as a white solid: mp 92-95 °C.

'H NMR (400 MHz, CDCl3): 6 8.07 (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.56 (t, J = 7.8 Hz,
1H), 7.24-7.13 (m, 1H), 7.13-7.01 (m, 1H), 2.65 (s, 3H). "°C NMR (100 MHz, CDCl,): & 197.6, 150.7 (ddd, J =
251.3, 10.1, 3.0 Hz), 148.8 (ddd, J = 251.8, 10.5, 3.3 Hz), 140.1 (dt, J = 252.0, 15.5 Hz), 137.5, 134.6, 133.3 (d, J
=3.1 Hz), 129.0, 128.6 (d, J = 2.5 Hz), 128.1, 125.7 (dd, J = 10.7, 3.9 Hz), 123.9 (m), 112.4 (dd, J = 17.3, 4.0 Hz),

26.7. Anal. Calcd for C14HgF30 (250.22): C, 67.20; H, 3.63. Found: C, 67.40; H, 3.69.
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Methyl 2',3",4'-trifluoro-[1,1'-biphenyl]-3-carboxylate (14)

From methyl 3-bromobenzoate (0.215 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2
mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 14 was
obtained in 60% yield (0.160 g) as a yellow solid: mp 64-67 °C.

'H NMR (400 MHz, CDCls): 6 8.16 (s, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 7.8 Hz,
1H), 7.23-7.14 (m, 1H), 7.12-7.03 (m, 1H), 3.95 (s, 3H). °C NMR (100 MHz, CDCl3): 5 166.6, 150.7 (ddd, J =
251.0, 10.1, 3.0 Hz), 148.7 (ddd, J = 251.9, 10.5, 3.3 Hz), 140.1 (dt, J = 251.7, 15.5 Hz), 134.4, 133.2 (d, J = 3.1
Hz), 130.8, 129.9 (d, J = 2.3 Hz), 129.3, 128.8, 125.7 (dd, J = 10.7, 3.9 Hz), 123.9 (m), 112.4 (dd, J = 17.3, 4.0

Hz), 52.3. Anal. Calcd for C14HgF30, (266.22): C, 63.16; H, 3.41. Found: C, 63.08; H, 3.34.

2',3",4'-Trifluoro-[1,1'-biphenyl]-2-carbonitrile (15)

From 2-bromobenzonitrile (0.182 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOAc (0.196 g, 2 mmol) in
the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 15 was obtained in
68% vyield (0.158 g) as a yellow solid: mp 121-124 °C.

'H NMR (400 MHz, CDCl,): 6 7.80 (d, J = 8.6 Hz, 1H), 7.69 (t, J = 7.8 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.48 (d, J =
8.2 Hz, 1H), 7.22-7.06 (m, 2H). ">C NMR (100 MHz, CDCl5): § 151.5 (ddd, J = 252.6, 10.1, 3.0 Hz), 148.7 (ddd, J
=252.3,10.7, 3.5 Hz), 140.2 (dt, J = 252.9, 15.5 Hz), 137.5, 133.4, 132.8, 130.9 (d, J = 1.2 Hz), 128.9, 124.8 (m),
123.4 (dd, J = 12.3, 3.7 Hz), 117.6, 112.8, 112.5 (dd, J = 17.6, 4.0 Hz). Anal. Calcd for C43HsF3N (233.19): C,

66.96; H, 2.59; N, 6.01. Found: C, 67.05; H, 2.75; N, 5.80.

1-(2,3,4-Trifluorophenyl)naphthalene (16)

From 1-bromonaphthalene (0.207 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2 mmol)
in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 16 was obtained
in 56% vyield (0.144 g) as a white solid: mp 63-66 °C.

