D. E. Brodersen, W. M. Clemons, . Jr, A. P. Carter, R. J. Morgan-warren et al., The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit, Cell, vol.103, pp.216-222, 2000.

N. Buchon, N. A. Broderick, S. Chakrabarti, and B. Lemaitre, Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila, Genes and Development, vol.23, pp.2333-2344, 2009.

N. Buchon, N. A. Broderick, and B. Lemaitre, Gut homeostasis in a microbial world: Insights from Drosophila melanogaster, Nature Reviews Microbiology, vol.11, pp.615-626, 2013.

J. W. Gargano, I. Martin, P. Bhandari, and M. S. Grotewiel, Rapid iterative negative geotaxis (RING): A new method for assessing agerelated locomotor decline in Drosophila, Experimental Gerontology, vol.40, pp.386-395, 2005.

R. Ihaka and R. Gentleman, A language for data analysis and graphics, Journal of Computational and Graphical Statistics, vol.5, pp.299-314, 1996.

M. J. Klowden, Physiological systems in insects, 2013.

T. N. Kristensen, J. Overgaard, J. Lassen, A. A. Hoffmann, and C. Sgrò, Low evolutionary potential for egg to adult viability in Drosophila melanogaster at high temperatures, Evolution, vol.69, pp.803-814, 2015.

N. Lhocine, P. S. Ribeiro, N. Buchon, A. Wepf, R. Wilson et al., PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signalling, Cell Host and Microbe, vol.4, pp.147-158, 2008.

A. Lizé, R. Mckay, and Z. Lewis, Kin recognition in Drosophila: The importance of ecology and gut microbiota, ISME Journal, vol.8, pp.469-477, 2014.

M. A. Nadkani, F. E. Martin, N. A. Jacques, and N. Hunter, Determination of bacterial load by real-time PCR using a broad range (universal) probe and primers set, Microbiology, p.257266, 2002.

C. D. Nichols, J. Becnel, U. B. Pandey, and L. Nunney, The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: An example of a fitness trade-off, Journal of Visualized Experiments, vol.61, pp.1193-1204, 1996.

O. Shea, K. L. Singh, and N. D. , Tetracycline-exposed Drosophila melanogaster males produce fewer offspring but a relative excess of sons, Ecology and Evolution, vol.5, pp.3130-3139, 2015.

L. Partridge and M. Farquhar, Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size, Animal Behaviour, vol.31, issue.83, pp.80242-80247, 1983.

L. Partridge and K. Fowler, Responses and correlated responses to artificial selection on thorax length in Drosophila melanogaster, Evolution, vol.47, pp.213-226, 1993.

E. Ridley, A. C. Wong, and A. E. Douglas, Microbe-dependent and nonspecific effects of procedures to eliminate the resident microbiota from Drosophila melanogaster, Applied and Environmental Microbiology, vol.79, pp.206-219, 2013.

E. V. Ridley, A. C. Wong, S. Westmiller, and A. E. Douglas, Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster, PLoS ONE, vol.7, 2012.

J. L. Round and S. K. Mazmanian, The gut microbiota shapes intestinal immune responses during health and disease, Nature Reviews Immunology, vol.9, pp.313-323, 2009.

P. M. Service, E. W. Hutchinson, M. D. Mackinley, and M. R. Rose, Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence, Physiological Zoology, vol.58, p.380389, 1985.

G. Sharon, D. Segal, J. M. Ringo, A. Hefetz, I. Zilber-rosenberg et al., Commensal bacteria play a role in mating preference of Drosophila melanogaster, Proceedings of the Natural Academy of Sciences United States of America, vol.107, 2010.

G. Sharon, D. Segal, I. Zilber-rosenberg, and E. Rosenberg, Symbiotic bacteria are responsible for diet-induced mating preference in Drosophila melanogaster, providing support for the hologenome theory of evolution, Gut Microbes, vol.2, pp.190-192, 2011.

S. C. Shin, S. H. Kim, H. You, B. Kim, A. C. Kim et al., Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signalling, Science, vol.334, pp.670-674, 2011.

F. Sommer and F. Backhed, The gut microbiota: Masters of host development and physiology, Nature Reviews Microbiology, vol.11, pp.227-238, 2013.

G. Storelli, A. Defaye, B. Erkosar, P. Hols, J. Royet et al., Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing, Cell Metabolism, vol.14, p.403414, 2011.

S. Takashima, A. Younossi-hartenstein, P. A. Ortiz, and V. Hartenstein, A novel tissue in an established model system: The Drosophila pupal midgut, Development Genes and Evolution, vol.22, pp.69-81, 2011.

A. O. Tantway and M. R. El-helw, Studies on natural populations of Drosophila. IX. Some fitness components and their heritabilities in natural and mutant populations of Drosophila melanogaster, Genetics, vol.64, pp.79-91, 1970.

R. L. Verspoor, C. Heys, and T. A. Price, Dyeing insects for behavioural assays: The mating behaviour of anaesthetized Drosophila, Journal of Visualised Experiments, vol.98, p.52645, 2015.

A. C. Wong, A. Holmes, F. Ponton, M. Lihoreau, K. Wilson et al., Behavioral microbiomics: A multi-dimensional approach to microbial influence on behavior, Frontiers in Microbiology, vol.6, p.1359, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02105115

C. N. Wong, P. Ng, and A. E. Douglas, Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster, Environmental Microbiology, vol.13, pp.1889-1900, 2011.

J. A. Zeh, M. M. Bonilla, A. J. Adrian, S. Mesfin, and D. W. Zeh, From father to son: Transgenerational effect of tetracycline on sperm viability, Scientific Reports, vol.2, p.375, 2012.