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Abstract 

Ischemia reperfusion (I/R) is associated with liver injury and impaired regeneration during 

partial hepatectomy (PH). The aim of this study was to investigate the effect of thymoquinone 

(TQ), the active compound of essential oil obtained from Nigella sativa seeds, on rat liver 

after PH.  

Male Wistar rats were equally divided into four groups (n=6) receiving an oral administration 

of either vehicle solution (Sham and PH groups) or TQ at 30 mg/kg (TQ and TQ+PH groups) 

for ten consecutive days. Then, rats underwent PH (70 %) with 60 min of ischemia followed 

by 24h of reperfusion (PH and TQ+PH groups). Alanine aminotransferase (ALT) activity and 

histopathological damage were determined. Also, antioxidant parameters, liver regeneration 

index, hepatic adenosine triphosphate (ATP) content, endoplasmic reticulum (ER) stress and 

apoptosis were assessed. In response to PH under I/R, liver damage was significantly 

alleviated by TQ treatment as evidenced by the decrease in ALT activity (P < 0.01) and 

histological findings (P < 0.001). In parallel, TQ preconditioning increased hepatic 

antioxidant capacities. Moreover, TQ improved mitochondrial function (ATP, P < 0.05), 

attenuated ER stress parameters and repressed the expression of apoptotic effectors. Taken 

together, our results suggest that TQ preconditioning could be an effective strategy to reduce 

liver injury after PH under I/R. The protective effects were mediated by the increase of 

antioxidant capacities and the decrease of ER stress and apoptosis. 

Keywords: 

Ischemia reperfusion injury, hepatectomy, thymoquinone, oxidative stress, endoplasmic 

reticulum stress, apoptosis. 
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Introduction 

Partial hepatectomy (PH) is considered as the operation of choice for the treatment of many 

liver malignancies (1, 2) and for living donor liver transplantation (3). However, bleeding 

remains a major prognostic factor in liver resection. Complete clamping of the hepatic inflow 

at the hepatoduodenal ligament (the Pringle maneuver) is a safe strategy to alleviate this 

problem (4). This maneuver, although effective in preventing excessive blood loss, is 

complicated by ischemia/reperfusion (I/R) injury, which compromises functional recovery of 

the remnant liver (4, 5). Clinically, liver I/R injury results in elevated liver transaminases, bile 

duct stricture and even liver failure (4-6). Furthermore, other organs can develop dysfunction 

secondary to the liver damage such as lungs, heart and kidneys (7). Besides I/R, the surgical 

resection itself activates various complex cell signaling cascades of which many sides are still 

unresolved (8, 9). For example, reactive oxygen species (ROS) are involved in the modulation 

of several signaling pathways that may influence liver regeneration after PH (10, 11). Also, 

mitochondria have been shown to be an important player of liver regeneration (12). Actually, 

high energy demand on the hepatocytes is required during the regenerative process after PH 

and this energy is provided by mitochondria through oxidative phosphorylation. In return, 

mitochondria release a large amount of ROS (13, 14) which activate proteins that inhibit the 

cell cycle (15, 16). In addition, oxidative stress causes damage to cell components including 

proteins, lipids, and DNA resulting in cellular disorders and further organelle malfunction 

(17).  

Endoplasmic reticulum (ER) stress is triggered in several pathological events such as hypoxia, 

glucose deprivation and oxidative stress. ER homeostasis disruption leads to the accumulation 

of unfolded and misfolded proteins in the ER lumen. As a consequence, unfolded protein 

response (UPR) is activated in order to resolve this protein-folding defect and so to restore ER 

homeostasis (18). However, if the UPR is insufficient to alleviate the stress, caspase 
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dependent and independent cell death occurs (19). Indeed, ER stress activates caspase 12 and 

mitochondrial apoptosis pathway (20, 21). ER stress also upregulated glycogen synthase 

kinase-3β (GSK3β) and voltage-dependent anion channel (VDAC) proteins which initiate the 

efflux of cytochrome C from the outer mitochondrial membrane, which in turn, activates the 

pro-apoptotic proteins caspase 9 and its effectors caspase 3 (22).  

