T. An, A. J. Yang, and H. , Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO2 dispersion, Journal of Hazardous Materials, vol.197, pp.229-236, 2011.
DOI : 10.1016/j.jhazmat.2011.09.077

E. Azenha, A. Romeiro, and M. Sarakha, Photodegradation of Pesticides and Photocatalysis in the Treatment of Water and Waste, pp.247-266, 2013.
DOI : 10.1007/978-90-481-3830-2_6

S. Berglund, A. Rettie, and S. Hoang, Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation, Physical Chemistry Chemical Physics, vol.134, issue.122, pp.7065-7075, 2012.
DOI : 10.1021/ja209001d

S. Bhat and H. Jang, Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting, ChemSusChem, vol.6, issue.414, pp.3001-3018, 2017.
DOI : 10.1038/srep23451

S. Chala, K. Wetchakun, and S. Phanichphant, Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst, Journal of Alloys and Compounds, vol.597, pp.129-135, 2014.
DOI : 10.1016/j.jallcom.2014.01.130

P. Chatchai, A. Nosaka, and Y. Nosaka, Photoelectrocatalytic performance of WO3/BiVO4 toward the dye degradation, Electrochimica Acta, vol.94, pp.314-319, 2013.
DOI : 10.1016/j.electacta.2013.01.152

Y. Chen, C. Hu, and J. Qu, Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation, Journal of Photochemistry and Photobiology A: Chemistry, vol.197, issue.1, pp.81-87, 2008.
DOI : 10.1016/j.jphotochem.2007.12.007

X. Chen, S. Shen, and L. Guo, Semiconductor-based Photocatalytic Hydrogen Generation, Chemical Reviews, vol.110, issue.11, pp.6503-6570, 2010.
DOI : 10.1021/cr1001645

L. Chen, J. Wang, and D. Meng, The pH-controlled {040} facets orientation of BiVO4 photocatalysts with different morphologies for enhanced visible light photocatalytic performance, Materials Letters, vol.162, pp.150-153, 2016.
DOI : 10.1016/j.matlet.2015.09.138

G. Chiarello and E. Selli, Photocatalytic Hydrogen Production, Recent Patents on Engineering, vol.4, issue.3, pp.155-169, 2010.
DOI : 10.2174/187221210794578600

R. Edge, Radiolytic and Photolytic Production of Free Radicals and Reactive Oxygen Species: Interactions with Antioxidants and Biomolecules, pp.305-330, 2013.
DOI : 10.1007/978-90-481-3830-2_8

H. Fan, D. Wang, and L. Wang, Hydrothermal synthesis and photoelectric properties of BiVO4 with different morphologies: An efficient visible-light photocatalyst, Applied Surface Science, vol.257, issue.17, pp.7758-7762, 2011.
DOI : 10.1016/j.apsusc.2011.04.025

H. Fan, T. Jiang, and H. Li, Crystalline Phases on the Photoinduced Carriers Behavior and Photocatalytic Activity, The Journal of Physical Chemistry C, vol.116, issue.3, pp.2425-2430, 2012.
DOI : 10.1021/jp206798d

G. Fang, D. Dionysiou, and D. Zhou, Transformation of polychlorinated biphenyls by persulfate at ambient temperature, Chemosphere, vol.90, issue.5, pp.1573-1580, 2013.
DOI : 10.1016/j.chemosphere.2012.07.047

S. Fang, S. Xue, and C. Wang, Fabrication and characterization of CdS/BiVO 4 nanocomposites with efficient visible light driven photocatalytic activities, Ceramics International, vol.42, issue.3, pp.4421-4428, 2016.
DOI : 10.1016/j.ceramint.2015.11.126

I. Fujimoto, N. Wang, and R. Saito, WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting, International Journal of Hydrogen Energy, vol.39, issue.6, pp.2454-2461, 2014.
DOI : 10.1016/j.ijhydene.2013.08.114

A. Galembeck and O. Alves, BiVO4 thin film preparation by metalorganic decomposition, Thin Solid Films, vol.365, issue.1, pp.90-93, 2000.
DOI : 10.1016/S0040-6090(99)01079-2

J. Gan, X. Lu, and Y. Tong, Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation, Nanoscale, vol.9, issue.13, pp.7142-7164, 2014.
DOI : 10.1149/1.2140497

X. Gao, Z. Wang, and F. Fu, Effects of pH on the hierarchical structures and photocatalytic performance of Cu-doped BiVO4 prepared via the hydrothermal method, Materials Science in Semiconductor Processing, vol.35, pp.197-206, 2015.
DOI : 10.1016/j.mssp.2015.03.012

U. Garcia-perez, S. Sepulveda-guzman, and A. Martinez-de-la-cruz, Selective Synthesis of Monoclinic Bismuth Vanadate Powders by Surfactant-Assisted Co-Precipitation Method: Study of Their Electrochemical and Photocatalytic Properties, Int J Electrochem Sci, vol.7, pp.9622-9632, 2012.