'H NMR (400 MHz, CDCl3): § 7.95 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 1H), 7.60-7.46 (m, 3H), 7.44 (d, J=7.8
Hz, 1H), 7.18-7.06 (m, 2H). °C NMR (100 MHz, CDCl5): & 150.8 (ddd, J = 250.1, 10.1, 2.9 Hz), 149.1 (ddd, J =
250.1, 10.0, 3.4 Hz), 140.1 (dt, J = 251.9, 15.5 Hz), 133.6, 131.9 (d, J = 1.8 Hz), 131.6, 129.1, 128.5, 127.9, 126.6,
125.7, 125.6 (m), 125.3, 125.2, 112.0 (dd, J = 17.3, 4.0 Hz). Anal. Calcd for C4sHoF3 (258.24): C, 74.42; H, 3.51.

Found: C, 74.61; H, 3.34.
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3-(2,3,4-Trifluorophenyl)pyridine (17)

From 3-bromopyridine (0.158 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2 mmol) in
the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 17 was obtained in
64% vyield (0.134 g) as a yellow solid: mp 94-97 °C.

"H NMR (400 MHz, CDCly): § 8.77 (s, 1H), 8.68 (s, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.43 (bs, 1H), 7.21-7.04 (m, 2H).
3C NMR (100 MHz, CDCl3): & 151.0 (ddd, J = 251.8, 10.1, 2.9 Hz), 149.4 (bs), 148.8 (ddd, J = 251.5, 10.0, 3.6
Hz), 140.5 (dt, J = 252.2, 15.5 Hz), 136.1, 130.1, 123.8 (m), 123.4 (bs), 112.6 (dd, J = 17.5, 4.0 Hz). Anal. Calcd

for C11HgF3N (209.17): C, 63.16; H, 2.89; N, 6.70. Found: C, 63.27; H, 2.74; N, 6.57.

3-(2,3,4-Trifluorophenyl)quinoline (18)

From 3-bromoquinoline (0.208 g, 1 mmol), 1,2,3-trifluorobenzene (0.396 g, 3 mmol), KOPiv (0.280 g, 2 mmol) in
the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 18 was obtained in
72% vyield (0.186 g) as a yellow solid: mp 158-161 °C.

'H NMR (400 MHz, CDCl,): 5 9.04 (s, 1H), 8.28 (s, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.77 (t, J
= 7.8 Hz, 1H), 7.60 (t, J = 7.8 Hz, 1H), 7.32-7.22 (m, 1H), 7.16-7.06 (m, 1H). >C NMR (100 MHz, CDCl;): & 151.0
(ddd, J = 250.8, 10.1, 2.9 Hz), 150.8 (m), 148.9 (ddd, J = 252.2, 10.5, 3.6 Hz), 140.3 (dt, J = 252.2, 15.5 Hz),
147.5, 135.6 (d, J = 3.2 Hz), 130.2, 129.3, 128.1, 127.5, 127.3, 127.0, 124.0 (m), 123.5 (dd, J = 11.0, 3.7 Hz),
112.7 (dd, J = 17.5, 4.0 Hz). Anal. Calcd for C4sHgF3N (259.23): C, 69.50; H, 3.11; N, 5.40. Found: C, 69.42; H,

3.04; N, 5.24.

4',5',6'-Trifluoro-4,4"-dimethyl-1,1":3',1"-terphenyl (19)

From 4-bromotoluene (0.513 g, 3 mmol), 1,2,3-trifluorobenzene (0.132 g, 1 mmol), KOPiv (0.420 g, 3 mmol) in the
presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 19 was obtained in 63%
yield (0.196 g) as a white solid: mp 90-93 °C.

"H NMR (400 MHz, CD,Cl,): & 7.43 (d, J = 8.0 Hz, 4H), 7.28 (d, J = 8.0 Hz, 4H), 7.23 (td, J = 7.7, 2.3 Hz, 1H), 2.40
(s, 6H). °C NMR (100 MHz, CD,Cl,): 8 147.5 (ddd, J = 250.2, 10.6, 2.9 Hz), 140.4 (dt, J = 249.0, 16.3 Hz), 138.4,
131.1, 129.4, 128.7 (m), 126.3 (dd, J = 9.6, 5.5 Hz), 124.4 (m), 20.9. Anal. Calcd for CyoH;5F3 (312.34): C, 76.91;

H, 4.84. Found: C, 76.74; H, 5.04.

