N. Dejeans, S. Manie, C. Hetz, F. Bard, T. Hupp et al., Addicted to secrete ??? novel concepts and targets in cancer therapy, Trends in Molecular Medicine, vol.20, issue.5, pp.242-50, 2014.
DOI : 10.1016/j.molmed.2013.12.003

C. Hetz, E. Chevet, and S. Oakes, Proteostasis control by the unfolded protein response, Nature Cell Biology, vol.276, issue.7, pp.829-867, 2015.
DOI : 10.1038/nrd3976

URL : https://hal.archives-ouvertes.fr/hal-01175531

D. Ron and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response, Nature Reviews Molecular Cell Biology, vol.300, issue.7, pp.519-548, 2007.
DOI : 10.1212/01.WNL.0000123259.67815.DB

E. Chevet, C. Hetz, and A. Samali, Endoplasmic Reticulum Stress-Activated Cell Reprogramming in Oncogenesis, Cancer Discovery, vol.5, issue.6, pp.586-97, 2015.
DOI : 10.1158/2159-8290.CD-14-1490

URL : https://hal.archives-ouvertes.fr/hal-01152845

B. Gardner and P. Walter, Unfolded Proteins Are Ire1-Activating Ligands That Directly Induce the Unfolded Protein Response, Science, vol.103, issue.39, pp.1891-1895, 2011.
DOI : 10.1073/pnas.0606480103

URL : http://europepmc.org/articles/pmc3202989?pdf=render

G. Karagoz, D. Acosta-alvear, H. Nguyen, C. Lee, F. Chu et al., , 2017.

H. Urra, E. Dufey, T. Avril, E. Chevet, and C. Hetz, Endoplasmic Reticulum Stress and the Hallmarks of Cancer, Trends in Cancer, vol.2, issue.5, pp.252-262, 2016.
DOI : 10.1016/j.trecan.2016.03.007

URL : https://hal.archives-ouvertes.fr/hal-01308007

L. Reste, P. Avril, T. Quillien, V. Morandi, X. Chevet et al., Signaling the Unfolded Protein Response in primary brain cancers, Brain Research, vol.1642, pp.59-69, 2016.
DOI : 10.1016/j.brainres.2016.03.015

URL : https://hal.archives-ouvertes.fr/hal-01295652

C. Hetz, The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nature Reviews Molecular Cell Biology, vol.22, issue.2, pp.89-102, 2012.
DOI : 10.1101/gad.1640108

N. Dejeans, K. Barroso, M. Fernandez-zapico, A. Samali, and E. Chevet, Novel roles of the unfolded protein response in the control of tumor development and aggressiveness, Seminars in Cancer Biology, vol.33, pp.67-73, 2015.
DOI : 10.1016/j.semcancer.2015.04.007

URL : https://hal.archives-ouvertes.fr/hal-01150385

P. Walter and D. Ron, The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation, Science, vol.5, issue.3, pp.1081-1087, 2011.
DOI : 10.1371/journal.pbio.0050044

C. Hetz, F. Martinon, D. Rodriguez, and L. Glimcher, The Unfolded Protein Response: Integrating Stress Signals Through the Stress Sensor IRE1??, Physiological Reviews, vol.460, issue.4, pp.1219-1262, 2011.
DOI : 10.1101/gad.12.7.982

M. Maurel, E. Chevet, J. Tavernier, and S. Gerlo, Getting RIDD of RNA: IRE1 in cell fate regulation, Trends in Biochemical Sciences, vol.39, issue.5, pp.245-54, 2014.
DOI : 10.1016/j.tibs.2014.02.008

F. Urano, X. Wang, A. Bertolotti, Y. Zhang, P. Chung et al., Coupling of Stress in the ER to Activation of JNK Protein Kinases by Transmembrane Protein Kinase IRE1, Science, vol.287, issue.5453, pp.664-670, 2000.
DOI : 10.1126/science.287.5453.664

M. Maurel, E. Mcgrath, K. Mnich, S. Healy, E. Chevet et al., Controlling the unfolded protein response-mediated life and death decisions in cancer, Seminars in Cancer Biology, vol.33, pp.57-66, 2015.
DOI : 10.1016/j.semcancer.2015.03.003

URL : https://hal.archives-ouvertes.fr/hal-01163729

A. Article-16, M. Sato, V. Yao, W. Arap, and R. Pasqualini, GRP78 signaling hub a receptor for targeted tumor therapy, Adv Genet, vol.69, pp.97-114, 2010.

P. Ren, C. Chen, J. Yue, J. Zhang, and Z. Yu, High expression of glucose-regulated protein 78 (GRP78) is associated with metastasis and poor prognosis in patients with esophageal squamous cell carcinoma, OncoTargets and Therapy, vol.10, pp.617-625, 2017.
DOI : 10.2147/OTT.S123494

L. Yang, S. Yang, J. Liu, X. Wang, J. J. Cao et al., Expression of GRP78 predicts taxane-based therapeutic resistance and recurrence of human gastric cancer, Experimental and Molecular Pathology, vol.96, issue.2, pp.235-276, 2014.
DOI : 10.1016/j.yexmp.2014.02.011

H. Zheng, H. Takahashi, X. Li, T. Hara, S. Masuda et al., Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas, Human Pathology, vol.39, issue.7, pp.1042-1051, 2008.
DOI : 10.1016/j.humpath.2007.11.009

J. Heijmans, J. Van-lidth-de-jeude, B. Koo, S. Rosekrans, M. Wielenga et al., ER Stress Causes Rapid Loss of Intestinal Epithelial Stemness through Activation of the Unfolded Protein Response, Cell Reports, vol.3, issue.4, pp.1128-1167, 2013.
DOI : 10.1016/j.celrep.2013.02.031

L. Vermeulen and H. Snippert, Stem cell dynamics in homeostasis and cancer of the intestine, Nature Reviews Cancer, vol.118, issue.7, pp.468-80, 2014.
DOI : 10.4161/cc.9.8.11198

L. Niederreiter, T. Fritz, T. Adolph, A. Krismer, F. Offner et al., ER stress transcription factor Xbp1 suppresses intestinal tumorigenesis and directs intestinal stem cells, The Journal of Experimental Medicine, vol.2, issue.10, pp.2041-56, 2013.
DOI : 10.1038/nature07589