U. Gaya, Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids, 2014.
DOI : 10.1007/978-94-007-7775-0

Y. Geng, P. Zhang, and N. Li, Synthesis of Co doped BiVO 4 with enhanced visible-light photocatalytic activities, Journal of Alloys and Compounds, vol.651, pp.744-748, 2015.
DOI : 10.1016/j.jallcom.2015.08.123

M. Gholipour, C. Dinh, and F. Beland, Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting, Nanoscale, vol.33, issue.118, pp.8187-8208, 2015.
DOI : 10.1016/S1872-2067(11)60382-3

Y. Guo, X. Yang, and F. Ma, Additive-free controllable fabrication of bismuth vanadates and their photocatalytic activity toward dye degradation, Applied Surface Science, vol.256, issue.7, pp.2215-2222, 2010.
DOI : 10.1016/j.apsusc.2009.09.076

Z. Guo, P. Li, and C. H. , One-dimensional spindle-like BiVO 4 /TiO 2 nanofibers heterojunction nanocomposites with enhanced visible light photocatalytic activity, Ceramics International, vol.42, issue.3, pp.4517-4525, 2016.
DOI : 10.1016/j.ceramint.2015.11.142

K. Hashimoto, H. Irie, and A. Fujishima, Photocatalysis: A Historical Overview and Future Prospects, Japanese Journal of Applied Physics, vol.44, issue.12, pp.8269-8285, 2005.
DOI : 10.1143/JJAP.44.8269

URL : http://iopscience.iop.org/article/10.1143/JJAP.44.8269/pdf

J. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catalysis Today, vol.53, issue.1, pp.115-129, 1999.
DOI : 10.1016/S0920-5861(99)00107-8

L. Hinojosa-reyes, J. Guzman-mar, and M. Villanueva-rodriguez, Semiconductor Materials for Photocatalytic Oxidation of Organic Pollutants in Wastewater, pp.187-228, 2015.
DOI : 10.1007/978-3-319-10999-2_6

M. Hofmann, R. M. Schulze, and S. , Nonaqueous Synthesis of a Bismuth Vanadate Photocatalyst By Using Microwave Heating: Photooxidation versus Photosensitized Decomposition in Visible-Light-Driven Photocatalysis, ChemCatChem, vol.15, issue.251, pp.1357-1365, 2015.
DOI : 10.1002/pssb.19660150224

L. Hu, P. Flanders, and P. Miller, Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis, Water Research, vol.41, issue.12, pp.2612-2626, 2007.
DOI : 10.1016/j.watres.2007.02.026

Y. Hu, D. Li, and Y. Zheng, BiVO4/TiO2 nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene, Applied Catalysis B: Environmental, vol.104, issue.1-2, pp.30-36, 2011.
DOI : 10.1016/j.apcatb.2011.02.031

Y. Hu, D. Li, and F. Sun, microspheres with enhanced photocatalytic activity, RSC Advances, vol.169, issue.68, pp.54882-54889, 2015.
DOI : 10.1016/j.jphotochem.2004.07.009

Y. Hu, J. Fan, and C. Pu, Facile synthesis of double cone-shaped Ag 4 V 2 O 7 /BiVO 4 nanocomposites with enhanced visible light photocatalytic activity for environmental purification, Journal of Photochemistry and Photobiology A: Chemistry, vol.337, pp.172-183, 2017.
DOI : 10.1016/j.jphotochem.2016.12.035

Z. Huang, L. Pan, and J. Zou, Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress, Nanoscale, vol.136, issue.135, pp.14044-14063, 2014.
DOI : 10.1021/ja411835a

J. Huang, G. Tan, and L. Zhang, Enhanced photocatalytic activity of tetragonal BiVO 4 : Influenced by rare earth ion Yb 3+, Materials Letters, vol.133, pp.20-23, 2014.
DOI : 10.1016/j.matlet.2014.06.123

C. Huang, T. Wu, and C. Huang, Enhanced photocatalytic performance of BiVO 4 in aqueous AgNO 3 solution under visible light irradiation, Applied Surface Science, vol.399, pp.10-19, 2017.
DOI : 10.1016/j.apsusc.2016.12.038