4'.5',6'-Trifluoro-4,4"-dimethoxy-1,1":3',1"-terphenyl (20)
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From 4-bromoanisole (0.561 g, 3 mmol), 1,2,3-trifluorobenzene (0.132 g, 1 mmol), KOPiv (0.420 g, 3 mmol) in the
presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 20 was obtained in 31%
yield (0.106 g) as a white solid: mp 131-134 °C.

'H NMR (400 MHz, CDCly): § 7.47 (d, J = 8.5 Hz, 4H), 7.19 (td, J = 8.0, 2.2 Hz, 1H), 6.99 (d, J = 8.5 Hz, 4H), 3.86
(s, 6H). °C NMR (100 MHz, CDCl;): & 159.6, 147.2 (ddd, J = 250.4, 10.6, 2.9 Hz), 140.6 (dm, J = 250.0 Hz),
130.0 (m), 126.5, 125.8 (dd, J = 9.2, 5.8 Hz), 123.9 (m), 114.2, 55.4. Anal. Calcd for CyHsF30, (344.33): C,

69.76; H, 4.39. Found: C, 69.58; H, 4.31.

2,2"-Dicyano-4',5",6'-trifluoro-1,1":3',1"-terphenyl (21)

From 2-bromobenzonitrile (0.546 g, 3 mmol), 1,2,3-trifluorobenzene (0.132 g, 1 mmol), KOPiv (0.420 g, 3 mmol)
in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 21 was obtained
in 16% yield (0.053 g) as a yellow solid: mp 192-195 °C.

'H NMR (400 MHz, CDCl,): 6 7.81 (d, J = 8.3 Hz, 2H), 7.72 (t, J = 8.0 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H), 7.56 (t, J =
7.8 Hz, 2H), 7.29 (td, J = 7.7, 2.3 Hz, 1H). °C NMR (100 MHz, CDCl,): & 148.9 (ddd, J = 255.6, 10.8, 3.6 Hz),
140.5 (dt, J = 254.6, 15.7 Hz), 137.0, 133.4, 133.1, 131.1, 129.2, 126.3 (m), 123.2 (dd, J = 10.4, 6.4 Hz), 117.7,

112.8. Anal. Calcd for CyHgF3N, (334.30): C, 71.86; H, 2.71; N, 8.38. Found: C, 71.99; H, 2.59; N, 8.40.

1,1'-(4,5,6-Trifluoro-1,3-phenylene)dinaphthalene (22)

From 1-bromonaphthalene (0.621 g, 3 mmol), 1,2,3-trifluorobenzene (0.132 g, 1 mmol), KOPiv (0.420 g, 3 mmol)
in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 22 was obtained
in 23% yield (0.088 g) as a yellow solid: mp 182-185 °C.

'H NMR (400 MHz, CDCly): 6 7.94 (d, J = 8.0 Hz, 4H), 7.82-7.78 (m, 2H), 7.60-7.48 (m, 8H), 7.26 (td, J = 7.7, 2.3
Hz, 1H). ®C NMR (100 MHz, CDCl5): § 148.5 (ddd, J = 250.9, 10.1, 2.9 Hz), 140.1 (dt, J = 253.9, 17.0 Hz), 133.6,
131.7 (m), 131.6, 129.1, 128.5, 128.1, 127.9, 126.7, 126.2, 125.3, 125.2. Anal. Calcd for CxsH1sF3; (384.40): C,
81.24; H, 3.93. Found: C, 81.40; H, 3.98.