Thymoquinone (TQ) (2-isopropyl-5-methylbenzo-1, 4-quinone), is the major and the main 

active constituent of the essential oil of Nigella sativa seeds (23). TQ has several biological 

activities, especially antioxidant and free radical scavenging capacity (24, 25). Recently, it has 

been shown that TQ protects rat liver against I/R injury (20). However, its effect on liver 

subjected to resection under I/R is still unknown. Therefore, this study aimed to evaluate the 

effect of TQ administration in rat before a 2/3 hepatectomy (PH). 

Results 

In order to explore liver injury, we evaluated whether TQ pretreatment could preserve liver 

architecture and hepatocyte proliferation capacity after PH (Figure 1). As expected, a 

disorganized hepatic lobule aspect with focal necrosis was observed in rat livers subjected to 

PH under I/R. TQ treatment markedly attenuated the hepatic damage when compared to PH 

group (2.3 ± 0.3 vs. 3.9 ± 0.4, P < 0.001). We noted a relatively preserved hepatic architecture 

with less vacuolization and nuclear picnosis, and few zones of necrosis were detected. 

Consistent with these observations, we found that ALT activity in serum of PH+TQ group 

was significantly decreased when compared to PH group. Values reached 161 ± 42 and 74 ± 

46 U/L for PH and TQ+PH groups, respectively (P < 0.01). We noted also that TQ treatment 

in sham operated rats (TQ group) did not result in any modification in ALT activity in 

comparison to sham group. In addition, hepatocyte proliferation, assessed 24 hours after PH 

by quantitation of the number of Ki-67-positive hepatocytes, was greater in TQ+PH group 
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than in PH group (7.7 ± 5.8 vs. 16.0 ± 3.6 %, P < 0.01). Thus, we could assume that the 

administration of TQ decreased hepatic damage and promoted liver regeneration. 

It is well known that PH is associated with ROS production. We therefore examined the 

possible involvement of TQ in stimulating antioxidant systems. As shown in figure 2, PH 

under I/R resulted in a significant reduction in the antioxidant enzyme activities and increase 

in oxidative stress parameters. Interestingly, when compared to PH group, rats pre-treated 

with TQ had significantly increased activity of glutathione peroxidase (GPX) (271 ± 43 vs. 

209 ± 21 µmol oxided GSH/min/mg prot, P < 0.05), superoxide dismutase (SOD) (5.8 ± 0.2 

vs. 5.0 ± 0.4 U/µg prot, P < 0.05) and catalase (CAT) (140 ± 18 vs. 96 ± 18 µmol 

H2O2/min/mg prot, P < 0.01), sulfhydryl proteins (SHP) (10 ± 1 vs. 6 ± 3 µg/mg prot, P < 

0.05 ) whereas they had reduced malondialdehyde (MDA) (0.37 ± 0.08 vs. 0.70 ± 0.15 

nmol/mg prot, P < 0.05) and conjugated dienes (CD) (0.04 ± 0.02 vs. 0.07 ± 0.0.02 nmol/mg 

prot, P < 0.05) concentrations. TQ treatment without PH did not result in any modification of 

oxidative stress parameters. 

Given the central role for mitochondria to supply energy in cell, we assessed ATP 

concentration in livers (Figure 3). Our data showed that livers following ischemia and PH had 

a significant decrease in ATP content compared to livers from sham rats (0.09 ± 0.02 vs. 0.71 

± 0.10 µmol/mg prot, P < 0.001). However, pre-treatment with TQ enabled to preserve ATP 

content in comparison to PH group (0.19 ± 0.07 µmol/mg prot, P < 0.05). 

In order to evaluate whether the hepatoprotective effect of TQ could be related to ER stress 

prevention, protein relative expression of activating transcription factor-4 (ATF4), activating 

transcription factor-6 (ATF6) and X-box-binding protein-1 (XBP1) and protein concentration 

of glucose regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) were 

assessed (Figure 4). As expected, ischemia and PH markedly intensified the activation of all 
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ER stress proteins when compared to sham group. As regarded to PH group, TQ pretreatment 

induced a significant drop in the expression of ATF4 (P < 0.01), ATF6 (P < 0.01) and XBP1 

(P < 0.01) proteins and in the concentration of GRP 78 (519 ± 229 vs. 1143 ± 350 µg/mL, P < 

0.001) and CHOP (280 ± 113 vs. 490 ± 60 µg/mL, P < 0.001).  