L. Hubert-pfalzgraf, Some trends in the design of homo- and heterometallic molecular precursors of high-tech oxides, Inorganic Chemistry Communications, vol.6, issue.1, pp.102-120, 2003.
DOI : 10.1016/S1387-7003(02)00664-0

URL : https://hal.archives-ouvertes.fr/hal-00007240

A. Ibhadon and P. Fitzpatrick, Heterogeneous Photocatalysis: Recent Advances and Applications, Catalysts, vol.33, issue.1, pp.189-218, 2013.
DOI : 10.1002/etc.5620190703

URL : http://www.mdpi.com/2073-4344/3/1/189/pdf

H. Jiang, H. Dai, and X. Meng, Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol, Applied Catalysis B: Environmental, vol.105, issue.3-4, pp.326-334, 2011.
DOI : 10.1016/j.apcatb.2011.04.026

H. Jiang, H. Dai, and X. Meng, Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for Methyl Orange degradation, Journal of Environmental Sciences, vol.24, issue.3, pp.449-457, 2012.
DOI : 10.1016/S1001-0742(11)60793-6

P. Ju, P. Wang, and B. Li, A novel calcined Bi 2 WO 6 /BiVO 4 heterojunction photocatalyst with highly enhanced photocatalytic activity, Chemical Engineering Journal, vol.236, pp.430-437, 2014.
DOI : 10.1016/j.cej.2013.10.001

Y. Kanigaridou, A. Petala, and Z. Frontistis, Solar photocatalytic degradation of bisphenol A with CuO x /BiVO 4 : Insights into the unexpectedly favorable effect of bicarbonates, Chemical Engineering Journal, vol.318, pp.39-49, 2016.
DOI : 10.1016/j.cej.2016.04.145

H. Katsumata, M. Taniguchi, and S. Kaneco, Photocatalytic degradation of bisphenol A by Ag3PO4 under visible light, Catalysis Communications, vol.34, pp.30-34, 2013.
DOI : 10.1016/j.catcom.2013.01.012

D. Ke, T. Peng, and L. Ma, Photocatalytic water splitting for O2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions, Applied Catalysis A: General, vol.350, issue.1, pp.111-117, 2008.
DOI : 10.1016/j.apcata.2008.08.003

A. Koltsakidou, M. Antonopoulou, and E. Evgenidou, Cytarabine degradation by simulated solar assisted photocatalysis using TiO 2, Chemical Engineering Journal, vol.316, pp.823-831, 2017.
DOI : 10.1016/j.cej.2017.01.132

K. Kumar, K. Porkodi, and F. Rocha, Langmuir???Hinshelwood kinetics ??? A theoretical study, Catalysis Communications, vol.9, issue.1, pp.82-84, 2008.
DOI : 10.1016/j.catcom.2007.05.019

, Pollution from drug manufacturing: review and perspectives, Larsson DGJ Philos T Roy Soc B, vol.369, pp.71-78, 2014.

U. Lamdab, K. Wetchakun, and S. Phanichphant, InVO 4 ???BiVO 4 composite films with enhanced visible light performance for photodegradation of methylene blue, Catalysis Today, vol.278, issue.2, pp.291-302, 2016.
DOI : 10.1016/j.cattod.2015.11.037

M. Lazar, S. Varghese, and S. Nair, Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates, Catalysts, vol.102, issue.4, pp.572-601, 2012.
DOI : 10.1016/j.cattod.2011.06.013

URL : http://www.mdpi.com/2073-4344/2/4/572/pdf

F. Lelario, M. Brienza, and S. Bufo, Effectiveness of different advanced oxidation processes (AOPs) on the abatement of the model compound mepanipyrim in water, Journal of Photochemistry and Photobiology A: Chemistry, vol.321, pp.187-201, 2016.
DOI : 10.1016/j.jphotochem.2016.01.024

G. Li, D. Zhang, and J. Yu, through Nanocasting: A Superior Visible Light-Driven Photocatalyst, Chemistry of Materials, vol.20, issue.12, pp.3983-3992, 2008.
DOI : 10.1021/cm800236z

Z. Li, W. Luo, and M. Zhang, Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook, Energy Environ. Sci., vol.10, issue.2, pp.347-370, 2013.
DOI : 10.1038/nmat3047

R. Li, F. Zhang, and D. Wang, Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4, Nature Communications, vol.349, issue.1, pp.1432-1439, 2013.
DOI : 10.1016/S0040-6090(99)00239-4

C. Li, P. Zhang, and R. Lv, (040) for Highly Efficient Photocatalysis, Small, vol.115, issue.218, pp.3951-3956, 2013.
DOI : 10.1021/jp111167u