4',5',6'-Trifluoro-4"-methoxy-[1,1":3',1"-terphenyl]-4-carbonitrile (23)
From 4-bromobenzonitrile (0.273 g, 1.5 mmol), 2,3,4-trifluoro-4'-methoxy-1,1'-biphenyl 9 (0.238 g, 1 mmol), KOPiv
(0.280 g, 2 mmol) in the presence of PdCI(CzHs)(dppb) (30.5 mg, 0.05 mmol) in DMA (4 mL) at 150 °C during 16

h, product 23 was obtained in 48% yield (0.163 g) as a white solid: mp 151-154 °C.
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"H NMR (400 MHz, CDCly): § 7.76 (d, J = 8.5 Hz, 2H), 7.66 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 7.23 (td, J
= 7.8, 2.3 Hz, 1H), 7.00 (d, J = 8.5 Hz, 2H), 3.87 (s, 3H). °C NMR (100 MHz, CDCls): 5 159.9, 148.3 (ddd, J =
253.1, 10.6, 2.8 Hz), 147.4 (ddd, J = 252.7, 11.2, 2.7 Hz), 140.7 (dt, J = 251.7, 16.1 Hz), 138.7, 132.5, 130.0 (d, J
= 2.8 Hz), 129.5 (d, J = 2.9 Hz), 126.7 (dd, J = 11.0, 4.1 Hz), 125.8, 124.2 (dd, J = 11.3, 4.2 Hz), 124.1 (m), 118.5,
114.3, 112.1, 55.4. Anal. Calcd for CoH1,FsNO (339.32): C, 70.80; H, 3.56; N, 4.13. Found: C, 71.07; H, 3.39; N,
4.40.

4'.5',6'-Trifluoro-4"-methyl-[1,1":3",1"-terphenyl]-4-carbonitrile (24)

From 4-bromobenzonitrile (0.273 g, 1.5 mmol), 2,3,4-trifluoro-4'-methyl-1,1'-biphenyl 8 (0.222 g, 1 mmol), KOPiv
(0.280 g, 2 mmol) in the presence of PdCI(C3Hs)(dppb) (30.5 mg, 0.05 mmol) in DMA (4 mL) at 150 °C during 16
h, product 24 was obtained in 51% yield (0.164 g) as a white solid: mp 167-170 °C.

'H NMR (400 MHz, CDCly): § 7.76 (d, J = 8.5 Hz, 2H), 7.66 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 8.5 Hz, 2H), 7.27 (d, J
= 8.5 Hz, 2H), 7.24 (td, J = 7.8, 2.3 Hz, 1H), 2.42 (s, 3H). °C NMR (100 MHz, CDCl5): & 148.5 (ddd, J = 253.4,
10.6, 2.9 Hz), 147.6 (ddd, J = 253.0, 10.2, 2.9 Hz), 140.7 (dt, J = 251.9, 16.0 Hz), 138.7 (m), 132.5, 130.6, 129.5
(m), 128.6 (d, J = 2.7 Hz), 127.0 (dd, J = 11.0, 4.1 Hz), 124.3 (m), 118.5, 112.2, 21.2. Anal. Calcd for CyH12F3N

(323.32): C, 74.30; H, 3.74; N, 4.33. Found: C, 74.41; H, 3.78; N, 4.60.

4'.5',6'-Trifluoro-4-methyl-4"-nitro-1,1":3',1"-terphenyl (25)

From 4-bromonitrobenzene (0.303 g, 1.5 mmol), 2,3,4-trifluoro-4'-methyl-1,1'-biphenyl 8 (0.222 g, 1 mmol), KOPiv
(0.280 g, 2 mmol) in the presence of PdCI(C3Hs)(dppb) (30.5 mg, 0.05 mmol) in DMA (4 mL) at 150 °C during 16
h, product 25 was obtained in 37% yield (0.127 g) as a yellow solid: mp 150-153 °C.

