N. Castanon, G. Luheshi, and S. Laye, Role of neuroinflammation in the 547 emotional and cognitive alterations displayed by animal models of obesity, Frontiers, vol.548, pp.229-549, 2015.

D. Val-laillet, E. Aarts, B. Weber, M. Ferrari, and V. Quaresima,

M. Alonso-alonso, M. Audette, C. H. Malbert, and E. Stice, Neuroimaging 551 and neuromodulation approaches to study eating behavior and prevent and treat eating 552 disorders and obesity, NeuroImage. Clinical, vol.8, pp.1-31, 2015.

S. S. Valvassori, R. B. Varela, C. O. Arent, G. C. Dal-pont, T. S. Bobsin et al., , p.554

G. Z. Reus, J. Quevedo, S. Sharma, R. Taliyan, and S. Singh, Sodium butyrate functions as an antidepressant 555 and improves cognition with enhanced neurotrophic expression in models of maternal 556 deprivation and chronic mild stress Beneficial effects of sodium butyrate in 558 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone 559 deacetylase activity, Current neurovascular research Behavioural brain research, vol.11, issue.5, pp.359-366, 2014.

J. S. Guan, S. J. Haggarty, E. Giacometti, J. H. Dannenberg, and N. Joseph, , p.561

T. J. Nieland, Y. Zhou, X. Wang, R. Mazitschek, and J. E. Bradner, , p.562

R. Jaenisch and L. H. Tsai, HDAC2 negatively regulates memory formation 563 and synaptic plasticity, Nature, vol.459, pp.55-60, 2009.

S. Gupta, S. Y. Kim, S. Artis, D. L. Molfese, A. Schumacher et al., Histone Methylation Regulates Memory Formation, Molfese, D. L., and 569, pp.3589-3599, 2010.
DOI : 10.1523/JNEUROSCI.3732-09.2010

J. D. Sweatt, Regulation of histone acetylation during memory formation in the 570 hippocampus. The Journal of biological chemistry 279, pp.40545-40559, 2004.

, Modulation of long-term memory for object recognition via HDAC inhibition, Proceedings of the National Academy of Sciences of the United States of America, vol.106, issue.9, pp.9447-9452

M. Moretti, S. S. Valvassori, R. B. Varela, C. L. Ferreira, N. Rochi et al., , p.576

G. Scaini, F. Kapczinski, E. L. Streck, A. I. Zugno, and J. Quevedo, , p.577, 2011.

M. W. Bourassa, I. Alim, S. J. Bultman, R. R. And-ratan, P. Gorka et al., Butyrate, 580 neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? 581 Neuroscience letters 625, 56-63 582 11 Effect of sodium butyrate 584 supplementation in milk replacer and starter diet on rumen development in calves. 585 quantitative positron emission tomography study, Behavioral and neurochemical effects of sodium butyrate in an animal model of 578 mania Journal of cerebral blood flow and 636 metabolism : official journal of the International Society of Cerebral Blood Flow and 637 Metabolism, pp.766-772, 2009.

Y. Zhang, Y. Kuang, K. Xu, D. Harris, Z. Lee et al., Ketosis proportionately spares glucose utilization in brain Journal of cerebral 640 blood flow and metabolism : official journal of the International Society of Cerebral 641, (2012) Food preferences and 643 aversions in human health and nutrition: how can pigs help the biomedical research, p.644, 2013.

P. Sauleau, E. Lapouble, D. Val-laillet, C. H. Malbert, E. Roura et al., The pig model in 646 brain imaging and neurosurgery, Animal Animal : an international journal of animal, vol.6, issue.3, pp.118-136, 2009.

T. Schuurman and D. Laillet, Critical review evaluating the pig as a 650 model for human nutritional physiology, Nutrition research reviews Guilloteau, P, vol.29, 2016.

F. Immerseel, C. Clouard, D. H. Laillet, R. Delgado-morales, A. Sanz-garcia et al., From the gut to the peripheral tissues: the multiple effects of 653 butyrate Impact of sensory feed additives on feed 655 intake, feed preferences, and growth of female piglets during the early postweaning 656 period, Nutrition research reviews Journal of animal science Neuropharmacology, vol.23, issue.660, pp.366-384, 2010.

S. Khan, J. , G. Boubaker, J. Val-laillet, D. Guerin et al., Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: A comparative study with metformin, Frontiers in psychology 5, pp.124-134, 1096.
DOI : 10.1016/j.cbi.2016.06.007

D. Val-laillet, M. Besson, S. Guerin, N. Coquery, G. Randuineau et al., , p.672

H. Quesnel, N. Bonhomme, J. E. Bolhuis, B. Kemp, S. Blat et al., A maternal Western diet during gestation and lactation 674 modifies offspring's microbiota activity, blood lipid levels, cognitive responses, and 675 hippocampal neurogenesis in Yucatan pigs, Experimental Biology, vol.673, issue.677, p.39, 2017.

J. Zhang and J. Jiao, Molecular Biomarkers for Embryonic and Adult Neural 678 Stem Cell and Neurogenesis, pp.727542-727582, 2015.
DOI : 10.1155/2015/727542

URL : http://doi.org/10.1155/2015/727542

D. L. Arvans, S. R. Vavricka, H. Ren, M. W. Musch, and L. Kang,

A. Lucioni, J. R. Turner, J. Alverdy, C. , E. B. Lalles et al., Luminal bacterial flora 681 determines physiological expression of intestinal epithelial cytoprotective heat shock 682 proteins 25 and 72 American journal of physiology. Gastrointestinal and liver 683 physiology 288 High-viscosity 685 carboxymethylcellulose reduces carbachol-stimulated intestinal chloride secretion in 686 weaned piglets fed a diet based on skimmed milk powder and maltodextrin, The 687 British journal of nutrition 95, pp.696-704, 2005.