URL : http://jem.rupress.org/content/jem/210/10/2041.full.pdf

L. Vincenz, R. Jager, O. Dwyer, M. Samali, and A. , Endoplasmic Reticulum Stress and the Unfolded Protein Response: Targeting the Achilles Heel of Multiple Myeloma, Molecular Cancer Therapeutics, vol.12, issue.6, pp.831-874, 2013.
DOI : 10.1158/1535-7163.MCT-12-0782

URL : http://mct.aacrjournals.org/content/molcanther/12/6/831.full.pdf

F. Tameire, . Verginadis, and C. Koumenis, Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: Mechanisms and targets for therapy, Seminars in Cancer Biology, vol.33, pp.3-15, 2015.
DOI : 10.1016/j.semcancer.2015.04.002

E. Dufey, H. Urra, and C. Hetz, ER proteostasis addiction in cancer biology: Novel concepts, Seminars in Cancer Biology, vol.33, pp.40-47, 2015.
DOI : 10.1016/j.semcancer.2015.04.003

S. Oakes, Endoplasmic reticulum proteostasis: a key checkpoint in cancer, American Journal of Physiology-Cell Physiology, vol.312, issue.2, pp.93-102, 2017.
DOI : 10.1038/ni.1831

URL : http://europepmc.org/articles/pmc5336598

X. Chen, D. Iliopoulos, Q. Zhang, Q. Tang, M. Greenblatt et al., XBP1 promotes triple-negative breast cancer by controlling the HIF1?? pathway, Nature, vol.365, issue.7494, pp.103-107, 2014.
DOI : 10.1016/S0140-6736(05)17947-1

URL : http://europepmc.org/articles/pmc4105133?pdf=render

X. Hou, Y. Liu, H. Liu, X. Chen, M. Liu et al., PERK silence inhibits glioma cell growth Accepted Article under low glucose stress by blockage of p-AKT and subsequent HK2's mitochondria translocation, p.9065, 2015.
DOI : 10.1038/srep09065

URL : https://doi.org/10.1038/srep09065

J. Obacz, A. T. , L. Reste, P. Urra, H. Quillien et al., Endoplasmic reticulum proteostasis in glioblastoma-From molecular mechanisms to therapeutic perspectives. Sci Signal 10. 30 PERK Integrates Oncogenic Signaling and Cell Survival During Cancer Development, J Cell Physiol, vol.231, pp.2088-96, 2016.
DOI : 10.1126/scisignal.aal2323

URL : https://hal.archives-ouvertes.fr/hal-01502552

M. Blaustein, D. Perez-munizaga, M. Sanchez, C. Urrutia, A. Grande et al., Modulation of the Akt Pathway Reveals a Novel Link with PERK/eIF2??, which Is Relevant during Hypoxia, PLoS ONE, vol.12, issue.7, p.69668, 2013.
DOI : 10.1371/journal.pone.0069668.s005

URL : https://doi.org/10.1371/journal.pone.0069668

K. Rouschop, L. Dubois, T. Keulers, T. Van-den-beucken, P. Lambin et al., PERK/eIF2?? signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS, Proceedings of the National Academy of Sciences, vol.73, issue.6, pp.4622-4629, 2013.
DOI : 10.1158/0008-5472.CAN-12-3109

URL : http://www.pnas.org/content/110/12/4622.full.pdf

P. Freis, J. Bollard, J. Lebeau, P. Massoma, J. Fauvre et al., mTOR inhibitors activate PERK signaling and favor viability of gastrointestinal neuroendocrine cell lines, Oncotarget, vol.8, issue.13, pp.20974-20987, 2017.
DOI : 10.18632/oncotarget.15469

URL : http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=15469&path%5B%5D=49420

M. Sosa, P. Bragado, and J. Aguirre-ghiso, Mechanisms of disseminated cancer cell dormancy: an awakening field, Nature Reviews Cancer, vol.12, issue.9, pp.611-633, 2014.
DOI : 10.1091/mbc.12.4.863

URL : http://europepmc.org/articles/pmc4230700?pdf=render

D. Schewe and J. Aguirre-ghiso, ATF6??-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo, Proceedings of the National Academy of Sciences, vol.63, issue.7, pp.10519-10543, 2008.
DOI : 10.1371/journal.pone.0000615

URL : http://www.pnas.org/content/105/30/10519.full.pdf

A. Ranganathan, L. Zhang, A. Adam, and J. Aguirre-ghiso, Functional Coupling of p38-Induced Up-regulation of BiP and Activation of RNA-Dependent Protein Kinase???Like Endoplasmic Reticulum Kinase to Drug Resistance of Dormant Carcinoma Cells, Cancer Research, vol.66, issue.3, pp.1702-1713, 2006.
DOI : 10.1158/0008-5472.CAN-05-3092

Y. Feng, E. Sokol, D. Vecchio, C. Sanduja, S. Claessen et al., Epithelial-to-Mesenchymal Transition Activates PERK-eIF2?? and Sensitizes Cells to Endoplasmic Reticulum Stress, Cancer Discovery, vol.4, issue.6, pp.702-717, 2014.
DOI : 10.1158/2159-8290.CD-13-0945

URL : http://cancerdiscovery.aacrjournals.org/content/candisc/4/6/702.full.pdf

S. Dey, C. Sayers, I. Verginadis, S. Lehman, Y. Cheng et al., ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis, Journal of Clinical Investigation, vol.125, issue.7, pp.2592-608, 2015.
DOI : 10.1172/JCI78031DS1

URL : http://www.jci.org/articles/view/78031/files/pdf

H. Mujcic, A. Nagelkerke, K. Rouschop, S. Chung, N. Chaudary et al., Hypoxic Activation of the PERK/eIF2?? Arm of the Unfolded Protein Response Promotes Metastasis through Induction of LAMP3, Clinical Cancer Research, vol.19, issue.22, pp.6126-6163, 2013.
DOI : 10.1158/1078-0432.CCR-13-0526

X. Shen, Y. Xue, Y. Si, Q. Wang, Z. Wang et al., The unfolded protein response potentiates epithelial-to-mesenchymal transition (EMT) of gastric cancer cells under severe hypoxic conditions, Medical Oncology, vol.286, issue.1, p.447, 2015.
DOI : 10.1074/jbc.M110.181164

