H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-433, 1974.
DOI : 10.1109/TAC.1974.1100705

L. Alford, T. O. Andrade, R. Georges, F. Burel, and J. Van-baaren, Could Behaviour and Not 435 Physiological Thermal Tolerance Determine Winter Survival of Aphids in Cereal Fields? Plos One 9, pp.436-114982, 2014.

J. L. Andersen, T. Manenti, J. G. Sorensen, H. A. Macmillan, V. Loeschcke et al., cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits, Functional Ecology, vol.48, issue.1, pp.55-65, 2015.
DOI : 10.1016/j.cryobiol.2004.01.004

M. B. Araujo, F. Ferri-yanez, F. Bozinovic, P. A. Marquet, F. Valladares et al., Heat freezes niche evolution, Ecology Letters, vol.110, issue.9, pp.1206-1219, 2013.
DOI : 10.1093/aob/mcs172

M. B. Arias, M. J. Poupin, and M. A. Lardies, Plasticity of life-cycle, p.443, 2011.

, Hsp70 gene expression in an insect along the ontogeny: Effect of temperature variability, J. Therm. 444 Biol, vol.36, pp.355-362

R. M. Barahona-segovia, A. A. Grez, and F. Bozinovic, Testing the hypothesis of greater eurythermality in invasive than in native ladybird species: from physiological performance to life-history strategies, Ecological Entomology, vol.30, issue.2, pp.182-191, 2016.
DOI : 10.1371/journal.pone.0014806

N. Berkvens, J. S. Bale, D. Berkvens, L. Tirry, and P. De-clercq, Cold tolerance of the harlequin ladybird Harmonia axyridis in Europe, Journal of Insect Physiology, vol.56, issue.4, pp.438-444, 2010.
DOI : 10.1016/j.jinsphys.2009.11.019

K. Bowler and J. S. Terblanche, Insect thermal tolerance: what is the role of ontogeny, ageing and senescence?, Biological Reviews, vol.44, issue.3, pp.339-355, 2008.
DOI : 10.1111/j.0014-3820.2002.tb00201.x

P. M. Brown, C. E. Thomas, E. Lombaert, D. L. Jeffries, A. Estoup et al., The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion, BioControl, vol.4, issue.3, pp.623-641, 2011.
DOI : 10.1080/09583159409355324

S. L. Chown, Physiological variation in insects: hierarchical levels and implications, Journal of Insect Physiology, vol.47, issue.7, pp.649-660, 2001.
DOI : 10.1016/S0022-1910(00)00163-3

H. Colinet and A. A. Hoffmann, Functional Ecology, vol.17, issue.1, pp.84-93, 2012.
DOI : 10.1016/S0169-5347(01)02384-9

H. Colinet, D. Renault, M. Javal, P. Berkova, P. Simek et al., Uncovering the benefits of fluctuating thermal regimes on cold tolerance of drosophila flies by combined metabolomic and lipidomic approach, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1861, issue.11, pp.1736-1745, 2016.
DOI : 10.1016/j.bbalip.2016.08.008

URL : https://hal.archives-ouvertes.fr/hal-01371831

H. Colinet, D. Siaussat, F. Bozzolan, and K. Bowler, The Journal of Experimental Biology, vol.216, issue.2, pp.253-259, 2013.
DOI : 10.1242/jeb.076216

R. J. David, P. Gibert, E. Pla, G. Petavy, D. Karan et al., Cold stress tolerance in 466, 1998.

. Drosophila, Analysis of chill coma recovery in D. melanogaster, J. Therm. Biol, vol.23, pp.291-299

D. L. Denlinger and R. E. Lee, Low temperature biology of insects, p.468, 2010.
DOI : 10.1017/CBO9780511675997

U. Cambridge, , p.469

S. Halle, A. Nowizki, and I. Scharf, The consequences of parental age for development, body mass and resistance to stress in the red flour beetle, Biological Journal of the Linnean Society, vol.36, issue.2, pp.305-314, 2015.
DOI : 10.1093/ee/36.4.910