M. E. Arnal, J. Zhang, C. Erridge, H. Smidt, and J. P. Lalles, Maternal 689 antibiotic-induced early changes in microbial colonization selectively modulate 690 colonic permeability and inducible heat shock proteins, and digesta concentrations of 691 alkaline phosphatase and TLR-stimulants in swine offspring, PloS one, vol.10, pp.118092-692, 2015.

M. E. Arnal, J. Zhang, S. Messori, P. Bosi, H. Smidt et al., Early Changes in Microbial Colonization Selectively Modulate Intestinal Enzymes, but Not Inducible Heat Shock Proteins in Young Adult Swine, PLoS ONE, vol.124, issue.2, pp.87967-695, 2014.
DOI : 10.1371/journal.pone.0087967.s004

G. Boudry, The level of protein in milk formula modifies ileal sensitivity to 697 LPS later in life in a piglet model, PloS one, vol.6, pp.19594-698, 2011.

K. Kisielinski, S. Willis, A. Prescher, B. Klosterhalfen, and V. Schumpelick, 699 A simple new method to calculate small intestine absorptive surface in the rat, Clinical and experimental medicine, vol.700, issue.2, pp.131-135, 2002.

J. Marion, V. Rome, G. Savary, F. Thomas, L. Dividich et al., Weaning and feed intake alter pancreatic enzyme activities and 703 corresponding mRNA levels in 7-d-old piglets, The Journal of nutrition, vol.702, issue.704, pp.362-368, 2003.

S. Saikali, P. Meurice, P. Sauleau, P. A. Eliat, P. Bellaud et al., A three-dimensional digital segmented and deformable brain atlas of the domestic pig, Journal of Neuroscience Methods, vol.192, issue.1, pp.102-109, 2010.
DOI : 10.1016/j.jneumeth.2010.07.041

URL : https://hal.archives-ouvertes.fr/hal-01133910

O. Damink, S. W. Lenaerts, K. Dejong, C. H. Blaak, and E. E. , , p.712, 2017.

M. J. Cao, L. Zuzga, D. S. Francis, J. S. Fitzsimons, H. L. Jiao et al., Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in 713 overweight/obese men: a randomized crossover trial Scientific reports 7 Glucagon- 716 like peptide-1 receptor is involved in learning and neuroprotection, Nature, vol.9, issue.718, pp.1173-1179, 2003.

Y. Zhang, S. Zhang, I. Marin-valencia, M. A. Puchowicz, F. J. Troost et al., Decreased carbon shunting from glucose toward oxidative metabolism in diet-induced ketotic rat brain, Journal of Neurochemistry, vol.33, issue.Suppl 8, pp.301-312, 2009.
DOI : 10.1038/jcbfm.2013.87

D. R. Donohoe, A. Wali, B. P. Brylawski, S. J. Bultman, D. et al., Microbial 725 regulation of glucose metabolism and cell-cycle progression in mammalian 726 colonocytes Are the dorsal and ventral hippocampus 728 functionally distinct structures?, PloS one Neuron, vol.7, issue.65, p.730, 2004.

, Dissociation of function between the dorsal and the ventral hippocampus in spatial 731 learning abilities of the rat: a within-subject, within-task comparison of reference and 732 working spatial memory, The European journal of neuroscience, vol.19, issue.733, pp.705-712

J. Mairesse, E. Gatta, M. L. Reynaert, J. Marrocco, S. Morley-fletcher et al., , p.735

F. Nicoletti, S. Maccari, R. C. Bagot, E. M. Parise, and C. J. Pena, Activation of presynaptic oxytocin receptors 736 enhances glutamate release in the ventral hippocampus of prenatally restraint stressed 737 rats, Psychoneuroendocrinology, vol.62, issue.57, pp.36-46, 2015.

B. Persaud, R. Cachope, C. A. Bolanos-guzman, J. F. Cheer, K. Deisseroth et al., Ventral hippocampal afferents to the nucleus 741 accumbens regulate susceptibility to depression Is perinatal butyrate intake, through maternal supplementation, able to prevent 744 cognitive impairment due to intrauterine growth restriction in a rat model?, Journal 745 of Developmental Origins of Health and Disease Proceedings of the 746 second meeting the French-speaking society SF-DOHAD, pp.743-782, 2014.

E. T. Gieling, R. E. Nordquist, F. J. Van-der-staay, and J. W. Deitmer, Assessing learning and memory in pigs, Animal Cognition, vol.111, issue.4, pp.151-173, 2010.
DOI : 10.1016/j.applanim.2007.05.010

, Treatments: C: control; SB: sodium butyrate

, APN: amino-peptidase N; DPP4: dipeptidyl-peptidase 4; IAP: intestinal alkaline phosphatase

, SAC: Specific activity concentration for IAP (µg IAP/ g protein) TA: total activity 551 (µmoles/min/g fresh mucosa; nmoles/min/g fresh mucosa for DPP4), SA: Specific activity DPP4)

, 552 a,b P < 0, p.5