G. Auf, A. Jabouille, S. Guerit, R. Pineau, M. Delugin et al., Inositol-requiring enzyme 1?? is a key regulator of angiogenesis and invasion in malignant glioma, Proceedings of the National Academy of Sciences, vol.5, issue.10, pp.15553-15561, 2010.
DOI : 10.1186/gb-2004-5-10-r80

N. Dejeans, O. Pluquet, S. Lhomond, F. Grise, M. Bouchecareilh et al., Autocrine control of glioma cells adhesion and migration through IRE1??-mediated cleavage of SPARC mRNA, Journal of Cell Science, vol.125, issue.18, pp.4278-87, 2012.
DOI : 10.1242/jcs.099291

URL : http://jcs.biologists.org/content/joces/125/18/4278.full.pdf

C. Lyssiotis and A. Kimmelman, Metabolic Interactions in the Tumor Microenvironment, Trends in Cell Biology, vol.27, issue.11, 2017.
DOI : 10.1016/j.tcb.2017.06.003

Y. Mezawa and A. Orimo, The roles of tumor- and metastasis-promoting carcinoma-associated fibroblasts in human carcinomas, Cell and Tissue Research, vol.5, issue.5, pp.675-89, 2016.
DOI : 10.1038/srep11924

N. Maishi and K. Hida, Tumor endothelial cells accelerate tumor metastasis, Cancer Science, vol.180, issue.10, 2017.
DOI : 10.1016/j.ajpath.2011.11.035

URL : http://onlinelibrary.wiley.com/doi/10.1111/cas.13336/pdf

T. Whiteside, The tumor microenvironment and its role in promoting tumor growth, Oncogene, vol.173, issue.45, pp.5904-5916, 2008.
DOI : 10.1038/nri1936

URL : http://europepmc.org/articles/pmc3689267?pdf=render

W. Fridman, L. Zitvogel, C. Sautes-fridman, and G. Kroemer, The immune contexture in cancer prognosis and treatment, Nature Reviews Clinical Oncology, vol.8, issue.12, 2017.
DOI : 10.1002/cam4.827

W. Goldmann, MECHANICAL ASPECTS OF CELL SHAPE REGULATION AND SIGNALING, Cell Biology International, vol.26, issue.4, pp.313-320, 2002.
DOI : 10.1006/cbir.2002.0857

H. Jongsma and R. Wilders, Gap Junctions in Cardiovascular Disease, Circulation Research, vol.86, issue.12, pp.1193-1200, 2000.
DOI : 10.1161/01.RES.86.12.1193

URL : http://circres.ahajournals.org/content/86/12/1193.full.pdf

T. Huang, Y. Wan, Y. Zhu, X. Fang, N. Hiramatsu et al., Downregulation of gap junction expression and function by endoplasmic reticulum stress, Journal of Cellular Biochemistry, vol.148, issue.5, pp.973-83, 2009.
DOI : 10.1016/j.mrfmmm.2004.06.056

H. Yamasaki, M. Mesnil, Y. Omori, N. Mironov, and V. Krutovskikh, Intercellular communication and carcinogenesis, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.333, issue.1-2, pp.181-189, 1995.
DOI : 10.1016/0027-5107(95)00144-1

S. Yang, Q. Wen, Y. Liu, C. Zhang, M. Wang et al., Increased expression of CX43 on stromal cells promotes leukemia apoptosis, Oncotarget, vol.6, issue.42, pp.44323-44354, 2015.
DOI : 10.18632/oncotarget.6249

URL : http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=6249&path%5B%5D=15963

H. Yamasaki, Gap Junctional Intercellular Communication and Carcinogenesis, Carcinogenesis, vol.11, pp.1051-1059, 1990.
DOI : 10.1007/978-3-642-83971-9_9

N. Kumar and N. Gilula, The Gap Junction Communication Channel, Cell, vol.84, issue.3, pp.381-389, 1996.
DOI : 10.1016/S0092-8674(00)81282-9

URL : https://doi.org/10.1016/s0092-8674(00)81282-9

T. Aasen, M. Mesnil, C. Naus, P. Lampe, and D. Laird, Erratum: Gap junctions and cancer: communicating for 50 years, Nature Reviews Cancer, vol.16, issue.1, p.74, 2017.
DOI : 10.1038/nrc.2016.105

URL : http://www.nature.com/nrc/journal/v17/n1/pdf/nrc.2016.142.pdf

T. Aasen, M. Mesnil, C. Naus, P. Lampe, and D. Laird, Gap junctions and cancer: communicating for 50 years, Nature Reviews Cancer, vol.267, issue.12, pp.775-788, 2016.
DOI : 10.1126/science.7892609

URL : https://hal.archives-ouvertes.fr/hal-01437427

, Mechanism of up-regulated gap junctional intercellular communication during chemoprevention and chemotherapy of cancer, Trosko JE & Chang CC Mutat Res, pp.480-481, 2001.

R. Huang, M. Hossain, R. Huang, J. Gano, Y. Fan et al., Connexin 43 (cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells, International Journal of Cancer, vol.1, issue.1, pp.130-138, 2001.
DOI : 10.1038/2210

A. Raza, A. Ghoshal, S. Chockalingam, and S. Ghosh, Connexin-43 enhances tumor suppressing activity of artesunate via gap junction-dependent as well as independent pathways in human breast cancer cells, Scientific Reports, vol.21, issue.1, p.7580, 2017.
DOI : 10.1038/sj.onc.1205187

T. King and P. Lampe, The Gap Junction Protein Connexin32 Is a Mouse Lung Tumor Suppressor, Cancer Research, vol.64, issue.20, pp.7191-7197, 2004.
DOI : 10.1158/0008-5472.CAN-04-0624

L. Koffler, S. Roshong, K. Park, I. Cesen-cummings, K. Thompson et al., Growth inhibition in G1 and altered expression of cyclin D1 and p27kip-1after forced connexin expression in lung and liver carcinoma cells, Journal of Cellular Biochemistry, vol.88, issue.3, pp.347-54, 2000.
DOI : 10.1073/pnas.88.5.1883

E. Leithe, M. Mesnil, and T. Aasen, The connexin 43 C-terminus: A tail of many tales, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1860, issue.1, 2017.
DOI : 10.1016/j.bbamem.2017.05.008

X. Ye, Q. Jiang, T. Hong, Z. Zhang, R. Yang et al., Altered expression of connexin43 and phosphorylation connexin43 in glioma tumors, Int J Clin Exp Pathol, vol.8, pp.4296-306, 2015.