J. Li, W. Zhao, and Y. Guo, Facile synthesis and high activity of novel BiVO4/FeVO4 heterojunction photocatalyst for degradation of metronidazole, Applied Surface Science, vol.351, pp.270-279, 2015.
DOI : 10.1016/j.apsusc.2015.05.134

F. Li, Y. Kang, and M. Chen, Photocatalytic degradation and removal mechanism of ibuprofen via monoclinic BiVO 4 under simulated solar light, Chemosphere, vol.150, pp.139-144, 2016.
DOI : 10.1016/j.chemosphere.2016.02.045

J. Li, M. Han, and Y. Guo, Hydrothermal synthesis of novel flower-like BiVO4/Bi2Ti2O7 with superior photocatalytic activity toward tetracycline removal, Appl Catal A, vol.524, pp.105-114, 2016.

J. Li, F. Wang, and L. Meng, Controlled synthesis of BiVO 4 /SrTiO 3 composite with enhanced sunlight-driven photofunctions for sulfamethoxazole removal, Journal of Colloid and Interface Science, vol.485, pp.116-122, 2017.
DOI : 10.1016/j.jcis.2016.07.040

P. Lianos, Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen, Applied Catalysis B: Environmental, vol.210, pp.235-254, 2017.
DOI : 10.1016/j.apcatb.2017.03.067

C. Liao, C. Huang, and J. Wu, Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting, Catalysts, vol.35, issue.129, pp.490-516, 2012.
DOI : 10.1016/j.solmat.2012.07.003

URL : http://www.mdpi.com/2073-4344/2/4/490/pdf

Y. Lin, D. Li, and J. Hu, Composite, The Journal of Physical Chemistry C, vol.116, issue.9, pp.5764-5772, 2012.
DOI : 10.1021/jp211222w

URL : https://hal.archives-ouvertes.fr/hal-00305982

A. Linsebigler, G. Lu, and J. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, vol.95, issue.3, pp.735-758, 1995.
DOI : 10.1021/cr00035a013

M. Litter, Heterogeneous photocatalysis Transition metal ions in photocatalytic systems, Applied Catalysis B: Environmental, vol.23, issue.2-3, pp.89-114, 1999.
DOI : 10.1016/S0926-3373(99)00069-7

W. Liu, G. Zhao, and A. M. , Solvothermal synthesis of nanostructured BiVO 4 with highly exposed (0 1 0) facets and enhanced sunlight-driven photocatalytic properties, Applied Surface Science, vol.357, pp.1053-1063, 2015.
DOI : 10.1016/j.apsusc.2015.09.117

W. Liu, G. Zhao, and Y. Zhang, Hydrothermal synthesis of phosphate-doped BiVO4 with exposed (010) facets and enhanced sunlight-driven photocatalytic properties, Materials Letters, vol.170, pp.183-186, 2016.
DOI : 10.1016/j.matlet.2016.01.146

T. Liu, G. Tan, and C. Zhao, Enhanced photocatalytic mechanism of the Nd-Er co-doped tetragonal BiVO 4 photocatalysts, Applied Catalysis B: Environmental, vol.213, pp.87-96, 2017.
DOI : 10.1016/j.apcatb.2017.05.018

Y. Liu, J. Kong, and J. Yuan, Enhanced photocatalytic activity over flower-like sphere Ag, 2018.

, Chem Eng J, vol.331, pp.242-254

M. Long, J. Jiang, and Y. Li, Effect of Gold Nanoparticles on the Photocatalytic and Photoelectrochemical Performance of Au Modified BiVO4, Nano-Micro Letters, vol.53, issue.3, pp.171-177, 2011.
DOI : 10.1016/j.electacta.2008.01.077

O. Lopes, K. Carvalho, and G. Macedo, via oxidant peroxo-method: insights into the photocatalytic performance and degradation mechanism of pollutants, New Journal of Chemistry, vol.30, issue.135, pp.6231-6237, 2015.
DOI : 10.1016/j.mssp.2014.10.044

O. Lopes, K. Carvalho, and A. Nogueira, Controlled synthesis of BiVO 4 photocatalysts: Evidence of the role of heterojunctions in their catalytic performance driven by visible-light, Applied Catalysis B: Environmental, vol.188, pp.87-97, 2016.
DOI : 10.1016/j.apcatb.2016.01.065

B. Lopez-alvarez, R. Torres-plama, and G. Penuela, Solar photocatalitycal treatment of carbofuran at lab and pilot scale: Effect of classical parameters, evaluation of the toxicity and analysis of organic by-products, Journal of Hazardous Materials, vol.191, issue.1-3, pp.196-203, 2011.
DOI : 10.1016/j.jhazmat.2011.04.060