Given that ER stress and mitochondrial dysfunction promote cell apoptosis (20, 26, 27), we 

explored apoptosis proteins after PH under I/R (Figure 5). In concordance with the previous 

results, ischemia and PH increased apoptosis when compared to sham operated rats. 

Importantly, the apoptosis effectors were down-regulated by pretreatment with TQ. We found 

289 ± 80 vs. 832 ± 327 ng/mL (P < 0.001), 4.23 ± 1.29 vs. 9.57 ± 1.58 (P < 0.001), 4.76 ± 

0.84 vs. 9.54 ± 1.98 (P < 0.001) and 7.36 ± 1.12 vs. 16.37 ± 2.35 pg/mg prot (P < 0.001) for 

cytochrome c, caspase-9, caspase-12 and caspase-3 activities, respectively. 

Discussion 

This study demonstrates for the first time that TQ protects rat liver from injury caused by 

hepatectomy under I/R and promoted hepatic regeneration through the induction of 

antioxidant defense capacity, the prevention of oxidative stress and the attenuation of ER 

stress, mitochondrial damage and apoptosis. 

It was previously reported that TQ has many pharmacological actions, including antioxidant 

and anti-inflammatory effects against several hepatotoxic molecules (28-31). Moreover, it has 

been shown that TQ suppresses liver fibrosis (32, 33) and attenuates liver injury induced by 

ischemia (20, 34). Nevertheless, TQ effects have not been examined in an experimental model 

combining PH and I/R.  

Partial hepatectomy under IR increased liver injury as evidenced by ALT release in serum. 

Besides, histopathological evaluation of the livers has confirmed liver damage. In contrast, 

rats pretreated with TQ before PH showed a reduction in liver injury and an improvement of 
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the histopathological abnormalities. These findings consolidate previous reported works 

showing that TQ protects rat liver against IR injury (20, 34). In line with the decrease of liver 

injury, we found that TQ promoted liver regeneration. This is consistent with previous reports 

showing that TQ had healing effects in bone (35) and wound.  

Thus far, the hepatoprotective effect of TQ is largely ascribed to its antioxidative properties. 

Imbalance between oxidants and antioxidants is commonly termed as oxidative stress. In 

response to this state, cells react by their antioxidant defense machinery including both non-

enzymatic and enzymatic antioxidants (36). In our study, we found that PH under IR led to a 

decreased of SOD, GPx and CAT activities, of SHP concentration while it was accompanied 

by  an increased MDA and CD contents. These results are in line with those of previous 

studies suggesting that free radical damage occurs in the early phase of liver regeneration (37) 

resulting in lipid peroxidation (38) and mitochondrial glutathione depression (39). 

Furthermore, we noticed that TQ attenuated PH injury by preserving the anti-oxidant enzyme 

activities and enhancing the level of SHP. As a result, lipid peroxidation evidenced by both 

MDA and CD concentrations were lessened. In fact, the antioxidant effect of TQ has been 

assigned to its ability to scavenge free radical (40, 41) and to up-regulate antioxidant gene 

expression (42, 43). Moreover, the action of TQ could be promoted by its unrestricted 

crossing of membrane barriers to access subcellular compartments and thus to protect them 

(25). 

Further alterations touching cell organelles, including mitochondria, could be generated as a 

result of excessive ROS production. Previous data have hypothesized that oxidative stress 

induced by PH under IR impairs mitochondrial function and alters cell energy metabolism 

(37, 39). Moreover, hepatic regeneration could be affected by the change in mitochondrial 

energy production (44, 45). As previously reported, our study confirms the fact that PH under 

I/R decreases ATP production. In contrast, pre-treatment of rats with TQ led to the 
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preservation of ATP stores in liver, which is in concordance with other works (46, 47). Thus, 

we can presume that the prevention of ATP drop would be due, at least in part, to the ability 

of TQ to preserve mitochondrial integrity.  