'H NMR (400 MHz, CD,Cl,): 6 8.30 (d, J = 8.5 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 7.35-7.27
(m, 3H), 2.40 (s, 3H). °C NMR (100 MHz, CD,Cl,): § 148.6 (ddd, J = 253.9, 10.6, 2.9 Hz), 147.6, 147.5 (ddd, J =
252.3, 11.0, 2.9 Hz), 140.6 (dt, J = 250.9, 16.0 Hz), 140.5, 138.8, 130.6, 129.8 (d, J = 3.0 Hz), 129.5, 128.6 (d, J =
2.2 Hz), 127.0 (dd, J = 11.0, 4.2 Hz), 124.6 (m), 124.0 (dd, J = 10.4, 4.4 Hz), 123.8, 20.9. Anal. Calcd for

C19H12F3NO, (343.31): C, 66.47; H, 3.52; N, 4.08. Found: C, 66.57; H, 3.41; N, 3.79.

2',3",4'-Trifluoro-5'-methoxy-[1,1'-biphenyl]-2-carbonitrile (26)
From 2-bromobenzonitrile (0.182 g, 1 mmol), 1,2,3-trifluoro-4-methoxybenzene (0.243 g, 1.5 mmol), KOPiv (0.280
g, 2 mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 26

was obtained in 61% yield (0.160 g) as a white solid: mp 128-131 °C.
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"H NMR (400 MHz, CDCly): § 7.80 (d, J = 8.6 Hz, 1H), 7.67 (t, J = 7.8 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.50 (d, J =
8.2 Hz, 1H), 6.78 (td, J = 6.3, 2.4 Hz, 1H), 3.93 (s, 3H). °C NMR (100 MHz, CDCl,): & 144.8 (m), 142.8 (ddd, J =
2455, 11.2, 1.7 Hz), 142.3 (ddd, J = 253.1, 11.7, 1.9 Hz), 141.2 (ddd, J = 251.3, 16.7, 13.0 Hz), 137.5, 133.5,
132.8, 131.0 (m), 128.9, 121.1 (dd, J = 12.7, 4.5 Hz), 117.7, 112.8, 108.5 (m), 57.1. Anal. Calcd for C1sHsFsNO

(263.22): C, 63.88; H, 3.06; N, 5.32. Found: C, 64.11; H, 3.00; N, 5.07.

3-(2,3,4-Trifluoro-5-methoxyphenyl)pyridine (27)

From 3-bromopyridine (0.158 g, 1 mmol), 1,2,3-trifluoro-4-methoxybenzene (0.243 g, 1.5 mmol), KOPiv (0.280 g,
2 mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 27 was
obtained in 48% yield (0.115 g) as a yellow solid: mp 142-145 °C.

'H NMR (400 MHz, CDCly): & 8.77 (bs, 1H), 8.67 (bs, 1H), 7.84 (d, J = 7.3 Hz, 1H), 7.42 (bs, 1H), 6.75 (t, J = 6.3
Hz, 1H), 3.94 (s, 3H). "°C NMR (100 MHz, CDCl,): & 149.3, 145.1 (dt, J = 8.2, 2.8 Hz), 143.1 (ddd, J = 245.5, 11.6
Hz), 141.7 (ddd, J = 252.5, 11.7, 2.7 Hz), 141.2 (ddd, J = 251.3, 17.0, 13.0 Hz), 136.3, 130.4, 123.5, 121.1 (d, J =
10.5, 2.9 Hz), 107.6, 57.1. Anal. Calcd for C4,HgF3;NO (239.20): C, 60.26; H, 3.37; N, 5.86. Found: C, 60.07; H,
3.24; N, 5.68.

