A. Naik, O. Gurjar, K. Gupta, K. Singh, P. Nag et al., Comparison of dosimetric parameters and acute toxicity of intensity-modulated and three-dimensional radiotherapy in patients with cervix carcinoma: A randomized prospective study, Cancer/Radiothérapie, vol.20, pp.370-376, 2016.

J. A. Vargo, H. Kim, S. Choi, P. Sukumvanich, A. B. Olawaiye et al., Extended field intensity modulated radiation therapy with concomitant boost for lymph node-positive cervical cancer: Analysis of regional control and recurrence patterns in the positron emission tomography/computed tomography era, Int J Radiat Oncol Biol Phys, vol.90, pp.1091-1098, 2014.

A. K. Gandhi, D. N. Sharma, G. K. Rath, P. K. Julka, V. Subramani et al., Early clinical outcomes and toxicity of intensity modulated versus conventional pelvic radiation therapy for locally advanced cervix carcinoma: A prospective randomized study, Int J Radiat Oncol Biol Phys, vol.87, pp.542-548, 2013.

Y. Han, E. H. Shin, S. J. Huh, J. E. Lee, and W. Park, Interfractional dose variation during intensity-modulated radiation therapy for cervical cancer assessed by weekly ct evaluation, Int J Radiat Oncol Biol Phys, vol.65, pp.617-623, 2006.

A. Buchali, S. Koswig, S. Dinges, P. Rosenthal, J. Salk et al., Impact of the filling status of the bladder and rectum on their integral dose distribution and the movement of the uterus in the treatment planning of gynaecological cancer, Radiother Oncol, vol.52, pp.29-34, 1999.

L. Van-de-bunt, I. M. Jürgenliemk-schulz, G. A. De-kort, J. M. Roesink, R. J. Tersteeg et al., Motion and deformation of the target volumes during imrt for cervical cancer: What margins do we need?, Radiother Oncol, vol.88, pp.233-240, 2008.

R. Jadon, C. Pembroke, C. Hanna, N. Palaniappan, M. Evans et al., A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer, Clin Oncol, vol.26, pp.185-196, 2014.

R. S. Kaatee, M. J. Olofsen, M. B. Verstraate, S. Quint, and B. J. Heijmen, Detection of organ movement in cervix cancer patients using a fluoroscopic electronic portal imaging device and radiopaque markers, Int J Radiat Oncol Biol Phys, vol.54, pp.576-583, 2002.

S. J. Huh, W. Park, and Y. Han, Interfractional variation in position of the uterus during radical radiotherapy for cervical cancer, Radiother Oncol, vol.71, pp.73-79, 2004.

J. E. Lee, Y. Han, S. J. Huh, W. Park, M. G. Kang et al., Interfractional variation of uterine position during radical rt: Weekly ct evaluation, Gynecol Oncol, vol.104, pp.145-151, 2007.

R. Ahmad, M. S. Hoogeman, M. Bondar, V. Dhawtal, S. Quint et al., Increasing treatment accuracy for cervical cancer patients using correlations between bladder-filling change and cervix-uterus displacements: Proof of principle, Radiother Oncol, vol.98, pp.340-346, 2011.

P. Chan, R. Dinniwell, M. A. Haider, Y. Cho, D. Jaffray et al., Inter-and intrafractional tumor and organ movement in patients with cervical cancer undergoing radiotherapy: A cinematic-mri point-of-interest study, Int J Radiat Oncol Biol Phys, vol.70, pp.1507-1515, 2008.

S. T. Heijkoop, T. R. Langerak, S. Quint, J. Mens, A. G. Zolnay et al., Quantification of intra-fraction changes during radiotherapy of cervical cancer assessed with pre-and post-fraction cone beam ct scans, Radiother Oncol, vol.117, pp.536-541, 2015.

A. Taylor and M. E. Powell, An assessment of interfractional uterine and cervical motion: Implications for radiotherapy target volume definition in gynaecological cancer, Radiother Oncol, vol.88, pp.250-257, 2008.

L. Bondar, M. Hoogeman, J. W. Mens, G. Dhawtal, I. De-pree et al., Toward an individualized target motion management for imrt of cervical cancer based on modelpredicted cervix-uterus shape and position, Radiother Oncol, vol.99, pp.240-245, 2011.

N. H. Haripotepornkul, S. K. Nath, D. Scanderbeg, C. Saenz, and C. M. Yashar, Evaluation of intra-and interfraction movement of the cervix during intensity modulated radiation therapy, Radiother Oncol, vol.98, pp.347-351, 2011.

R. Ahmad, M. S. Hoogeman, S. Quint, J. W. Mens, I. De-pree et al., Inter-fraction bladder filling variations and time trends for cervical cancer patients assessed with a portable 3-dimensional ultrasound bladder scanner, Radiother Oncol, vol.89, pp.172-179, 2008.

