E. Hence, A-7 and A-8 leads to: (A-9)

. Eq, A-9 has to be integrated from the feed to the retentate concentration and from 1 to VRR

. Eq, A-11 can be rewritten to get Eq. A-12

E. Actually, A-2 (solute mass balance) is modified using an average value of the permeate concentration (calculated by Eq. A-5) because of our assumption of cross-plug flow, p.15

A. Eq, A-4 becomes A-16: (A-16

. Eq, A-18 can be rearranged to give the abatement (Eq. A-19). (A-19

J. Dreimann, P. Lutze, M. Zagajewski, A. Behr, A. Górak et al., Highly integrated reactor???separator systems for the recycling of homogeneous catalysts, Chemical Engineering and Processing: Process Intensification, vol.99, pp.99-124, 2016.
DOI : 10.1016/j.cep.2015.07.019

D. Nair, J. T. Scarpello, L. S. White, L. M. Freitas-dos-santos, I. F. Vankelecom et al., Semi-continuous nanofiltration-coupled Heck reactions as a new approach to improve productivity of homogeneous catalysts, Tetrahedron Lett, pp.42-8219, 2001.

A. Datta, K. Ebert, and H. Plenio, Nanofiltration for Homogeneous Catalysis Separation:?? Soluble Polymer-Supported Palladium Catalysts for Heck, Sonogashira, and Suzuki Coupling of Aryl Halides, Organometallics, vol.22, issue.23, pp.22-4685, 2003.
DOI : 10.1021/om0303754

G. Nasser, T. Renouard, S. Shahane, C. Fischmeister, C. Bruneau et al., Interest of the Precatalyst Design for Olefin Metathesis Operating in a Discontinuous Nanofiltration Membrane Reactor, ChemPlusChem, vol.299, issue.7, pp.78-728, 2013.
DOI : 10.1016/j.memsci.2007.04.047

URL : https://hal.archives-ouvertes.fr/hal-00918228

S. Aerts, A. Buekenhoudt, H. Weyten, L. E. Gevers, I. F. Vankelecom et al., The use of solvent resistant nanofiltration in the recycling of the Co-Jacobsen catalyst in the hydrolytic kinetic resolution (HKR) of epoxides, Journal of Membrane Science, vol.280, issue.1-2, pp.280-245, 2006.
DOI : 10.1016/j.memsci.2006.01.025

M. Rabiller-baudry, G. Nasser, T. Renouard, D. Delaunay, and M. Camus, Comparison of two nanofiltration membrane reactors for a model reaction of olefin metathesis achieved in toluene, Separation and Purification Technology, vol.116, pp.46-60, 2013.
DOI : 10.1016/j.seppur.2013.04.052

URL : https://hal.archives-ouvertes.fr/hal-00841224

L. Peeva, J. Arbour, and A. Livingston, On the Potential of Organic Solvent Nanofiltration in Continuous Heck Coupling Reactions, Organic Process Research & Development, vol.17, issue.7, pp.967-975, 2013.
DOI : 10.1021/op400073p

A. Keraani, T. Renouard, C. Fischmeister, C. Bruneau, and M. Rabiller-baudry, Recovery of Enlarged Olefin Metathesis Catalysts by Nanofiltration in an Eco-Friendly Solvent, ChemSusChem, vol.62, issue.11, pp.927-933, 2008.
DOI : 10.1007/b94650

URL : https://hal.archives-ouvertes.fr/hal-00365032

J. Guerra, D. Cantillo, and C. O. Kappe, Visible-light photoredox catalysis using a macromolecular ruthenium complex: reactivity and recovery by size-exclusion nanofiltration in continuous flow, Catalysis Science & Technology, vol.13, issue.13, pp.4695-4699, 2016.
DOI : 10.1039/c1gc15264e

URL : http://pubs.rsc.org/en/content/articlepdf/2016/cy/c6cy00070c

R. Abejón, A. Garea, and A. Irabien, Analysis and optimization of continuous organic solvent nanofiltration by membrane cascade for pharmaceutical separation, AIChE Journal, vol.41, issue.416, pp.931-948, 2014.
DOI : 10.1016/j.compchemeng.2012.02.017

W. E. Siew, A. G. Livingston, C. Ates, and A. Merschaert, Molecular separation with an organic solvent nanofiltration cascade ??? augmenting membrane selectivity with process engineering, Chemical Engineering Science, vol.90, pp.90-299, 2013.
DOI : 10.1016/j.ces.2012.10.028

W. E. Siew, A. G. Livingston, C. Ates, and A. Merschaert, Continuous solute fractionation with membrane cascades ??? A high productivity alternative to diafiltration, Separation and Purification Technology, vol.102, pp.1-14, 2013.
DOI : 10.1016/j.seppur.2012.09.017

J. C. Lin and A. G. Livingston, Nanofiltration membrane cascade for continuous solvent exchange, Chemical Engineering Science, vol.62, issue.10, pp.2728-2736, 2007.
DOI : 10.1016/j.ces.2006.08.004

L. Peeva, J. Da-silva-burgal, I. Valtcheva, and A. G. Livingston, Continuous purification of active pharmaceutical ingredients using multistage organic solvent nanofiltration membrane cascade, Chemical Engineering Science, vol.116, pp.183-194, 2014.
DOI : 10.1016/j.ces.2014.04.022