G. Lowry and K. Johnson, Congener-Specific Dechlorination of Dissolved PCBs by Microscale and Nanoscale Zerovalent Iron in a Water/Methanol Solution, Environmental Science & Technology, vol.38, issue.19, pp.5208-5216, 2004.
DOI : 10.1021/es049835q

Y. Lu, C. Chen, and C. Lu, Photocatalytic degradation of bis(2-chloroethoxy)methane by a visible light-driven BiVO4 photocatalyst, Journal of the Taiwan Institute of Chemical Engineers, vol.45, issue.3, pp.1015-1024, 2014.
DOI : 10.1016/j.jtice.2013.08.005

Y. Lu, H. Shang, and H. Guan, Enhanced visible-light photocatalytic activity of BiVO4 microstructures via annealing process, Superlattices and Microstructures, vol.88, pp.591-599, 2015.
DOI : 10.1016/j.spmi.2015.10.016

W. Luo, Z. Yang, and Z. Li, Solar hydrogen generation from seawater with a modified BiVO4 photoanode, Energy & Environmental Science, vol.374, issue.677, pp.4046-4051, 2011.
DOI : 10.1016/j.physleta.2010.10.014

Y. Luo, G. Tan, and G. Dong, Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light, Applied Surface Science, vol.324, pp.505-511, 2015.
DOI : 10.1016/j.apsusc.2014.10.168

Y. Luo, G. Tan, and G. Dong, Effects of structure, morphology, and up-conversion on Nd-doped BiVO4 system with high photocatalytic activity, Ceramics International, vol.41, issue.2, pp.3259-3268, 2015.
DOI : 10.1016/j.ceramint.2014.11.016

Y. Luo, G. Tan, and G. Dong, A comprehensive investigation of tetragonal Gd-doped BiVO 4 with enhanced photocatalytic performance under sun-light, Applied Surface Science, vol.364, pp.156-165, 2016.
DOI : 10.1016/j.apsusc.2015.12.100

L. Mohapatra and K. Parida, Dramatic activities of vanadate intercalated bismuth doped LDH for solar light photocatalysis, Phys. Chem. Chem. Phys., vol.5, issue.32, pp.16985-16996, 2014.
DOI : 10.1021/ic50040a004

O. Monfort, T. Roch, and M. Gregor, Photooxidative properties of various BiVO 4 /TiO 2 layered composite films and study of their photocatalytic mechanism in pollutant degradation, Journal of Environmental Chemical Engineering, vol.5, issue.5, pp.5143-5149, 2017.
DOI : 10.1016/j.jece.2017.09.050

O. Monfort, S. Sfaelou, and L. Satrapinskyy, Comparative study between pristine and Nb-modified BiVO 4 films employed for photoelectrocatalytic production of H 2 by water splitting and for photocatalytic degradation of organic pollutants under simulated solar light, Catalysis Today, vol.280, pp.51-57, 2017.
DOI : 10.1016/j.cattod.2016.07.006

S. Moniz, S. Shevlin, and D. Martin, Visible-light driven heterojunction photocatalysts for water splitting ??? a critical review, Energy & Environmental Science, vol.4, issue.141, pp.731-759, 2015.
DOI : 10.1039/c2sc21845c

M. Ni, M. Leung, and D. Leung, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable and Sustainable Energy Reviews, vol.11, issue.3, pp.401-425, 2007.
DOI : 10.1016/j.rser.2005.01.009

O. Carroll, D. Sleep, B. Krol, and M. , Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Advances in Water Resources, vol.51, pp.104-122, 2013.
DOI : 10.1016/j.advwatres.2012.02.005

S. Obregon and G. Colon, Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism, Applied Catalysis B: Environmental, vol.158, issue.159, pp.242-249, 2014.
DOI : 10.1016/j.apcatb.2014.04.029

G. Odling and N. Robertson, Composite Photocatalysts for Dye Degradation Formed Using the SILAR Method, ChemPhysChem, vol.41, issue.18, pp.2872-2880, 2016.
DOI : 10.1039/c2dt30099k

H. Park, K. Kweon, and H. Ye, for Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy and First-Principles Density-Functional Calculation, The Journal of Physical Chemistry C, vol.115, issue.36, pp.17870-17879, 2011.
DOI : 10.1021/jp204492r

Y. Park, K. Mcdonald, and K. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation, Chem. Soc. Rev., vol.92, issue.6, pp.2321-2337, 2013.
DOI : 10.1016/j.solmat.2007.11.006

K. Parmar, H. Kang, and A. Bist, Photoanodes, ChemSusChem, vol.36, issue.10, pp.1926-1934, 2012.
DOI : 10.1016/j.ijhydene.2011.05.046

Y. Pilosh, I. Turkevych, and K. Mawatari, Nanostructured WO3/BiVO4 Photoanodes for Efficient Photoelectrochemical Water Splitting, Small, vol.10, issue.18, pp.3692-3699, 2014.