2-((2,3,4-Trifluorophenyl)amino)benzonitrile (28)

From 2-bromobenzonitrile (0.182 g, 1 mmol), 2,3,4-trifluoroaniline (0.220 g, 1.5 mmol), KOAc (0.196 g, 2 mmol) in
the presence of PdCI(C3Hs)(dppb) (12.2 mg, 0.02 mmol), in DMA (4 mL) at 150 °C during 16 h, product 28 was
obtained in 24% yield (0.059 g) as a yellow solid: mp 123-126 °C.

'H NMR (400 MHz, CDCly): 6 7.54 (dd, J = 8.2, 1.6 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.10-6.96 (m, 3H), 6.93 (d, J
=7.1 Hz, 1H), 6.13 (s, 1H). "°C NMR (100 MHz, CDCl,): & 148.0 (ddd, J = 248.0, 10.2, 2.5 Hz), 146.2, 145.2 (ddd,
J=250.1,11.1, 3.2 Hz), 140.6 (ddd, J = 252.6, 16.0, 13.9 Hz), 134.1, 133.2, 125.5 (dd, J = 9.4, 3.6), 120.5, 117.4
(ddd, J=7.5,3.7, 0.8 Hz), 117.0, 114.4, 111.8 (dd, J = 18.2, 4.1 Hz), 99.6. Anal. Calcd for C43H,F3N, (248.21): C,

62.91; H, 2.84; N, 11.29. Found: C, 62.99; H, 2.90; N, 11.47.

2,3,6-Trifluoro-4'-nitro-1,1'-biphenyl (29)"°
From 4-bromonitrobenzene (0.202 g, 1 mmol), 1,2,4-trifluorobenzene (0.198 g, 1.5 mmol), KOAc (0.196 g, 2
mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 29 was

obtained in 53% yield (0.134 g) as a white solid: mp 127-130 °C.

ACS Paragon P‘§s Environment



Page 19 of 23

oNOYTULT D WN =

"H NMR (400 MHz, CDCl): & 8.34 (d, J = 8.7 Hz, 2H), 7.67 (d, J = 8.7 Hz, 2H), 7.30-7.17 (m, 1H), 7.06-6.94 (m,
1H). *C NMR (100 MHz, CDCl,): 5 154.8 (ddd, J = 247.0, 4.5, 3.0 Hz), 147.9, 147.6 (dm, J = 252.2 Hz), 147.5
(dm, J = 246.1 Hz), 135.0 (d, J = 1.9 Hz), 131.3 (t, J = 2.1 Hz), 123.6, 118.1 (dd, J = 20.2, 14.0 Hz), 117.3 (ddd, J

=19.5,10.0, 1.6 Hz), 111.4 (ddd, J = 25.0, 6.6, 4.2 Hz).

2',3',6'-Trifluoro-[1,1'-biphenyl]-4-carbonitrile (30)"

From 4-bromobenzonitrile (0.182 g, 1 mmol), 1,2,4-trifluorobenzene (0.198 g, 1.5 mmol), KOAc (0.196 g, 2 mmol)
in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 30 was obtained
in 70% vyield (0.163 g) as a white solid: mp 143-146 °C.

'H NMR (400 MHz, CDCl5): 8 7.76 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H), 7.27-7.16 (m, 1H), 7.04-6.94 (m,
1H). *C NMR (100 MHz, CDCl3): & 154.8 (ddd, J = 246.8, 4.4, 2.9 Hz), 147.6 (dm, J = 252.2 Hz), 147.5 (dm, J =
246.1 Hz), 133.1 (d, J = 1.8 Hz), 132.2, 131.0 (t, J = 2.2 Hz), 118.4, 118.3 (dd, J = 20.1, 14.6 Hz), 117.1 (ddd, J =

19.5, 10.0, 1.5 Hz), 112.6, 111.4 (ddd, J = 25.1, 6.7, 4.3 Hz).

2',3',6'-Trifluoro-[1,1"-biphenyl]-4-carbaldehyde (31)

From 4-bromobenzaldehyde (0.185 g, 1 mmol), 1,2,4-trifluorobenzene (0.198 g, 1.5 mmol), KOAc (0.196 g, 2
mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 31 was
obtained in 56% yield (0.132 g) as a white solid: mp 100-103 °C.