V. Su and A. Lau, Connexins: Mechanisms regulating protein levels and intercellular communication, FEBS Letters, vol.88, issue.8, pp.1212-1232, 2014.
DOI : 10.1016/j.exer.2008.11.024

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2014.01.013/pdf

L. Musil, A. Le, J. Vanslyke, and L. Roberts, Regulation of Connexin Degradation as a Mechanism to Increase Gap Junction Assembly and Function, Journal of Biological Chemistry, vol.19, issue.33, pp.25207-25222, 2000.
DOI : 10.1006/scel.1994.1049

URL : http://www.jbc.org/content/early/2000/06/02/jbc.M002608200.full.pdf

J. Vanslyke, S. Deschenes, and L. Musil, Intracellular Transport, Assembly, and Degradation of Wild-Type and Disease-linked Mutant Gap Junction Proteins, Molecular Biology of the Cell, vol.72, issue.6, pp.1933-1979, 2000.
DOI : 10.1016/S0006-3495(97)78840-4

URL : http://europepmc.org/articles/pmc14894?pdf=render

J. Vanslyke and L. Musil, Dislocation and degradation from the ER are regulated by cytosolic stress, The Journal of Cell Biology, vol.67, issue.3, pp.381-94, 2002.
DOI : 10.1074/jbc.271.40.24769

J. Vanslyke and L. Musil, Degradation of Connexins from the Plasma Membrane Is Regulated by Inhibitors of Protein Synthesis, Cell Communication & Adhesion, vol.19, issue.4-6, pp.329-362, 2003.
DOI : 10.3109/02713689308999486

J. Vanslyke and L. Musil, Cytosolic Stress Reduces Degradation of Connexin43 Internalized from the Cell Surface and Enhances Gap Junction Formation and Function, Molecular Biology of the Cell, vol.16, issue.11, pp.5247-57, 2005.
DOI : 10.1083/jcb.200111045

K. Denzer, M. Kleijmeer, H. Heijnen, W. Stoorvogel, and H. Geuze, Exosome: from internal vesicle of the multivesicular body to intercellular signaling device, J Cell Sci 113 Pt, vol.19, pp.3365-74, 2000.

A. Schneider and M. Simons, Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders, Cell and Tissue Research, vol.19, issue.1, pp.33-47, 2013.
DOI : 10.1038/mt.2011.164

URL : https://link.springer.com/content/pdf/10.1007%2Fs00441-012-1428-2.pdf

M. Simons and G. Raposo, Exosomes ??? vesicular carriers for intercellular communication, Current Opinion in Cell Biology, vol.21, issue.4, pp.575-81, 2009.
DOI : 10.1016/j.ceb.2009.03.007

A. Article-73, B. Batista, W. Eng, K. Pilobello, K. Hendricks-munoz et al., Identification of a conserved glycan signature for microvesicles, J Proteome Res, vol.10, pp.4624-4657, 2011.

J. Zhang, S. Li, L. Li, M. Li, C. Guo et al., Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function, Genomics, Proteomics & Bioinformatics, vol.13, issue.1, pp.17-24, 2015.
DOI : 10.1016/j.gpb.2015.02.001

URL : https://doi.org/10.1016/j.gpb.2015.02.001

D. Gibbings, C. Ciaudo, M. Erhardt, and O. Voinnet, Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity, Nature Cell Biology, vol.110, issue.9, pp.1143-1152, 2009.
DOI : 10.1016/S0168-9525(03)00140-9

URL : https://hal.archives-ouvertes.fr/hal-00423288

A. Ramteke, H. Ting, C. Agarwal, S. Mateen, R. Somasagara et al., Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules, Molecular Carcinogenesis, vol.138, issue.7, pp.554-65, 2015.
DOI : 10.1016/j.cell.2009.06.034

URL : http://europepmc.org/articles/pmc4706761?pdf=render

W. Chen, X. Liu, M. Lv, L. Chen, J. Zhao et al., Exosomes from Drug-Resistant Breast Cancer Cells Transmit Chemoresistance by a Horizontal Transfer of MicroRNAs, PLoS ONE, vol.54, issue.4, p.95240, 2014.
DOI : 10.1371/journal.pone.0095240.t002

URL : https://doi.org/10.1371/journal.pone.0095240

V. Ciravolo, V. Huber, G. Ghedini, E. Venturelli, F. Bianchi et al., Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy, Journal of Cellular Physiology, vol.122, issue.2, pp.658-67, 2012.
DOI : 10.1007/s10549-009-0502-2

Y. Wei, X. Lai, S. Yu, S. Chen, Y. Ma et al., Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells, Breast Cancer Research and Treatment, vol.26, issue.7, pp.423-454, 2014.
DOI : 10.1096/fj.11-201681

R. Safaei, B. Larson, T. Cheng, M. Gibson, S. Otani et al., Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells, Molecular Cancer Therapeutics, vol.4, issue.10, pp.1595-604, 2005.
DOI : 10.1158/1535-7163.MCT-05-0102

URL : http://mct.aacrjournals.org/content/molcanther/4/10/1595.full.pdf

V. Chen, M. Posada, L. Blazer, T. Zhao, and G. Rosania, The Role of the VPS4A-Exosome Pathway in the Intrinsic Egress Route of a DNA-Binding Anticancer Drug, Pharmaceutical Research, vol.61, issue.8, pp.1687-95, 2006.
DOI : 10.1091/mbc.3.12.1389

L. Epple, R. Dodd, A. Merz, A. Dechkovskaia, M. Herring et al., Induction of the Unfolded Protein Response Drives Enhanced Metabolism and Chemoresistance in Glioma Cells, PLoS ONE, vol.279, issue.8, p.73267, 2013.
DOI : 10.1371/journal.pone.0073267.s006

G. Panigrahi and G. Deep, Exosomes-based biomarker discovery for diagnosis and prognosis of prostate cancer, Front Biosci, vol.22, pp.1682-1696, 2017.