A. Caus, L. Braeken, K. Boussu, and B. Van-der-bruggen, The use of integrated countercurrent nanofiltration cascades for advanced separations, Journal of Chemical Technology & Biotechnology, vol.292, issue.3, pp.391-398, 2009.
DOI : 10.1007/978-94-009-1766-8

V. S. Adi, M. Cook, L. G. Peeva, A. G. Livingston, and B. Chachuat, Optimization of OSN Membrane Cascades for Separating Organic Mixtures, Comput. Aided Chem. Eng, pp.379-384, 2016.
DOI : 10.1016/B978-0-444-63428-3.50068-0

J. F. Kim, A. Freita-da-silva, I. B. Valtcheva, and A. G. Livingston, When the membrane is not enough: A simplified membrane cascade using Organic Solvent Nanofiltration (OSN), Separation and Purification Technology, vol.116, pp.277-286, 2013.
DOI : 10.1016/j.seppur.2013.05.050

A. M. Arias, M. C. Mussati, P. L. Mores, N. J. Scenna, J. A. Cabalerro et al., Optimization of multi-stage membrane systems for CO 2 capture from flue gas, International Journal of Greenhouse Gas Control, vol.53, pp.371-390, 2016.
DOI : 10.1016/j.ijggc.2016.08.005

J. Vanneste, S. De-ron, S. Vandecruys, A. A. Soare, S. Dravishmanesh et al., Van der Bruggen, Techno-economic evaluation of membrane cascades relative to simulated moving bed chromatography for the purification of mono-and-oligosaccharides, Sep. Purif. Technol, pp.80-600, 2011.

A. Lejeune, M. Rabiller-baudry, and T. Renouard, Design of membrane cascades according to the method of McCabe-Thiele: An organic solvent nanofiltration case study for olefin hydroformylation in toluene, Separation and Purification Technology, vol.195, pp.195-339, 2018.
DOI : 10.1016/j.seppur.2017.12.031

URL : https://hal.archives-ouvertes.fr/hal-01695558

A. Lejeune, Nanofiltration organique appliquée à l'hydroformylation des oléfines dans le toluene Etude expérimentale, conception et simulation de cascades. (Organic solvent nanofiltration applied to olefin hydroformylation in toluene. Experimental study, design and simulation of cascades, 2017.

P. Schmidt, E. L. Bednarz, P. Lutze, and A. Górak, Characterisation of Organic Solvent Nanofiltration membranes in multi-component mixtures: Process design workflow for utilising targeted solvent modifications, Chemical Engineering Science, vol.115, pp.115-126, 2014.
DOI : 10.1016/j.ces.2014.03.029

P. Gabrielli, M. Gazzani, and M. Mazzotti, On the optimal design of membrane-based gas separation processes, Journal of Membrane Science, vol.526, pp.118-130, 2017.
DOI : 10.1016/j.memsci.2016.11.022

R. Abejón, A. Garea, and A. Irabien, Optimum design of reverse osmosis systems for hydrogen peroxide ultrapurification, AIChE Journal, vol.157, issue.77, pp.3718-3730, 2012.
DOI : 10.1016/S0011-9164(03)00395-3

M. S. Avgidou, S. P. Kaldis, and G. P. Sakellaropoulos, Membrane cascade schemes for the separation of LPG olefins and paraffins, Journal of Membrane Science, vol.233, issue.1-2, pp.21-37, 2004.
DOI : 10.1016/j.memsci.2003.12.007

T. Renouard, A. Lejeune, and M. Rabiller-baudry, Separation of solutes with an organic solvent nanofiltration cascade: Designs, simulations and systematic study of all configurations, Separation and Purification Technology, vol.194, pp.111-122, 2018.
DOI : 10.1016/j.seppur.2017.11.029

URL : https://hal.archives-ouvertes.fr/hal-01671608

M. Mulder, Basic Principles of Membrane Technology, 1996.

S. Darvishmanesh, L. Firoozpour, J. Vanneste, P. Luis, J. Degrève et al., Performance of solvent resistant nanofiltration membranes for purification of residual solvent in the pharmaceutical industry: experiments and simulation, Green Chemistry, vol.147, issue.12, pp.3476-3483, 2011.
DOI : 10.1016/S0011-9164(02)00557-X

A. Caus, S. Vanderhaegen, L. Braeken, and B. , Van der Bruggen, Integrated nanofiltration cascades with low salt rejection for complete removal of pesticides in drinking water production, pp.241-111, 2009.
DOI : 10.1016/j.desal.2008.01.061

J. Vanneste, D. Ormerod, G. Theys, D. Van-gool, B. Van-camp et al., Towards high resolution membrane-based pharmaceutical separations, Journal of Chemical Technology & Biotechnology, vol.129, issue.1
DOI : 10.1007/978-94-009-1766-8

D. Chemicals, Osmosis Membranes -Technical Manual, https://dowac.custhelp.com, 2017.

E. Harrington, The desirability function, Industrial Quality Control, vol.21, pp.494-498, 1965.

K. Khoder, Optimisation de composants hyperfréquences par la technique des plans à surfaces de réponses (Optimization of microwave components using the surface-to-surface technique), 2011.

Z. He and P. F. Zhu, A note on multi-response robust parameter optimization based on RSM, Proceeding of 4 th IEEE Int, Conf. Manag. Innov. Technol, pp.1120-1123, 2008.
DOI : 10.1109/icmit.2008.4654526