Fast and Accurate Simulation Technique for Large Irregular Arrays - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Antennas and Propagation Year : 2018

Fast and Accurate Simulation Technique for Large Irregular Arrays

Abstract

A fast full-wave simulation technique is presented for the analysis of large irregular planar arrays of identical 3-D metallic antennas. The solution method relies on the macro basis function (MBF) approach and an interpolatory technique to compute the interactions between MBFs. The harmonic-polynomial model is established for the near-field interactions in a modified system of coordinates. For extremely large arrays made of complex antennas, two approaches assuming a limited radius of influence for mutual coupling are considered one is based on a sparse matrix LU-decomposition and the other one on a tessellation of the array in the form of overlapping subarrays. The computation of all embedded element patterns is sped up with the help of the nonuniform fast Fourier transform algorithm. Extensive validations of this new approach, named HARP, are shown for arrays of log-periodic antennas envisaged for the low-frequency Square Kilometer Array (SKA) radio telescope. The analysis of SKA stations with such a large number of elements has not been treated yet in the literature. Validations include comparison with results obtained with commercial software and with experiments. The proposed method is particularly well suited to array synthesis, in which several orders of magnitude can be saved in terms of computation time. © 2018 IEEE.

Dates and versions

hal-01774143 , version 1 (23-04-2018)

Identifiers

Cite

H. Bui-Van, J. Abraham, M. Arts, Q. Gueuning, C. Raucy, et al.. Fast and Accurate Simulation Technique for Large Irregular Arrays. IEEE Transactions on Antennas and Propagation, 2018, 66 (4), pp.1805-1817. ⟨10.1109/TAP.2018.2806222⟩. ⟨hal-01774143⟩
50 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More