K. Pingmuang, J. Chen, and A. Nattestad, Photocatalytic Degradation of Methylene Blue by Innovative BiVO4/TiO2 Composite Films under Visible Light Irradiation, J Environ Sci, vol.3, issue.1, pp.69-76, 2014.

P. Polczynski, R. Jurczakowski, and W. Grochala, Stabilization and strong oxidizing properties of Ag(ii) in a fluorine-free solvent, Chemical Communications, vol.129, issue.68, pp.7480-7482, 2013.
DOI : 10.1021/ja066247z

P. Pookmanee, S. Kojinok, and S. Phanichphant, Bismuth Vanadate (BiVO4) Powder Prepared by the Sol-gel Method, J Met Mater Min, vol.22, issue.2, pp.49-53, 2012.

J. Quiroga, A. Riaza, and M. Manzano, Chemical degradation of PCB in the contaminated soils slurry: Direct Fenton oxidation and desorption combined with the photo-Fenton process, Journal of Environmental Science and Health, Part A, vol.65, issue.11, pp.1120-1126, 2009.
DOI : 10.1016/S0304-3894(99)00009-6

R. Ran, J. Mcevoy, and Z. Zhang, Photocatalysts for the Degradation of RhB, International Journal of Photoenergy, vol.94, issue.7, pp.1-14, 2015.
DOI : 10.1021/jp980922c

C. Regmi, Y. Kshetri, and T. Kim, Visible-light-induced Fe-doped BiVO 4 photocatalyst for contaminated water treatment, Molecular Catalysis, vol.432, pp.220-231, 2017.
DOI : 10.1016/j.mcat.2017.02.004

R. Roth and J. Waring, Synthesis and stability of bismutotantalite stibiotantalite and chemically similar ABO4 compounds, Am Mineral, vol.48, pp.1348-1356, 1963.

V. Rybnikova, M. Usman, and K. Hanna, Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes, Environmental Science and Pollution Research, vol.45, issue.11, pp.17035-17048, 2016.
DOI : 10.1021/es104312h

URL : https://hal.archives-ouvertes.fr/hal-01376264

T. Saison, N. Chemin, and C. Chaneac, Properties as Visible Light Photocatalyst, The Journal of Physical Chemistry C, vol.119, issue.23, pp.12967-12977, 2015.
DOI : 10.1021/acs.jpcc.5b01468

URL : https://hal.archives-ouvertes.fr/hal-01291233

K. Sayama, A. Nomura, and Z. Zou, Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light, Chem Commun, vol.23, pp.2908-2909, 2003.
DOI : 10.1039/b310428a

J. Seabold and K. Choi, Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst, Journal of the American Chemical Society, vol.134, issue.4, pp.2186-2192, 2012.
DOI : 10.1021/ja209001d

S. Selvarajan, A. Suganthi, and M. Rajarajan, Highly efficient BiVO4/WO3 nanocomposite towards superior photocatalytic performance, Powder Technology, vol.307, pp.203-212, 2017.
DOI : 10.1016/j.powtec.2016.10.069

N. Serpone and A. Salinaro, Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: Suggested protocol, Pure and Applied Chemistry, vol.317, issue.2, pp.303-320, 1999.
DOI : 10.1351/pac199971020303

L. Shan, M. J. Dong, and L. , Enhanced Photocatalytic Properties of Silver Oxide Loaded Bismuth Vanadate, Chinese Journal of Chemical Engineering, vol.22, issue.8, pp.909-913, 2014.
DOI : 10.1016/j.cjche.2014.06.015

L. Shan and Y. Liu, Er3+, Yb3+ doping induced core???shell structured BiVO4 and near-infrared photocatalytic properties, Journal of Molecular Catalysis A: Chemical, vol.416, pp.1-9, 2016.
DOI : 10.1016/j.molcata.2016.02.013

Y. Shen, M. Huang, and Y. Huang, The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradiation, Journal of Alloys and Compounds, vol.496, issue.1-2, pp.287-292, 2010.
DOI : 10.1016/j.jallcom.2010.01.144

X. Song, Y. Li, and Z. Wei, Synthesis of BiVO4/P25 composites for the photocatalytic degradation of ethylene under visible light, Chemical Engineering Journal, vol.314, pp.443-452, 2017.
DOI : 10.1016/j.cej.2016.11.164