The formation of ROS and the induction of ER stress are known to be closely linked 

processes (48). As a consequence of ER dysfunction, a signal transduction cascade which 

progress from the ER lumen to the cytoplasm and nucleus known as the UPR is activated 

(18). The UPR is an adaptive attempt that aims at restoring the ER homeostasis. It is mediated 

by three signaling proteins located at the ER membrane termed protein kinase RNA-like ER 

kinase (PERK), inositol requiring 1 (IRE1) and ATF6. The activation of these UPR sensors is 

impeded by their binding with a luminal protein chaperone, the glucose regulated protein 78 

(GRP78). Once released from GRP78, the luminal domain of IRE1 dimerizes and trans-

autophosphorylates and is thus transformed into an activated form. Activated IRE1 produces a 

potent transcription factor XBP1 by cleavage of XBP1 mRNA. The activated XBP1 up-

regulates UPR genes by directly binding to their related promoters (49). During ER stress, 

PERK is activated by a similar mechanism to IRE1. Activated PERK phosphorylates 

eukaryotic initiation factor 2 (eIF2α). Phosphorylated eIF2α attenuates global protein 

synthesis by preventing ribosomal initiation complexes formation. Meanwhile, eIF2α is 

necessary for translation of some mRNAs, including the mRNA that encodes the ATF4. 

ATF4 regulates several UPR target genes principally those engaged in antioxidative stress 

responses, autophagy and ER stress-induced apoptosis such as CHOP (50, 51). Upon GRP78 

release, ATF6 translocates from the ER to the Golgi where it is cleaved to form an active 

transcription factor. Active ATF6 migrates then to the nucleus and up-regulates numerous ER 

chaperone genes including GRP78, GRP94, and CHOP (52). Our data revealed the activation 

of all three branches of UPR (PERK, ATF6, IRE1) and their downstream targets ATF4, 

ATF6α, XBP1, respectively. We also showed the presence of ER stress in PH under IR 
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condition by the induction of CHOP and the up-regulation of GRP78. These results are in line 

with those of a previous report which highlighted ER stress after PH (21). In our study, we 

demonstrated that the induction of ER stress parameters in response to PH under IR condition 

could be reduced by TQ pre-treatment. Our data are in keeping with our previous findings 

showing that TQ reduces ER stress induced by warm liver IR in rat (20). However, how TQ 

protects ER from PH under I/R damage remains unclear; we presume that it could be related 

to the attenuation of oxidative stress. 

Mitochondrial damage and ER stress induction by PH under I/R condition prompted us to 

further evaluate apoptosis. In the present study, an increase of cytochrome C release was 

observed after PH. In addition, both caspase-9 and -3 were found activated which indicates 

that PH under I/R may stimulate apoptotic cell death (53, 54). In parallel, our data showed a 

caspase-12 induction, which is known as an important protein implicated in ER-induced 

apoptosis (55).  In our experimental model, TQ induced down-regulation of cytochrome C 

release and a marked decrease in the expression of caspase-9, -12 and -3. These findings are 

in line with a previous research paper (34). The anti-apoptotic effect of TQ could be attributed 

to its potent scavenger and antioxidant role that help to attenuate ER stress and further 

apoptosis.  

In summary, this study is the first to evaluate the hepatoprotective effects of TQ in an 

experimental model of PH. Data reported here suggest that TQ plays an important role in the 

prevention of liver injury in conditions of hepatectomy under I/R. TQ protection is related to 

its capacity to prevent oxidative stress, mitochondrial damage, ER stress and apoptosis. 
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Materials and methods 

Experimental animals and Ethics Statement 

Male Wistar rats weighing 200-230 g were used in this study. They were housed in an air-

controlled room with 12 h light and dark cycles, and a constant temperature (22 ± 2°C). They 

had free access to food and water. All procedures were carried out in accordance with the 

European Union Regulations (Directive 2010/63/EU) for animal experiments and approved 

by the local Experimental Animals Ethics Committee of the Faculty of Pharmacy of Monastir. 

