A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, NIPS, pp.1-9, 2012.
DOI : 10.1162/neco.2009.10-08-881

URL : http://dl.acm.org/ft_gateway.cfm?id=3065386&type=pdf

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus et al., Overfeat: Integrated recognition, localization and detection using convolutional networks, pp.1-16, 2013.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1-9, 2015.
DOI : 10.1109/CVPR.2015.7298594

URL : http://arxiv.org/pdf/1409.4842

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2016.90

URL : http://arxiv.org/pdf/1512.03385

T. H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng et al., PCANet: A Simple Deep Learning Baseline for Image Classification?, IEEE Transactions on Image Processing, vol.24, issue.12, pp.5017-5032, 2015.
DOI : 10.1109/TIP.2015.2475625

URL : http://arxiv.org/pdf/1404.3606

C. J. Ng and A. B. Teoh, DCTNet: A simple learning-free approach for face recognition, 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp.761-768, 2015.
DOI : 10.1109/APSIPA.2015.7415375

Z. Feng, L. Jin, D. Tao, and S. Huang, DLANet: A manifold-learning-based discriminative feature learning network for scene classification, Neurocomputing, vol.157, pp.11-21, 2015.
DOI : 10.1016/j.neucom.2015.01.043

X. Yang, W. Liu, D. Tao, and J. Cheng, Canonical correlation analysis networks for two-view image recognition, Information Sciences, vol.385, issue.386, pp.385-386, 2017.
DOI : 10.1016/j.ins.2017.01.011

R. Zeng, J. S. Wu, Z. H. Shao, Y. Chen, B. J. Chen et al., Color image classification via quaternion principal component analysis network, Neurocomputing, vol.216, pp.416-428, 2016.
DOI : 10.1016/j.neucom.2016.08.006

URL : https://hal.archives-ouvertes.fr/hal-01413815

H. Qin, X. Li, J. Liang, Y. Peng, and C. Zhang, DeepFish: Accurate underwater live fish recognition with a deep architecture, Neurocomputing, vol.187, pp.49-58, 2016.
DOI : 10.1016/j.neucom.2015.10.122

M. R. Teague, Image analysis via the general theory of moments*, Journal of the Optical Society of America, vol.70, issue.8, pp.920-930, 1980.
DOI : 10.1364/JOSA.70.000920

R. Mukundan, S. H. Ong, and P. A. Lee, Image analysis by Tchebichef moments, IEEE Transactions on Image Processing, vol.10, issue.9, pp.1357-1364, 2001.
DOI : 10.1109/83.941859

P. T. Yap, R. Paramesran, and S. H. Ong, Image analysis by Krawtchouk moments, IEEE Trans. Image Process, vol.12, issue.11, pp.1367-1377, 2003.

H. Zhu, H. Shu, J. Zhou, L. Luo, and J. L. Coatrieux, Image analysis by discrete orthogonal dual Hahn moments, Pattern Recognition Letters, vol.28, issue.13, pp.1688-1704, 2007.
DOI : 10.1016/j.patrec.2007.04.013

URL : https://hal.archives-ouvertes.fr/inserm-00189813

P. T. Yap, X. Jiang, and A. C. Kot, Two-dimensional polar Harmonic transforms for invariant image representation Generic polar harmonic transforms for invariant image representation, IEEE Trans. Pattern Anal. Mach. Intell. Image Vision Comput, vol.32, issue.32 8, pp.1259-1270, 2009.

R. Mukundan and K. R. Ramakrishnan, Fast computation of Legendre and Zernike moments, Pattern Recognition, vol.28, issue.9, pp.1433-1442, 1995.
DOI : 10.1016/0031-3203(95)00011-N

H. Z. Shu, H. Zhang, B. J. Chen, P. Haigron, and L. M. Luo, Fast computation of Tchebichef moments for binary and grayscale images, IEEE Trans. Image Process, vol.19, issue.12, pp.3171-3180, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00503235

B. Asli and J. Flusser, Fast computation of Krawtchouk moments, Information Sciences, vol.288, pp.73-86, 2014.
DOI : 10.1016/j.ins.2014.07.046

C. H. Teh and R. T. Chin, On image analysis by the methods of moments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.10, issue.4, pp.496-513, 1988.
DOI : 10.1109/34.3913

S. X. Liao and M. Pawlak, On image analysis by moments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.3, pp.254-266, 1996.
DOI : 10.1109/34.485554

H. Z. Shu, L. M. Luo, and J. L. Coatrieux, Moment-based approaches in imaging Part 1: basic features, IEEE Eng. Med. Biol. Mag, vol.26, issue.5, pp.70-75, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00182272

R. Mukundan and K. R. Ramakrishnan, Moment Functions in Image Analysis: Theory and Application, 1998.
DOI : 10.1142/3838

URL : http://www.worldscientific.com/doi/pdf/10.1142/9789812816092_fmatter

J. Flusser, B. Zitova, and T. Suk, Moments and Moment Invariants in Pattern Recognition, 2009.
DOI : 10.1002/9780470684757

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470684757.fmatter

R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin, LIBLINEAR: A library for large linear classification, J. Mach. Learn. Res, vol.9, pp.1871-1874, 2008.