I. Hodek, A. Hon?k, and H. F. Van-emden, Ecology and Behaviour of the Ladybird Beetles, vol.472, 2012.

T. Hothorn, F. Bretz, and P. Westfall, Simultaneous inference in general parametric models. 474 Biomet, J, vol.50, pp.346-363, 2008.
DOI : 10.1002/bimj.200810425

URL : http://epub.ub.uni-muenchen.de/2120/1/tr019.pdf

D. Jensen, J. Overgaard, and J. G. Sorensen, The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster, Journal of Insect Physiology, vol.53, issue.2, pp.179-186, 2007.
DOI : 10.1016/j.jinsphys.2006.11.008

M. Klockmann, F. Gunter, and K. Fischer, Heat resistance throughout ontogeny: body size constrains thermal tolerance, Global Change Biology, vol.106, issue.2, pp.686-696, 2017.
DOI : 10.1073/pnas.0901643106

M. Knapp and O. N?dved, Gender and Timing during Ontogeny Matter: Effects of a Temporary High Temperature on Survival, Body Size and Colouration in Harmonia axyridis, PLoS ONE, vol.25, issue.9, pp.74984-481, 2013.
DOI : 10.1371/journal.pone.0074984.s004

R. L. Koch, M. A. Carrillo, R. C. Venette, C. A. Cannon, and W. D. Hutchison, Cold Hardiness of the Multicolored Asian Lady Beetle (Coleoptera: Coccinellidae), Environmental Entomology, vol.33, issue.4, pp.815-822, 2004.
DOI : 10.14411/eje.2002.002

URL : https://academic.oup.com/ee/article-pdf/33/4/815/18297728/ee33-0815.pdf

V. Kostal, P. Dolezal, J. Rozsypal, M. Moravcova, H. Zahradnickova et al., Physiological and biochemical analysis of overwintering and cold tolerance in two Central European populations of the spruce bark beetle, Ips typographus, Journal of Insect Physiology, vol.57, issue.8, pp.1136-1146, 2011.
DOI : 10.1016/j.jinsphys.2011.03.011

L. Lalouette, P. Vernon, H. Amat, and D. Renault, Ageing and thermal performance in the sub, p.487, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00496128

, Antarctic wingless fly Anatalanta aptera (Diptera: Sphaeroceridae): older is better, Biol. Lett, vol.6, pp.346-488

L. Lalouette, C. M. Williams, F. Hervant, B. J. Sinclair, and D. Renault, Metabolic rate and oxidative 490 stress in insects exposed to low temperature thermal fluctuations, Comp. Biochem. Physiol, p.491, 2011.

, Mol. Integr. Physiol, vol.158, pp.229-234

R. E. Lee, C. P. Chen, and D. L. Denlinger, A Rapid Cold-Hardening Process in Insects, Science, vol.238, issue.4832, pp.1415-1417, 1987.
DOI : 10.1126/science.238.4832.1415

E. Lombaert, T. Guillemaud, C. E. Thomas, L. J. Handley, and J. Li, , p.495

I. A. Zakharov, E. Jousselin, R. L. Poland, A. Migeon, and J. Van-lenteren,

W. Jones and A. Estoup, Inferring the origin of populations introduced from a genetically 497 structured native range by approximate Bayesian computation: case study of the invasive ladybird 498, 2011.