F. Properzi, M. Logozzi, and S. Fais, Exosomes: the future of biomarkers in medicine, Biomarkers in Medicine, vol.1806, issue.5, pp.769-78, 2013.
DOI : 10.1002/hep.25873

R. Nedaeinia, M. Manian, M. Jazayeri, M. Ranjbar, R. Salehi et al., Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer, Cancer Gene Therapy, vol.7, issue.2, pp.48-56, 2017.
DOI : 10.1016/j.gene.2014.03.059

A. Zlotogorski-hurvitz, D. Dayan, G. Chaushu, J. Korvala, T. Salo et al., Human Saliva-Derived Exosomes, Journal of Histochemistry & Cytochemistry, vol.30, issue.3, pp.181-190, 2015.
DOI : 10.1016/j.jprot.2013.10.037

URL : http://journals.sagepub.com/doi/pdf/10.1369/0022155414564219

V. Palanisamy, S. Sharma, A. Deshpande, H. Zhou, J. Gimzewski et al., Nanostructural and Transcriptomic Analyses of Human Saliva Derived Exosomes, PLoS ONE, vol.64, issue.19, p.8577, 2010.
DOI : 10.1371/journal.pone.0008577.s002

URL : https://doi.org/10.1371/journal.pone.0008577

M. Caby, D. Lankar, C. Vincendeau-scherrer, G. Raposo, and C. Bonnerot, Exosomal-like vesicles are present in human blood plasma, International Immunology, vol.17, issue.7, pp.879-87, 2005.
DOI : 10.1128/JVI.77.6.3624-3633.2003

URL : https://academic.oup.com/intimm/article-pdf/17/7/879/8201897/dxh267.pdf

N. Almqvist, A. Lonnqvist, S. Hultkrantz, C. Rask, and E. Telemo, Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma, Immunology, vol.120, issue.1, pp.21-28, 2008.
DOI : 10.1111/j.1365-2567.2008.02812.x

C. Chen, M. Hogan, and C. Ward, Purification of Exosome-Like Vesicles from Urine, Methods Enzymol, vol.524, pp.225-266, 2013.
DOI : 10.1016/B978-0-12-397945-2.00013-5

URL : http://europepmc.org/articles/pmc4028690?pdf=render

M. Peterson, N. Otoc, J. Sethi, A. Gupta, and T. Antes, Integrated systems for exosome investigation, Methods, vol.87, pp.31-45, 2015.
DOI : 10.1016/j.ymeth.2015.04.015

L. Harshyne, B. Nasca, L. Kenyon, D. Andrews, and D. Hooper, Serum exosomes and cytokines promote a T-helper cell type 2 environment in the peripheral blood of glioblastoma patients, Neuro-Oncology, vol.40, issue.(6), pp.206-221, 2016.
DOI : 10.1016/j.cyto.2007.05.012

F. Ciregia, A. Urbani, and G. Palmisano, Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases, Frontiers in Molecular Neuroscience, vol.9, p.276, 2017.
DOI : 10.1371/journal.pone.0106867

URL : https://www.frontiersin.org/articles/10.3389/fnmol.2017.00276/pdf

M. Graner, R. Cumming, and D. Bigner, The Heat Shock Response and Chaperones/Heat Shock Proteins in Brain Tumors: Surface Expression, Release, and Possible Immune Consequences, Journal of Neuroscience, vol.27, issue.42, pp.11214-11241, 2007.
DOI : 10.1523/JNEUROSCI.3588-07.2007

URL : http://www.jneurosci.org/content/jneuro/27/42/11214.full.pdf

J. Akers, V. Ramakrishnan, R. Kim, S. Phillips, V. Kaimal et al., miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients, Journal of Neuro-Oncology, vol.9, issue.6, pp.205-221, 2015.
DOI : 10.1038/ncb1596

L. Saadatpour, E. Fadaee, S. Fadaei, N. Mansour, R. Mohammadi et al., Glioblastoma: exosome and microRNA as novel diagnosis biomarkers, Cancer Gene Therapy, vol.9, issue.12, pp.415-418, 2016.
DOI : 10.1371/journal.pone.0095060

L. Manterola, E. Guruceaga, G. Perez-larraya, J. Gonzalez-huarriz, M. Jauregui et al., A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool, Neuro-Oncology, vol.5, issue.3, pp.520-527, 2014.
DOI : 10.1158/1940-6207.CAPR-11-0370

S. Kanemoto, R. Nitani, T. Murakami, M. Kaneko, R. Asada et al., Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress, Biochemical and Biophysical Research Communications, vol.480, issue.2, pp.166-172, 2016.
DOI : 10.1016/j.bbrc.2016.10.019

N. Mahadevan, V. Anufreichik, J. Rodvold, K. Chiu, H. Sepulveda et al., Cell-Extrinsic Effects of Tumor ER Stress Imprint Myeloid Dendritic Cells and Impair CD8+ T Cell Priming, PLoS ONE, vol.625, issue.12, 2012.
DOI : 10.1371/journal.pone.0051845.s005

URL : https://doi.org/10.1371/journal.pone.0051845

N. Mahadevan, J. Rodvold, H. Sepulveda, S. Rossi, A. Drew et al., Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells, Proceedings of the National Academy of Sciences, vol.184, issue.12, pp.6561-6567, 2011.
DOI : 10.4049/jimmunol.0901929

URL : http://www.pnas.org/content/108/16/6561.full.pdf

M. Zanetti, Cell-extrinsic effects of the tumor unfolded protein response on myeloid cells and T cells, Annals of the New York Academy of Sciences, vol.625, issue.1, pp.6-11, 2013.
DOI : 10.1016/j.ejphar.2009.06.064

J. Rodvold, K. Chiu, N. Hiramatsu, J. Nussbacher, V. Galimberti et al., Intercellular transmission of the unfolded protein response promotes survival and drug resistance in cancer cells, Science Signaling, vol.4, issue.482, 2017.
DOI : 10.1038/nprot.2013.143

H. Zhang, Y. Yue, T. Sun, X. Wu, and S. Xiong, Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis, Scientific Reports, vol.7, 2017.
DOI : 10.4161/hv.28333

H. Urra and C. Hetz, A Novel ER Stress-Independent Function of the UPR in Angiogenesis, Molecular Cell, vol.54, issue.4, pp.542-546, 2014.
DOI : 10.1016/j.molcel.2014.05.013

E. Pereira, N. Liao, G. Neale, and L. Hendershot, Transcriptional and Post-Transcriptional Regulation of Proangiogenic Factors by the Unfolded Protein Response, PLoS ONE, vol.57, issue.9, 2010.
DOI : 10.1371/journal.pone.0012521.s008