J. Sun, X. Li, and Q. Zhao, microflower composite heterostructures: efficient production of hydroxyl radicals towards visible light-driven degradation of gaseous toluene, Journal of Materials Chemistry A, vol.12, issue.161, pp.21655-21663, 2015.
DOI : 10.1021/nl303961c

T. Tachikawa, T. Ochi, and Y. Kobori, Photocatalyst Revealed by Single-Particle Spectroelectrochemistry, ACS Catalysis, vol.6, issue.4, pp.2250-2256, 2016.
DOI : 10.1021/acscatal.6b00234

G. Tan, L. Zhang, and H. Ren, Microwave hydrothermal synthesis of N-doped BiVO4 nanoplates with exposed (040) facets and enhanced visible-light photocatalytic properties, Ceramics International, vol.40, issue.7, pp.9541-9547, 2014.
DOI : 10.1016/j.ceramint.2014.02.028

H. Tan, X. Wen, and A. R. , {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity, The Journal of Physical Chemistry Letters, vol.7, issue.7, pp.1400-1405, 2016.
DOI : 10.1021/acs.jpclett.6b00428

H. Tan, A. Suyanto, and A. Denko, via Annealing in Oxygen-Deficient Condition, Particle & Particle Systems Characterization, vol.29, issue.4, pp.1600290-1600299, 2017.
DOI : 10.1016/j.jeurceramsoc.2008.10.002

URL : https://doi.org/10.1002/ppsc.201600290

W. Teoh, J. Scott, and A. R. , Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors, The Journal of Physical Chemistry Letters, vol.3, issue.5, pp.629-639, 2012.
DOI : 10.1021/jz3000646

S. Thalluri, M. Hussain, and G. Saracco, Oriented along {040} Facets for Visible-Light-Driven Ethylene Degradation, Industrial & Engineering Chemistry Research, vol.53, issue.7, pp.2640-2646, 2014.
DOI : 10.1021/ie403999g

J. Thurston, D. Trahan, and T. Ould-ely, (M = Al, Co, V, Fe, Cr), Hsal)6.M(Acac)3 (M = Al, pp.3299-3305, 2004.
DOI : 10.1021/ic035284d

S. Tokunaga, H. Kato, and A. Kudo, ChemInform Abstract: Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties., ChemInform, vol.13, issue.8, pp.4624-4628, 2001.
DOI : 10.1002/chin.200208009

K. Tolod, S. Hernandez, and N. Russo, Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges, Catalysts, vol.4, issue.12, pp.13-36, 2017.
DOI : 10.1016/j.apenergy.2013.05.014

K. Trzcinski, M. Szkoda, and M. Sawczak, Visible light activity of pulsed layer deposited BiVO 4 /MnO 2 films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation, Applied Surface Science, vol.385, pp.199-208, 2016.
DOI : 10.1016/j.apsusc.2016.05.115

M. Wang, H. Zheng, and J. Liu, Enhanced visible-light-driven photocatalytic activity of B-doped BiVO4 synthesized using a corn stem template, Materials Science in Semiconductor Processing, vol.30, pp.307-313, 2015.
DOI : 10.1016/j.mssp.2014.09.031

X. Wang, Y. Shen, and G. Zuo, Influence of heat treatment on photocatalytic performance of BiVO4 synthesised by sol-gel method, Mater Technol, vol.31, issue.3, pp.176-180, 2016.

M. Wang, P. Guo, and T. Chai, Effects of Cu dopants on the structures and photocatalytic performance of cocoon-like Cu-BiVO 4 prepared via ethylene glycol solvothermal method, Journal of Alloys and Compounds, vol.691, pp.8-14, 2017.
DOI : 10.1016/j.jallcom.2016.08.198

M. Wang, G. Yang, and M. You, Effects of Ni doping contents on photocatalytic activity of B-BiVO 4 synthesized through sol-gel and impregnation two-step method, Transactions of Nonferrous Metals Society of China, vol.27, issue.9, pp.2022-2030, 2017.
DOI : 10.1016/S1003-6326(17)60227-9

N. Wetchakun, S. Chainet, and S. Phanichphant, Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites, Ceramics International, vol.41, issue.4, pp.5999-6004, 2015.
DOI : 10.1016/j.ceramint.2015.01.040

P. Wood, The potential diagram for oxygen at pH 7, Biochemical Journal, vol.253, issue.1, pp.287-289, 1988.
DOI : 10.1042/bj2530287

URL : http://www.biochemj.org/content/ppbiochemj/253/1/287.full.pdf

G. Xi and J. Ye, Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties, Chemical Communications, vol.2, issue.11, pp.1893-1895, 2010.
DOI : 10.1103/PhysRevB.53.3415