'H NMR (400 MHz, CDCl5): & 10.07 (s, 1H), 7.98 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 8.3 Hz, 2H), 7.24-7.11 (m, 1H),
7.00-6.92 (m, 1H). "*C NMR (100 MHz, CDCl5): & 191.7, 155.0 (ddd, J = 247.5, 4.4, 2.9 Hz), 147.6 (ddd, J = 251.8,
14.5, 7.1 Hz), 147.5 (ddd, J = 245.6, 13.5, 3.7 Hz), 136.2, 134.5 (d, J = 1.6 Hz), 130.9 (t, J = 2.1 Hz), 129.6, 119.0
(dd, J = 20.2, 14.7 Hz), 116.8 (ddd, J = 19.4, 10.0, 1.3 Hz), 111.2 (ddd, J = 25.3, 6.7, 4.3 Hz). Anal. Calcd for

C13H7F30 (236.19): C, 66.11; H, 2.99. Found: C, 66.00; H, 3.19.

1-(2',3',6'-Trifluoro-[1,1'-biphenyl]-4-yl)ethan-1-one (32)

From 4-bromoacetophenone (0.199 g, 1 mmol), 1,2,4-trifluorobenzene (0.198 g, 1.5 mmol), KOAc (0.196 g, 2
mmol) in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 32 was
obtained in 60% yield (0.150 g) as a white solid: mp 127-130 °C.

'H NMR (400 MHz, CDCl5): & 8.06 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 7.22-7.11 (m, 1H), 6.99-6.92 (m,
1H), 2.65 (s, 3H). ®C NMR (100 MHz, CDCl3): & 197.5, 155.1 (ddd, J = 246.1, 4.4, 2.9 Hz), 147.7 (ddd, J = 251.8,

14.5, 7.1 Hz), 147.6 (ddd, J = 245.6, 13.5, 3.7 Hz), 137.0, 133.1 (d, J = 1.6 Hz), 130.5 (t, J = 2.1 Hz), 128.3, 119.2
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(dd, J =20.3, 14.8 Hz), 116.5 (ddd, J = 19.4, 10.0, 1.3 Hz), 111.1 (ddd, J = 25.3, 6.7, 4.2 Hz), 26.7. Anal. Calcd for

C14HoF30 (250.72): C, 67.20; H, 3.63. Found: C, 66.97; H, 3.47.

2,3,6-Trifluoro-4'-methyl-1,1'-biphenyl (33)"°

From 4-bromotoluene (0.171 g, 1 mmol), 1,2,4-trifluorobenzene (0.198 g, 1.5 mmol), KOAc (0.196 g, 2 mmol) in
the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 33 was obtained in
61% vyield (0.135 g) as a white oil.

'H NMR (400 MHz, CDCl5): & 7.36 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 7.8 Hz, 2H), 7.15-7.05 (m, 1H), 6.95-6.85 (m,
1H), 2.42 (s, 3H). ®C NMR (100 MHz, CDCl5): 6 155.3 (ddd, J = 245.0, 4.6, 2.8 Hz), 147.8 (ddd, J = 249.6, 14.3,
7.5 Hz), 147.6 (ddd, J = 244.5, 13.8, 3.7 Hz), 138.7, 130.0 (t, J = 2.0 Hz), 129.2, 125.3 (d, J = 2.0 Hz), 120.2 (dd, J

=20.7, 15.1 Hz), 115.3 (ddd, J = 19.4, 10.0, 1.4 Hz), 110.8 (ddd, J = 25.5, 6.6, 4.2 Hz), 21.3.