G. Eminowicz, J. Motlib, S. Khan, C. Perna, and M. Mccormack, Pelvic organ motion during radiotherapy for cervical cancer: Understanding patterns and recommended patient preparation, Clin Oncol, 2016.

L. Van-de-bunt, U. A. Van-der-heide, M. Ketelaars, G. A. De-kort, and J. Im, Conventional, conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: The impact of tumor regression, Int J Radiat Oncol Biol Phys, vol.64, pp.189-196, 2006.

K. Lim, P. Chan, R. Dinniwell, A. Fyles, M. Haider et al., Cervical cancer regression measured using weekly magnetic resonance imaging during fractionated radiotherapy: Radiobiologic modeling and correlation with tumor hypoxia, Int J Radiat Oncol Biol Phys, vol.70, pp.126-133, 2008.

B. M. Beadle, A. Jhingran, M. Salehpour, M. Sam, R. B. Iyer et al., Cervix regression and motion during the course of external beam chemoradiation for cervical cancer, Int J Radiat Oncol Biol Phys, vol.73, pp.235-241, 2009.

K. Lim, J. Stewart, V. Kelly, J. Xie, K. K. Brock et al., Dosimetrically triggered adaptive intensity modulated radiation therapy for cervical cancer, Int J Radiat Oncol Biol Phys, vol.90, pp.147-154, 2014.

S. Oh, J. Stewart, J. Moseley, V. Kelly, K. Lim et al., Hybrid adaptive radiotherapy with on-line mri in cervix cancer imrt, Radiother Oncol, vol.110, pp.323-328, 2014.

J. Stewart, K. Lim, V. Kelly, J. Xie, K. K. Brock et al., Automated weekly replanning for intensity-modulated radiotherapy of cervix cancer, Int J Radiat Oncol Biol Phys, vol.78, pp.350-358, 2010.

T. Langerak, S. Heijkoop, S. Quint, J. Mens, B. Heijmen et al., Towards automatic plan selection for radiotherapy of cervical cancer by fast automatic segmentation of cone beam ct scans Medical image computing and computer-assisted intervention-miccai, pp.528-535, 2014.

S. T. Heijkoop, T. R. Langerak, S. Quint, L. Bondar, J. Mens et al., Clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid motion management in locally advanced cervical cancer imrt, Int J Radiat Oncol Biol Phys, vol.90, pp.673-679, 2014.

M. Bondar, M. Hoogeman, J. Mens, Q. S. Ahmad, R. Dhawtal et al., Individualized nonadaptive and online-adaptive intensity-modulated radiotherapy treatment strategies for cervical cancer patients based on pretreatment acquired variable bladder filling computed tomography scans, Int J Radiat Oncol Biol Phys, vol.83, pp.1617-1623, 2012.

Y. Seppenwoolde, M. Stock, M. Buschmann, D. Georg, K. Bauer-novotny et al., Impact of organ shape variations on margin concepts for cervix cancer art, Radiother Oncol, 2016.

A. J. Van-de-schoot, P. De-boer, J. Visser, L. J. Stalpers, C. R. Rasch et al., Dosimetric advantages of a clinical daily adaptive plan selection strategy compared with a non-adaptive strategy in cervical cancer radiation therapy, Acta Oncol, vol.56, pp.667-674, 2017.

S. Pecorelli, L. Zigliani, and F. Odicino, Revised figo staging for carcinoma of the cervix, International Journal of Gynecology & Obstetrics, vol.105, pp.107-108, 2009.

R. Pötter, C. Haie-meder, E. Van-limbergen, I. Barillot, M. De-brabandere et al., Recommendations from gynaecological (gyn) gec estro working group (ii): Concepts and terms in 3d image-based treatment planning in cervix cancer brachytherapy-3d dose volume parameters and aspects of 3d image-based anatomy, radiation physics, radiobiology, Radiother Oncol, vol.78, pp.67-77, 2006.

A. Taylor, A. G. Rockall, R. H. Reznek, and M. E. Powell, Mapping pelvic lymph nodes: Guidelines for delineation in intensity-modulated radiotherapy, Int J Radiat Oncol Biol Phys, vol.63, pp.1604-1612, 2005.

L. R. Dice, Measures of the amount of ecologic association between species, Ecology, vol.26, pp.297-302, 1945.

M. Gobeli, A. Simon, M. Getain, J. Leseur, E. Lahlou et al., Benefit of a pretreatment planning library-based adaptive radiotherapy for cervix carcinoma?, Cancer Radiother, vol.19, pp.471-478, 2015.

B. Rigaud, A. Simon, J. Castelli, M. Gobeli, O. Arango et al., Evaluation of deformable image registration methods for dose monitoring in head and neck radiotherapy, Biomed Res Int, p.726268, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139622

G. Cazoulat, A. Simon, A. Dumenil, K. Gnep, D. Crevoisier et al., Surfaceconstrained nonrigid registration for dose monitoring in prostate cancer radiotherapy, IEEE Trans Med Imaging, vol.33, pp.1464-1474, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00978107

Y. J. Graves, A. Smith, D. Mcilvena, Z. Manilay, Y. K. Lai et al., A deformable head and neck phantom with in-vivo dosimetry for adaptive radiotherapy quality assurance, Med Phys, vol.42, pp.1490-1497, 2015.