S. Xue, H. He, and Z. Wu, An interesting Eu,F-codoped BiVO 4 microsphere with enhanced photocatalytic performance, Journal of Alloys and Compounds, vol.694, pp.989-997, 2017.
DOI : 10.1016/j.jallcom.2016.10.146

Y. Xu, C. Liu, and M. Chen, A review in visible-light-driven, 2011.

, Int J Nanopart, vol.4, issue.23, pp.268-283

X. Xu, Q. Zou, and Y. Yuan, -Graphene Nanocomposites and Their Photocatalytic Activity, Journal of Nanomaterials, vol.33, issue.1, pp.1-6, 2014.
DOI : 10.1039/c1cc14875c

X. Xu and W. Song, Materials Technology, vol.32, issue.8, pp.472-479, 2017.
DOI : 10.1016/j.catcom.2012.10.013

H. Ye, J. Lee, and J. Jang, -Based Photocatalysts by Scanning Electrochemical Microscopy (SECM) and Studies of Their Photoelectrochemical Properties, The Journal of Physical Chemistry C, vol.114, issue.31, pp.13322-13328, 2010.
DOI : 10.1021/jp104343b

Q. Yuan, L. Chen, and M. Xiong, Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light, Chemical Engineering Journal, vol.255, pp.394-402, 2014.
DOI : 10.1016/j.cej.2014.06.031

X. Yuan, G. Zhang, and X. Yang, composite and its application for photocatalytic degradation under visible light, Materials Research Innovations, vol.2014, issue.3, pp.230-234, 2016.
DOI : 10.1016/j.apcatb.2011.09.014

Y. Zhai, Y. Yin, and X. Liu, Novel Magnetically Separable BiVO 4 /Fe 3 O 4 Photocatalyst: Synthesis and Photocatalytic Performance under Visible-light Irradiation, Materials Research Bulletin, vol.89, pp.297-306, 2017.
DOI : 10.1016/j.materresbull.2017.01.011

S. Zhang, Z. Zheng, and J. Wang, Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2 film at ambient temperature, Chemosphere, vol.65, issue.11, pp.2282-2288, 2006.
DOI : 10.1016/j.chemosphere.2006.05.027

X. Zhang, Y. Zhang, and X. Quan, Preparation of Ag doped BiVO4 film and its enhanced photoelectrocatalytic (PEC) ability of phenol degradation under visible light, Journal of Hazardous Materials, vol.167, issue.1-3, pp.911-914, 2009.
DOI : 10.1016/j.jhazmat.2009.01.074

M. Zhang, C. Shao, and X. Li, Carbon-modified BiVO4 microtubes embedded with Ag nanoparticles have high photocatalytic activity under visible light, Nanoscale, vol.189, issue.118, pp.7501-7508, 2012.
DOI : 10.1016/j.jphotochem.2007.02.010

B. Zhang, J. Li, and B. Zhang, Selective oxidation of sulfides on Pt/BiVO 4 photocatalyst under visible light irradiation using water as the oxygen source and dioxygen as the electron acceptor, Journal of Catalysis, vol.332, pp.95-100, 2015.
DOI : 10.1016/j.jcat.2015.08.029

K. Zhang, Y. Liu, and J. Deng, Co???Pd/BiVO 4 : High-performance photocatalysts for the degradation of phenol under visible light irradiation, Applied Catalysis B: Environmental, vol.224, pp.350-359, 2018.
DOI : 10.1016/j.apcatb.2017.10.044

L. Zhou, W. Wang, and S. Liu, A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst, Journal of Molecular Catalysis A: Chemical, vol.252, issue.1-2, pp.120-124, 2006.
DOI : 10.1016/j.molcata.2006.01.052

B. Zhou, X. Zhao, and H. Liu, Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions, Applied Catalysis B: Environmental, vol.99, issue.1-2, pp.214-221, 2010.
DOI : 10.1016/j.apcatb.2010.06.022

Z. Zhu, Q. Han, and D. Yu, A novel p-n heterojunction of BiVO 4 /TiO 2 /GO composite for enhanced visible-light-driven photocatalytic activity, Materials Letters, vol.209, pp.379-383, 2017.
DOI : 10.1016/j.matlet.2017.08.045

Y. Zhu, M. Shah, and C. Wang, Insight into the role of Ti 3+ in photocatalytic performance of shuriken-shaped BiVO 4 /TiO 2???x heterojunction, Applied Catalysis B: Environmental, vol.203, pp.526-532, 2017.
DOI : 10.1016/j.apcatb.2016.10.056