H. A. , Mol. Ecol, vol.20, pp.4654-4670

H. A. Macmillan and B. J. Sinclair, Mechanisms underlying insect chill-coma, Journal of Insect Physiology, vol.57, issue.1, pp.12-20, 2011.
DOI : 10.1016/j.jinsphys.2010.10.004

H. A. Macmillan, C. M. Williams, J. F. Staples, and B. J. Sinclair, Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus, Proceedings of the National Academy of Sciences, vol.215, issue.8, pp.20750-20755, 2012.
DOI : 10.1242/jeb.066381

K. E. Marshall and B. J. Sinclair, The impacts of repeated cold exposure on insects, Journal of Experimental Biology, vol.215, issue.10, pp.1607-1613, 2012.
DOI : 10.1242/jeb.059956

K. E. Marshall and B. J. Sinclair, The relative importance of number, duration and intensity of cold stress events in determining survival and energetics of an overwintering insect, Functional Ecology, vol.15, issue.3, pp.357-507, 2015.
DOI : 10.1007/978-0-387-21706-2

J. Overgaard and H. A. Macmillan, The Integrative Physiology of Insect Chill Tolerance, Annual Review of Physiology, vol.79, issue.1, pp.187-208, 2017.
DOI : 10.1146/annurev-physiol-022516-034142

J. Pinheiro, D. Bates, S. Debroy, and D. Sarkar, R Development Core Team, 2013. Nlme: linear and 511 nonlinear mixed effects models. R package version 3, pp.1-107

L. M. Pujol-lereis, A. Rabossi, and L. A. Quesada-allue, Analysis of survival, gene expression and behavior following chill-coma in the medfly Ceratitis capitata: Effects of population heterogeneity and age, 515 R Development Core Team, 2016. R: A language and environment for statistical computing. R 516 Foundation for Statistical Computing, pp.156-163, 2014.
DOI : 10.1016/j.jinsphys.2014.10.015

I. Scharf, K. O. Wertheimer, J. L. Xin, T. Gilad, I. Goldenberg et al., Context-dependent 518 effects of cold stress on behavioral, physiological, and life-history traits of the red flour beetle, 2018.

, Sci. in press, p.520

B. J. Sinclair, L. E. Alvarado, and L. V. Ferguson, An invitation to measure insect cold tolerance: Methods, approaches, and workflow, Journal of Thermal Biology, vol.53, pp.180-197, 2015.
DOI : 10.1016/j.jtherbio.2015.11.003

N. M. Teets and D. L. Denlinger, Physiological mechanisms of seasonal and rapid cold-hardening in insects, Physiological Entomology, vol.52, issue.2, pp.105-116, 2013.
DOI : 10.1016/j.jinsphys.2005.10.005

P. C. Roux and S. L. Chown, Ecologically relevant measures of tolerance to potentially lethal 525 temperatures, J. Exp. Biol, vol.214, pp.3713-3725, 2011.

J. S. Terblanche and S. L. Chown, The relative contributions of developmental plasticity and adult 527 acclimation to physiological variation in the tsetse fly, Glossina pallidipes, p.528, 2006.

, Exp. Biol, vol.209, pp.1064-1073

T. Therneau, A Package for Survival Analysis in S. version 2.38, 2015.

H. J. Wang, Z. K. Shi, Q. D. Shen, C. D. Xu, B. Wang et al., 532 Molecular Cloning and Induced Expression of Six Small Heat Shock Proteins Mediating Cold-Hardiness 533 in Harmonia axyridis (Coleoptera: Coccinellidae), pp.60-534, 2017.

M. Watanabe, Cold tolerance and myo-inositol accumulation in overwintering adults of a lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), European Journal of Entomology, vol.65, issue.1, pp.5-9, 2002.
DOI : 10.1016/S0022-1910(98)00051-1

C. M. Williams, A. Szejner-sigal, T. J. Morgan, A. S. Edison, D. B. Allison et al., Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates, Integrative and Comparative Biology, vol.14, issue.1, pp.62-72, 2016.
DOI : 10.1111/j.2041-210X.2009.00001.x

F. Zhao, A. A. Hoffmann, K. Xing, and C. S. Ma, Life stages of an aphid living under similar thermal conditions differ in thermal performance, Journal of Insect Physiology, vol.99, pp.1-7, 2017.
DOI : 10.1016/j.jinsphys.2017.03.003