Surgical Procedure 

Rats were anaesthetized with an intra-peritoneal (ip) injection of pentobarbital (5 %), and then 

subjected to PH (70 % of liver parenchyma) under 60 min of ischemia as described previously 

(21). Briefly, after dividing the ligaments of the hepatic lobes and resection of their left 

hepatic lobe, rats underwent 60 min of partial liver warm ischemia by clamping their portal 

triad supplying the median lobe. At the end of ischemia, the right and caudate lobes were 

resected, and reperfusion of the median lobe was achieved by the release of the clamp. Sham 

operated rats was subjected to anesthesia and pedicle dissection without resection or ischemia. 

After surgery, rats were allowed food and water ad libitum. Blood and liver samples were 

collected after 24 h reperfusion and samples were stored at -80°C. 

Experimental groups 

Rats were allocated at random into four experimental groups, with six rats in each group: 

Group 1 (Sham group): Rats were subjected to only laparotomy without occlusion of hepatic 

pedicle and PH.  

Group 2 (TQ group): rats were orally pretreated with TQ (30 mg/kg) for ten consecutive days 

(20). Rat livers were then subjected to laparotomy without occlusion of hepatic pedicle and 

PH. 
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Group 3 (PH group): rats underwent 70% hepatectomy under 60 min of ischemia followed by 

24 h of reperfusion. 

Group 4 (TQ+PH group): rats were orally pretreated with TQ (30 mg/kg) for ten consecutive 

days (20). Rat livers were then subjected to surgery as in group 3. 

Chemicals 

TQ (Sigma Aldrich) was dissolved in ethanol and aliquoted and stored at -20°C. Working 

solution was prepared daily before oral administration by diluting stock solution with distilled 

water (1:4). Ten days prior the surgery, sham and PH animals underwent a daily intragastric 

administration of vehicle solution (ethanol and distilled water) as described previously (20). 

Histology and Immunohistochemistry 

Liver biopsies were fixed in 10 % formalin solution, embedded in paraffin and cut at 4 µm 

thickness. To appraise the severity of hepatic injury, stained sections with hematoxylin and 

eosin were graded with a point-counting method on a scale from 1 (excellent) to 5 (poor) as 

described previously (56): (1) normal rectangular structure, (2) rounded hepatocytes with an 

increase of the sinusoidal spaces, (3) vacuolization, (4) nuclear picnosis and (5) necrosis. 

Damage score was estimated semi-quantitatively by an experienced pathologist without 

having knowledge about the treatment groups. 

For liver regeneration, liver samples were immunostained with a rabbit monoclonal antibody 

against Ki 67 (clone SP6, Abcam, Cambridge, MA), developed with diaminobenzidine, and 

counterstained with hematoxylin (57). 

Transaminase determination 

The serum activity of alanine aminotransferase (ALT) was determined using a commercial kit 

from DiaSys (Diagnostic System, Germany) following supplier’s instructions.  

Determination of hepatic adenosine triphosphate content 



A
cc

ep
te

d
 A

rt
ic

le

. 

Hepatic adenosine triphosphate (ATP) measurements were performed using a firefly 

bioluminescence assay kit (ATP Bioluminescent Assay Kit FLAA-1KT, Sigma Aldrich St 

Quentin Fallavier, France) as described elsewhere (58). 

Determination of oxidative stress parameters  

Liver tissues were homogenized in ice-cold phosphate buffered saline (100 mM KH2PO4, 100 

mM K2HPO4, pH 7.4) to estimate the content of SHP and the activities of GPx, SOD and 

CAT. For MDA determination, tissues homogenization was carried out in ice-cold tris-

buffered saline (100 mM Tris, pH 7). For CD measurement, liver tissues were homogenized 

in distilled ice-water.  

Liver GPx activity was estimated by the method of Floche and Gunzler 1984 (59). SOD 

activity assay was performed using the method previously described by Marklund and 

Marklund (60). CAT activity was determined according to Clairbone method (61). The 

determination of SHP level was achieved in agreement to the method of Sedlak (62). MDA 

was measured by the thiobarbituric acid (TBA) assay (63). CD was assessed according to 

Srinivasan (64). 

Determination of endoplasmic reticulum stress parameters 

We looked for ER stress through the determination of GRP78 and CHOP using ELISA kits 

(MyBioSource, San Diego, CA) according to the manufacturer’s protocol and by the 

determination of protein relative expression of ATF6α, ATF4 and XBP1 by western blot 

technique. 