M. Nassef, A. Simon, G. Cazoulat, A. Duménil, C. Blay et al., Quantification of dose uncertainties in cumulated dose estimation compared to planned dose in prostate imrt, Radiother Oncol, vol.119, pp.129-136, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01301536

A. Mencarelli, S. R. Van-kranen, O. Hamming-vrieze, S. Van-beek, C. Rasch et al., Deformable image registration for adaptive radiation therapy of head and neck cancer: Accuracy and precision in the presence of tumor changes, Int J Radiat Oncol Biol Phys, vol.90, pp.680-687, 2014.

U. Yeo, M. Taylor, J. Supple, R. Smith, L. Dunn et al., Is it sensible to "deform" dose? 3d experimental validation of dose-warping, Med Phys, vol.39, pp.5065-5072, 2012.

N. A. Mayr, W. T. Yuh, V. A. Magnotta, J. C. Ehrhardt, J. A. Wheeler et al., Tumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: A new noninvasive predictive assay, Int J Radiat Oncol Biol Phys, vol.36, pp.623-633, 1996.

M. Buschmann, K. Majercakova, A. Sturdza, S. Smet, D. Najjari et al., Image guided adaptive external beam radiation therapy for cervix cancer: Evaluation of a clinically implemented plan-of-the-day technique, Zeitschrift für Medizinische Physik, 2017.

D. Tilly, A. J. Van-de-schoot, E. Grusell, A. Bel, and A. Ahnesjö, Dose coverage calculation using a statistical shape model-applied to cervical cancer radiotherapy, Phys Med Biol, vol.62, p.4140, 2017.

K. Lim, V. Kelly, J. Stewart, J. Xie, Y. Cho et al., Pelvic radiotherapy for cancer of the cervix: Is what you plan actually what you deliver?, Int J Radiat Oncol Biol Phys, vol.74, pp.304-312, 2009.

P. Georg, D. Georg, M. Hillbrand, C. Kirisits, and R. Pötter, Factors influencing bowel sparing in intensity modulated whole pelvic radiotherapy for gynaecological malignancies, Radiother Oncol, vol.80, pp.19-26, 2006.

A. Taylor and M. Powell, Conformal and intensity-modulated radiotherapy for cervical cancer, Clin Oncol, vol.20, pp.417-425, 2008.

B. Whelan, S. Kumar, J. Dowling, J. Begg, J. Lambert et al., Utilising pseudo-ct data for dose calculation and plan optimization in adaptive radiotherapy, Australas Phys Eng Sci Med, vol.38, pp.561-568, 2015.

E. Nováková, S. Heijkoop, S. Quint, A. Zolnay, J. Mens et al., What is the optimal number of library plans in art for locally advanced cervical cancer?, Radiother Oncol, 2017.

C. M. Lee, D. C. Shrieve, and D. K. Gaffney, Rapid involution and mobility of carcinoma of the cervix, Int J Radiat Oncol Biol Phys, vol.58, pp.625-630, 2004.

A. Khan, L. G. Jensen, S. Sun, W. Y. Song, C. M. Yashar et al., Optimized planning target volume for intact cervical cancer, Int J Radiat Oncol Biol Phys, vol.83, pp.1500-1505, 2012.

M. L. Bondar, M. Hoogeman, W. Schillemans, and B. Heijmen, Intra-patient semi-automated segmentation of the cervix-uterus in ct-images for adaptive radiotherapy of cervical cancer, Phys Med Biol, vol.58, p.5317, 2013.

C. Zhang, G. E. Christensen, M. J. Murphy, E. Weiss, and J. F. Williamson, Non-rigid image registration with equally weighted assimilated surface constraint. International Workshop on Biomedical Image Registration, pp.31-40, 2014.

L. Bondar, M. S. Hoogeman, E. Osorio, and B. J. Heijmen, A symmetric nonrigid registration method to handle large organ deformations in cervical cancer patients, Med Phys, vol.37, pp.3760-3772, 2010.

S. Ghose, L. Holloway, K. Lim, P. Chan, J. Veera et al., A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning, Artif Intell Med, vol.64, pp.75-87, 2015.

, *) indicates that the tested strategy provided a significantly better (respectively, worse) mean coverage across all patients compared with the standard RT strategy

. °-(respectively, °°) indicates that the tested strategy provided a significantly better (respectively, worse) mean coverage across all patients compared with the evolutive library strategy. A better strategy was defined as either increased CTV coverage or decreased OAR coverage, as evaluated using the signed-rank Wilcoxon test. PTV: planning target volume, CTV: clinical target

, ITV: internal target volume