URL : https://doi.org/10.1371/journal.pone.0012521

B. Drogat, A. P. Nguyen, D. Bouchecareilh, M. Pineau, R. Nalbantoglu et al., Cancer Research, vol.67, issue.14, pp.6700-6707, 2007.
DOI : 10.1158/0008-5472.CAN-06-3235

J. Wang, Y. Qiu, Z. Yang, L. Li, and K. Zhang, Inositol-Requiring Enzyme 1 Facilitates Diabetic Wound Healing Through Modulating MicroRNAs, Diabetes, vol.66, issue.1, pp.177-192, 2017.
DOI : 10.2337/db16-0052

Y. Wang, G. Alam, Y. Ning, F. Visioli, Z. Dong et al., The Unfolded Protein Response Induces the Angiogenic Switch in Human Tumor Cells through the PERK/ATF4 Pathway, Cancer Research, vol.72, issue.20, pp.5396-406, 2012.
DOI : 10.1158/0008-5472.CAN-12-0474

J. Blais, C. Addison, R. Edge, T. Falls, H. Zhao et al., Perk-Dependent Translational Regulation Promotes Tumor Cell Adaptation and Angiogenesis in Response to Hypoxic Stress, Molecular and Cellular Biology, vol.26, issue.24, pp.9517-9549, 2006.
DOI : 10.1128/MCB.01145-06

C. Philippe, A. Dubrac, C. Quelen, A. Desquesnes, L. Van-den-berghe et al., PERK mediates the IRES-dependent translational activation of mRNAs encoding angiogenic growth factors after ischemic stress, Science Signaling, vol.6, issue.426, p.44, 2016.
DOI : 10.1093/nar/gkn093

K. Ozawa, Y. Tsukamoto, O. Hori, Y. Kitao, H. Yanagi et al., Regulation of tumor angiogenesis by oxygen-regulated protein 150, an inducible endoplasmic reticulum chaperone, Cancer Res, vol.61, pp.4206-4219, 2001.

E. Karali, S. Bellou, D. Stellas, A. Klinakis, C. Murphy et al., VEGF Signals through ATF6 and PERK to Promote Endothelial Cell Survival and Angiogenesis in the Absence of ER Stress, Molecular Cell, vol.54, issue.4, pp.559-72, 2014.
DOI : 10.1016/j.molcel.2014.03.022

F. Visioli, Y. Wang, G. Alam, Y. Ning, P. Rados et al., Glucose-Regulated Protein 78 (Grp78) Confers Chemoresistance to Tumor Endothelial Cells under Acidic Stress, PLoS ONE, vol.292, issue.6, 2014.
DOI : 10.1371/journal.pone.0101053.g006

K. Han, N. Li, P. Raven, L. Fazli, S. Frees et al., Inhibition of endoplasmic reticulum chaperone protein glucose-regulated protein 78 potentiates anti-angiogenic therapy in renal cell carcinoma through inactivation of the PERK/eIF2α pathway, Oncotarget, vol.6, issue.33, pp.34818-34848, 2015.
DOI : 10.18632/oncotarget.5397

Q. Ruan, S. Han, W. Jiang, M. Boulton, Z. Chen et al., ??B-Crystallin, an Effector of Unfolded Protein Response, Confers Anti-VEGF Resistance to Breast Cancer via Maintenance of Intracrine VEGF in Endothelial Cells, Molecular Cancer Research, vol.9, issue.12, pp.1632-1675, 2011.
DOI : 10.1158/1541-7786.MCR-11-0327

J. Cubillos-ruiz, S. Bettigole, and L. Glimcher, Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer, Cell, vol.168, issue.4, pp.692-706, 2017.
DOI : 10.1016/j.cell.2016.12.004

W. Shi, Y. Liao, S. Willis, N. Taubenheim, M. Inouye et al., Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells, Nature Immunology, vol.77, issue.6, pp.663-73, 2015.
DOI : 10.1093/bioinformatics/btq401

S. Morita, S. Villalta, H. Feldman, A. Register, W. Rosenthal et al., Targeting ABL-IRE1?? Signaling Spares ER-Stressed Pancreatic ?? Cells to Reverse Autoimmune Diabetes, Bluestone JA & Papa FR (2017) Targeting ABL-IRE1alpha Signaling Spares ER-Stressed Pancreatic beta Cells to Reverse Autoimmune Diabetes, pp.883-897
DOI : 10.1016/j.cmet.2017.03.018

B. Bujisic, D. Gassart, A. Tallant, R. Demaria, O. Zaffalon et al., Impairment of both IRE1 expression and XBP1 activation is a hallmark of GCB DLBCL and contributes to tumor growth, Blood, vol.129, issue.17, pp.2420-2428, 2017.
DOI : 10.1182/blood-2016-09-741348

J. Grootjans, A. Kaser, R. Kaufman, and R. Blumberg, The unfolded protein response in immunity and inflammation, Nature Reviews Immunology, vol.106, issue.8, pp.469-84, 2016.
DOI : 10.1073/pnas.0813036106

F. Osorio, S. Tavernier, E. Hoffmann, Y. Saeys, L. Martens et al., The unfolded-protein-response sensor IRE-1?? regulates the function of CD8??+ dendritic cells, Nature Immunology, vol.204, issue.3, pp.248-57, 2014.
DOI : 10.1126/science.1158042

S. Tavernier, F. Osorio, L. Vandersarren, J. Vetters, N. Vanlangenakker et al., Regulated IRE1-dependent mRNA decay sets the threshold for dendritic cell survival, Nature Cell Biology, vol.98, issue.6, pp.698-710, 2017.
DOI : 10.1073/pnas.191207498

J. Cubillos-ruiz, P. Silberman, M. Rutkowski, S. Chopra, A. Perales-puchalt et al., ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis, Cell, vol.161, issue.7, pp.1527-1565, 2015.
DOI : 10.1016/j.cell.2015.05.025

F. Martinon, X. Chen, A. Lee, and L. Glimcher, TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages, Nature Immunology, vol.67, issue.5, pp.411-419, 2010.
DOI : 10.1196/annals.1359.012

P. Sierra, R. Raber, P. Khami, A. Trillo-tinoco, J. Zarreii et al., The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors, Immunity, vol.41, pp.389-401, 2014.