Briefly, liver tissues were homogenized in ice-cold lysis buffer (150 mM NaCl, 50 mM Tris–

HCl (pH 7.5), 1 mM DTT, 50 mM NaF, 1 mM PMSF, 1 mM EDTA, 1 mM EGTA, 0.1 mM 

orthovanadate, 0.05% Triton-X 100 and 2% protease inhibitor cocktails). Equal amounts of 

proteins were separated by SDS-PAGE and transferred to PVDF membranes as described 

elsewhere (65). Then, membranes were incubated over night at 4°C with primary antibodies 
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for ATF6α (sc-22799), ATF4 (sc-101663), XBP1 (sc-7160) and Hsc70 (sc-7298) acquired 

from Santa Cruz Biotechnology. After washing, the membranes were incubated for 2h at 

room temperature with appropriate horseradish peroxydase conjugated secondary antibody. 

Signals were detected by enhanced chemiluminescence and quantified by the quantity one 

software program (Bio-Rad Laboratories, Hercules, CA, USA). 

Determination of apoptosis parameters 

Cytochrome C level was evaluated using ELISA kit from MyBioSource (San Diego, CA). A 

fluorometric assay kit was used (Biovision Palo Alto, CA) to determine liver caspase 12 level. 

Caspase 9 and caspase 3 levels were measured using a colorimetric assay kit from Biovision 

(Palo Alto, CA). 

Statistical analysis 

Data were expressed as mean ± standard deviation (SD) and were compared statistically using 

Graph Pad Prism software (version 6.01) by variance of analysis (ANOVA) followed by 

Newman-Keuls multiple comparison test. P-value of less than 0.05 was considered 

statistically significant. 
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Figure legends: 

Figure 1. Thymoquinone prevented liver injury and promoted regeneration after PH. 

(a) H&E staining of the liver section in the Sham, PH and TQ+PH groups. Arrows pointed out 

the necrotic areas. Scale bar represents 100µm, (b) damage score, (c) ALT activity in plasma, 

(d) immunostaining of Ki67 of the liver section in the PH and TQ+PH groups. Scale bar 

represents 300µm and (e) representative immunohistochemical analysis showing the 

percentage of Ki67 positive cells. Results are expressed as mean ± SD (n = 6 for each group). 

*P<0.05 versus Sham. +P<0.05 versus TQ. #P<0.05 versus PH.

Figure 2. Thymoquinone pretreatment attenuated oxidative stress after PH under I/R. 

Liver samples were assessed for MDA concentration (a), glutathione peroxidase activity (b), 

superoxide dismutase activity (c), catalase activity (d), sulfhydryl proteins content (e) and 

conjugated dienes concentration (f) in livers harvested from Sham, TQ, PH and TQ+PH 

groups. Results are expressed as mean ± SD (n = 6 for each group). *P<0.05 versus Sham. 

+P<0.05 versus TQ. #P<0.05 versus PH. 

Figure 3. Thymoquinone increased ATP content in liver after PH.  

ATP concentration in liver tissue of Sham, PH and TQ+PH groups. Results are expressed as 

mean ± SD (n = 6 for each group). *P<0.05 versus Sham. #P<0.05 versus PH. 

Figure 4. Thymoquinone preconditioning attenuated ER stress. 

GRP78 (a) and CHOP (b) concentration determined by ELISA kits and the relative expression 

of ATF6 (c), ATF4 (d) and XBP1 (e) proteins level evaluated by western blot in  Sham, PH 

and TQ+PH groups. Results are expressed as mean ± SD (n = 6 for each group). *P<0.05 

versus Sham. #P<0.05 versus PH. 

Figure 5. Thymoquinone pretreatment decreased liver apoptosis after PH.  

Caspase 12 (a), Cytochrome C (b) Caspase 9 (c) and Caspase 3 (d) concentrations were 

determined. Livers were harvested from Sham, PH and TQ+PH groups. Results are expressed 

as mean ± SD (n = 6 for each group). *P<0.05 versus Sham. #P<0.05 versus PH. 
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