2',3',6'-Trifluoro-[1,1'-biphenyl]-2-carbonitrile (34)

From 2-bromobenzonitrile (0.182 g, 1 mmol), 1,2,4-trifluorobenzene (0.198 g, 1.5 mmol), KOAc (0.196 g, 2 mmol)
in the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 34 was obtained
in 59% vyield (0.137 g) as a yellow oil.

'H NMR (400 MHz, CDCl,): 6 7.78 (d, J = 8.3 Hz, 1H), 7.72 (t, J = 7.9 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 7.49 (d, J =
8.3 Hz, 1H), 7.33-7.19 (m, 1H), 7.06-6.95 (m, 1H). >C NMR (100 MHz, CDCl,): 5 155.0 (ddd, J = 246.7, 4.0, 2.8
Hz), 147.6 (ddd, J = 252.0, 14.2, 6.8 Hz), 147.4 (ddd, J = 246.2, 13.0, 3.7 Hz), 133.2, 132.7, 132.2 (d, J = 1.9 Hz),
131.6, 129.4, 117.8 (ddd, J = 19.3, 9.9, 1.4 Hz), 117.3, 116.9 (dd, J = 21.9, 16.0 Hz), 113.9, 111.3 (ddd, J = 24.6,

6.6, 4.3 Hz). Anal. Calcd for C43HgF3N (233.19): C, 66.96; H, 2.59; N, 6.01. Found: C, 66.88; H, 2.40; N, 5.68.

3-(2,3,6-Trifluorophenyl)pyridine (35)"°

From 3-bromopyridine (0.158 g, 1 mmol), 1,2,4-trifluorobenzene (0.198 g, 1.5 mmol), KOAc (0.196 g, 2 mmol) in
the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 35 was obtained in
72% yield (0.150 g) as a white solid: mp 53-56 °C.

'H NMR (400 MHz, CDCl,): § 8.73 (bs, 1H), 8.66 (d, J = 3.7 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.42 (dd, J = 7.8,
4.8 Hz, 1H), 7.25-7.12 (m, 1H), 7.02-6.93 (m, 1H). "°C NMR (100 MHz, CDCl): & 155.3 (ddd, J = 246.3, 4.6, 2.8
Hz), 150.6 (m), 149.7, 147.7 (ddd, J = 251.5, 14.6, 7.2 Hz), 147.5 (ddd, J = 245.5, 13.4, 3.7 Hz), 137.5 (t, J = 2.0
Hz), 124.8, 123.3; 116.9 (dd, J = 20.7, 15.1 Hz), 116.8 (ddd, J = 19.4, 10.1, 1.4 Hz), 111.2 (ddd, J = 25.1, 6.6, 4.2

Hz).
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3-(2,3,6-Trifluorophenyl)quinoline (36)"

From 3-bromoquinoline (0.208 g, 1 mmol), 1,2,4-trifluorobenzene (0.198 g, 1.5 mmol), KOAc (0.196 g, 2 mmol) in
the presence of Pd(OAc), (2.4 mg, 0.02 mmol) in DMA (4 mL) at 150 °C during 16 h, product 36 was obtained in
58% vyield (0.150 g) as a white solid: mp 109-112 °C.

'H NMR (400 MHz, CDCly): 5 9.00 (s, 1H), 8.30 (s, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.77 (t, J
= 7.8 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.25-7.17 (m, 1H), 7.05-6.97 (m, 1H). >C NMR (100 MHz, CDCl,): & 155.4
(ddd, J = 246.1, 4.6, 3.8 Hz), 150.8 (m), 148.1 (ddd, J = 251.3, 14.6, 7.2 Hz), 147.7 (ddd, J = 245.5, 13.5, 3.7 Hz),
147.6, 137.5 (t, J = 2.0 Hz), 130.4, 129.4, 128.2, 127.5, 127.2, 121.9, 117.0 (dd, J = 20.5, 15.0 Hz), 116.7 (ddd, J

=19.4,10.1, 1.4 Hz), 111.3 (ddd, J = 25.0, 6.6, 4.2 Hz).
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