H. Nakagawa, A. Umemura, K. Taniguchi, J. Font-burgada, D. Dhar et al., ER Stress Cooperates with Hypernutrition to Trigger TNF-Dependent Spontaneous HCC Development, Cancer Cell, vol.26, issue.3, pp.331-374, 2014.
DOI : 10.1016/j.ccr.2014.07.001

J. Goodall, C. Wu, Y. Zhang, L. Mcneill, L. Ellis et al., Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression, Proceedings of the National Academy of Sciences, vol.175, issue.41, pp.17698-703, 2010.
DOI : 10.1083/jcb.200611141

S. Kim, Y. Joe, H. Kim, Y. Kim, S. Jeong et al., Endoplasmic Reticulum Stress???Induced IRE1?? Activation Mediates Cross-Talk of GSK-3?? and XBP-1 To Regulate Inflammatory Cytokine Production, The Journal of Immunology, vol.2011, issue.9, pp.4498-506, 2015.
DOI : 10.1155/2012/930710

N. Shanware, K. Bray, C. Eng, F. Wang, M. Follettie et al., Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion, Nature Communications, vol.71, issue.1, p.4900, 2014.
DOI : 10.1158/0008-5472.CAN-10-3919

J. Liu, D. Ibi, K. Taniguchi, J. Lee, H. Herrema et al., Inflammation Improves Glucose Homeostasis through IKKbeta-XBP1s Interaction Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation, Cell Gastroenterology, vol.167, issue.132, pp.1052-1066, 2007.

K. Zhang, X. Shen, J. Wu, K. Sakaki, T. Saunders et al., Endoplasmic Reticulum Stress Activates Cleavage of CREBH to Induce a Systemic Inflammatory Response, Cell, vol.124, issue.3, pp.587-99, 2006.
DOI : 10.1016/j.cell.2005.11.040

L. Yang, E. Calay, J. Fan, A. Arduini, R. Kunz et al., S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction, Science, vol.19, issue.9, pp.500-506, 2015.
DOI : 10.1016/j.jasms.2008.06.001

M. Robblee, C. Kim, J. Porter-abate, M. Valdearcos, K. Sandlund et al., Saturated Fatty Acids Engage an IRE1??-Dependent Pathway to Activate the NLRP3 Inflammasome in Myeloid Cells, Cell Reports, vol.14, issue.11, pp.2611-2634, 2016.
DOI : 10.1016/j.celrep.2016.02.053

K. Halbleib, K. Pesek, R. Covino, H. Hofbauer, D. Wunnicke et al., Activation of the Unfolded Protein Response by Lipid Bilayer Stress, Molecular Cell, vol.67, issue.4, pp.673-684, 2017.
DOI : 10.1016/j.molcel.2017.06.012

D. Bronner, B. Abuaita, X. Chen, K. Fitzgerald, G. Nunez et al., Endoplasmic Reticulum Stress Activates the Inflammasome via NLRP3- and Caspase-2-Driven Mitochondrial Damage, Immunity, vol.43, issue.3, pp.451-62, 2015.
DOI : 10.1016/j.immuni.2015.08.008

L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel, and G. Kroemer, Immunogenic cell death in cancer and infectious disease, Nature Reviews Immunology, vol.16, issue.2, pp.97-111, 2017.
DOI : 10.1038/nrc.2016.16

T. Panaretakis, O. Kepp, U. Brockmeier, A. Tesniere, A. Bjorklund et al., Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death, The EMBO Journal, vol.65, issue.5, pp.578-90, 2009.
DOI : 10.1074/jbc.M512073200

M. Raghavan, S. Wijeyesakere, L. Peters, and N. Cid, Calreticulin in the immune system: ins and outs, Trends in Immunology, vol.34, issue.1, pp.13-21, 2013.
DOI : 10.1016/j.it.2012.08.002

L. Senovilla, I. Vitale, I. Martins, M. Tailler, C. Pailleret et al., An Immunosurveillance Mechanism Controls Cancer Cell Ploidy, M & Kroemer G (2012) An immunosurveillance mechanism controls cancer cell ploidy, pp.1678-84
DOI : 10.1158/1535-7163.MCT-05-0024

I. Park, S. Heo, I. Song, Y. Kim, H. Park et al., Endoplasmic reticulum stress induces secretion of high-mobility group proteins and is associated with tumor-infiltrating lymphocytes in triple-negative breast cancer, Oncotarget, vol.7, issue.37, pp.59957-59964, 2016.
DOI : 10.18632/oncotarget.11010

K. Cook, D. Soto-pantoja, P. Clarke, M. Cruz, A. Zwart et al., Endoplasmic Reticulum Stress Protein GRP78 Modulates Lipid Metabolism to Control Drug Sensitivity and Antitumor Immunity in Breast Cancer, Cancer Research, vol.76, issue.19, pp.5657-5670, 2016.
DOI : 10.1158/0008-5472.CAN-15-2616

J. Cho, A. Lee, B. Platzer, B. Cross, B. Gardner et al., RETRACTED: The Unfolded Protein Response Element IRE1?? Senses Bacterial Proteins Invading the ER to Activate RIG-I and Innate Immune Signaling, Cell Host & Microbe, vol.13, issue.5, pp.558-69, 2013.
DOI : 10.1016/j.chom.2013.03.011

S. Eckard, G. Rice, A. Fabre, C. Badens, E. Gray et al., The SKIV2L RNA exosome limits activation of the RIG-I-like receptors, Nature Immunology, vol.15, issue.9, pp.839-884, 2014.
DOI : 10.1016/S1474-4422(13)70258-8

URL : http://europepmc.org/articles/pmc4139417?pdf=render

B. Nabet, Y. Qiu, J. Shabason, T. Wu, T. Yoon et al., Exosome RNA Unshielding Couples Stromal Activation to Pattern Recognition Receptor Signaling in Cancer, Cell, vol.170, issue.2, pp.352-366, 2017.
DOI : 10.1016/j.cell.2017.06.031

J. Dassler-plenker, K. Reiners, J. Van-den-boorn, H. Hansen, B. Putschli et al., Pogge von Strandmann E & Coch C (2016) RIG-I activation induces the release of extracellular vesicles with antitumor activity. Oncoimmunology 5, 1219827.

