R. H. Bewley, B. J. Devereux, G. S. Amable, and P. Crow, Aerial survey for archaeology, The Photogrammetric Record, vol.150, issue.2, pp.273-292, 2003.
DOI : 10.1080/00665983.1932.10853584

R. S. Opitz and D. Cowley, Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation, 2013.

T. Freeland, B. Heung, D. V. Burley, G. Clark, A. Ø. Knudby et al., Automated feature extraction for prospection and analysis of monumental earthworks from aerial LiDAR in the Kingdom of Tonga Automatic Detection of Pit Structures in Airborne Laser Scanning Data: Automatic detection of pits in ALS data, CrossRef] 7. Fergusson, J. Rude Stone Monuments in All Countries, Their Age and Uses, pp.64-74

L. Rouzic and Z. , Les monuments m??galithiques du Morbihan : causes de leur ruine et origine de leur restauration, Bulletin de la Soci??t?? pr??historique de France, vol.36, issue.5, pp.234-251, 1939.
DOI : 10.3406/bspf.1939.4683

C. Boujot and E. Vigier, Carnac et Environs: Architecture Mégalithiques, 2012.

C. Roughley, R??sumen, Proc. Prehist. Soc, pp.153-172, 2004.
DOI : 10.1111/1468-0092.00148

C. Boujot and S. Cassen, A pattern of evolution for the Neolithic funerary structures of the west of France, Antiquity, vol.67, issue.256, pp.477-491, 1993.
DOI : 10.1017/S0003598X00045701

C. Roughley, Understanding the Neolithic landscape of the Carnac region: A GIS approach, BAR Int. Ser, vol.931, pp.211-218, 2001.

R. Bennett, K. Welham, R. A. Hill, and A. Ford, A Comparison of Visualization Techniques for Models Created from Airborne Laser Scanned Data, Archaeological Prospection, vol.3, issue.4, pp.41-48
DOI : 10.1080/02693798908941519

M. Doneus, Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. Remote Sens, pp.6427-6442, 2013.

?. Kokalj, K. Zak?ek, and K. O?tir, Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models, Antiquity, vol.34, issue.327, pp.263-273, 2011.
DOI : 10.1016/j.rse.2006.10.013

B. ?tular, ?. Kokalj, K. O?tir, and L. Nuninger, Visualization of lidar-derived relief models for detection of archaeological features, Journal of Archaeological Science, vol.39, issue.11, pp.3354-3360, 2012.
DOI : 10.1016/j.jas.2012.05.029

K. Zak?ek, K. O?tir, and ?. Kokalj, Sky-View Factor as a Relief Visualization Technique. Remote Sens, pp.398-415, 2011.

J. P. Wilson and J. C. Gallant, Terrain Analysis, 2000.
DOI : 10.4135/9781412953962.n209

J. B. Lindsay, J. M. Cockburn, and H. A. Russell, An integral image approach to performing multi-scale topographic position analysis, Geomorphology, vol.245, pp.51-61, 2015.
DOI : 10.1016/j.geomorph.2015.05.025

S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, Supervised Machine Learning: A Review of Classification Techniques, 2007.

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

M. Pal, Random forest classifier for remote sensing classification, International Journal of Remote Sensing, vol.20, issue.1, pp.217-222, 2005.
DOI : 10.1016/S0034-4257(03)00132-9

M. Isenburg, Efficient LiDAR Processing Software; Rapidlasso: Gilching, Germany, 2017; Available online: http://rapidlasso.com/lastools, 2017.

M. Georges-leroy, L. Nuninger, R. Opitz, and . Le-lidar, Une Technique de Détection au Service de L'archéologie. 2014 Available online: https://hal.archives-ouvertes, p.1099797, 2017.

J. Lindsay, The Whitebox Geospatial Analysis Tools project and open-access GIS. Unpublished work, 2014.

R. Team, R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, 2013.

F. C. Crow, Summed-area tables for texture mapping, ACM SIGGRAPH Computer Graphics, vol.18, issue.3, pp.207-212, 1984.
DOI : 10.1145/964965.808600

M. Kuhn, J. Wing, S. Weston, A. Williams, C. Keefer et al., The R Core Team; et al. Caret: Classification and Regression Training Available online: https: //cran.r-project, Z.; Kenkel, B, 2017.

M. D. Mckay, R. J. Beckman, and W. J. Conover, Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, vol.21, pp.239-245, 1979.

J. Cohen, A Coefficient of Agreement for Nominal Scales, Educational and Psychological Measurement, vol.20, issue.1, pp.37-46, 1960.
DOI : 10.1037/h0044251

R. Caruana and A. Niculescu-mizil, An empirical comparison of supervised learning algorithms, Proceedings of the 23rd international conference on Machine learning , ICML '06, pp.25-29, 2006.
DOI : 10.1145/1143844.1143865

M. Fernández-delgado, E. Cernadas, S. Barro, and D. Amorim, Do we need hundreds of classifiers to solve real world classification problems, J. Mach. Learn. Res, vol.15, pp.3133-3181, 2014.

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, pp.1097-1105, 2012.
DOI : 10.1162/neco.2009.10-08-881

URL : http://dl.acm.org/ft_gateway.cfm?id=3065386&type=pdf

L. Zhang, L. Zhang, and B. Du, Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art, IEEE Geoscience and Remote Sensing Magazine, vol.4, issue.2, pp.22-40, 2016.
DOI : 10.1109/MGRS.2016.2540798

J. Geng, J. Fan, H. Wang, X. Ma, B. Li et al., High-Resolution SAR Image Classification via Deep Convolutional Autoencoders, IEEE Geoscience and Remote Sensing Letters, vol.12, issue.11, pp.2351-2355
DOI : 10.1109/LGRS.2015.2478256