H. Poeck, R. Besch, C. Maihoefer, M. Renn, D. Tormo et al., 5???-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma, Nature Medicine, vol.19, issue.11, pp.1256-63, 2008.
DOI : 10.1038/nm.1887

J. Hou, Y. Zhou, Y. Zheng, J. Fan, W. Zhou et al., Hepatic RIG-I Predicts Survival and Interferon-?? Therapeutic Response in Hepatocellular Carcinoma, Cancer Cell, vol.25, issue.1, pp.49-63, 2014.
DOI : 10.1016/j.ccr.2013.11.011

R. Besch, H. Poeck, T. Hohenauer, D. Senft, G. Hacker et al., Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon???independent apoptosis in human melanoma cells, Journal of Clinical Investigation, vol.119, pp.2399-411, 2009.
DOI : 10.1172/JCI37155DS1

P. Duewell, A. Steger, H. Lohr, H. Bourhis, H. Hoelz et al., RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells, Cell Death & Differentiation, vol.174, issue.12, pp.1825-1862, 2014.
DOI : 10.4049/jimmunol.174.11.6592

H. Su, R. Waldron, R. Gong, V. Ramanujan, S. Pandol et al., The Unfolded Protein Response Plays a Predominant Homeostatic Role in Response to Mitochondrial Stress in Pancreatic Stellate Cells, PLOS ONE, vol.25, issue.6, 2016.
DOI : 10.1371/journal.pone.0148999.g006

N. Harris, C. Vennin, J. Conway, K. Vine, M. Pinese et al., SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer, Oncogene, vol.54, issue.30, pp.4288-4298, 2017.
DOI : 10.1186/1472-6750-9-43

Y. Buganim, S. Madar, Y. Rais, L. Pomeraniec, E. Harel et al., Transcriptional activity of ATF3 in the stromal compartment of tumors promotes cancer progression, Carcinogenesis, vol.18, issue.12, pp.1749-57, 2011.
DOI : 10.1517/13543780902804249

C. Hetz and S. Saxena, ER stress and the unfolded protein response in neurodegeneration, Nature Reviews Neurology, vol.20, issue.8, pp.477-491, 2017.
DOI : 10.1016/j.cmet.2014.06.002

A. Farooqi, K. Li, S. Fayyaz, Y. Chang, M. Ismail et al., Anticancer drugs for the modulation of endoplasmic reticulum stress and oxidative stress, Tumor Biology, vol.344, issue.8, pp.5743-52, 2015.
DOI : 10.1016/j.bbrc.2006.03.111

D. Krysko, A. Garg, A. Kaczmarek, O. Krysko, P. Agostinis et al., Immunogenic cell death and DAMPs in cancer therapy, Nature Reviews Cancer, vol.77, issue.12, pp.860-75, 2012.
DOI : 10.1007/s00262-011-1189-x

N. Rufo, A. Garg, and P. Agostinis, The Unfolded Protein Response in Immunogenic Cell Death and Cancer Immunotherapy, Trends in Cancer, vol.3, issue.9, pp.643-658, 2017.
DOI : 10.1016/j.trecan.2017.07.002

I. Salaroglio, E. Panada, E. Moiso, I. Buondonno, P. Provero et al., PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy, Molecular Cancer, vol.47, issue.1, p.91, 2017.
DOI : 10.1016/j.freeradbiomed.2009.09.006

A. Higa, S. Taouji, S. Lhomond, D. Jensen, M. Fernandez-zapico et al., Endoplasmic Reticulum Stress-Activated Transcription Factor ATF6?? Requires the Disulfide Isomerase PDIA5 To Modulate Chemoresistance, Molecular and Cellular Biology, vol.34, issue.10, pp.1839-1888, 2014.
DOI : 10.1128/MCB.01484-13

L. Bu, H. Yu, L. Fan, X. Li, F. Wang et al., Melatonin, a novel selective ATF-6 inhibitor, induces human hepatoma cell apoptosis through COX-2 downregulation, World Journal of Gastroenterology, vol.23, issue.6, pp.986-998, 2017.
DOI : 10.1111/bph.12428

I. Papandreou, N. Denko, M. Olson, H. Van-melckebeke, S. Lust et al., Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma, Blood, vol.117, issue.4, pp.1311-1315, 2011.
DOI : 10.1182/blood-2010-08-303099

J. Ming, S. Ruan, M. Wang, D. Ye, N. Fan et al., A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1, Oncotarget, vol.6, issue.38, pp.40692-703, 2015.
DOI : 10.18632/oncotarget.5827

N. Mimura, M. Fulciniti, G. Gorgun, Y. Tai, D. Cirstea et al., Blockade of XBP1 splicing by inhibition of IRE1?? is a promising therapeutic option in multiple myeloma, Blood, vol.119, issue.24, pp.5772-81, 2012.
DOI : 10.1182/blood-2011-07-366633

R. Ghosh, L. Wang, E. Wang, B. Perera, A. Igbaria et al., Allosteric Inhibition of the IRE1?? RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress, Cell, vol.158, issue.3, pp.534-582, 2014.
DOI : 10.1016/j.cell.2014.07.002

URL : https://doi.org/10.1016/j.cell.2014.07.002

J. Axten, J. Medina, Y. Feng, A. Shu, S. Romeril et al., Discovery of 7-methyl-5-(1- {[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), J Med Chem, vol.2, issue.55, pp.7193-207, 2012.

C. Atkins, Q. Liu, E. Minthorn, S. Zhang, D. Figueroa et al., Characterization of a Novel PERK Kinase Inhibitor with Antitumor and Antiangiogenic Activity, Cancer Research, vol.73, issue.6, 1993.
DOI : 10.1158/0008-5472.CAN-12-3109

URL : http://cancerres.aacrjournals.org/content/canres/73/6/1993.full.pdf

L. Palam, J. Gore, K. Craven, J. Wilson, and M. Korc, Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma, Cell Death & Disease, vol.1846, issue.10, 1913.
DOI : 10.1172/JCI71526

URL : http://www.nature.com/cddis/journal/v6/n10/pdf/cddis2015264a.pdf

Y. Jeon, J. Kim, J. Shin, M. Jeong, J. Cho et al., Salubrinal-Mediated Upregulation of eIF2alpha Phosphorylation Increases Doxorubicin Sensitivity in MCF-7/ADR Cells, Mol Cells, vol.39, pp.129-164, 2016.