J. Halper and M. Kjaer, Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins, Adv. Exp. Med. Biol, vol.802, pp.31-47, 2014.

R. V. Iozzo and L. Schaefer, Proteoglycan form and function: A comprehensive nomenclature of proteoglycans, Matrix Biol. J. Int. Soc. Matrix Biol, vol.42, pp.11-55, 2015.

C. Cangemi, M. L. Hansen, W. S. Argraves, and L. M. Rasmussen, Fibulins and their role in cardiovascular biology and disease, vol.67, pp.245-265, 2014.

S. A. Jensen and P. A. Handford, New insights into the structure, assembly and biological roles of 10-12 nm connective tissue microfibrils from fibrillin-1 studies, Biochem. J, vol.473, pp.827-838, 2016.

J. Kanta, Elastin in the Liver, Front. Physiol, vol.7, p.491, 2016.

R. P. Mecham and M. A. Gibson, The microfibril-associated glycoproteins (MAGPs) and the microfibrillar niche, Matrix Biol. J. Int. Soc. Matrix Biol, vol.47, pp.13-33, 2015.

A. J. Zollinger and M. L. Smith, Fibronectin, the extracellular glue, Matrix Biol. J. Int. Soc. Matrix Biol, pp.27-37, 2017.

A. Domogatskaya, S. Rodin, and K. Tryggvason, Functional diversity of laminins, Annu. Rev. Cell Dev. Biol, vol.28, pp.523-553, 2012.

R. S. Rogers and H. Nishimune, The role of laminins in the organization and function of neuromuscular junctions, Matrix Biol. J. Int. Soc. Matrix Biol, pp.86-105, 2017.

J. E. Murphy-ullrich and E. H. Sage, Revisiting the matricellular concept, Matrix Biol. J. Int. Soc. Matrix Biol, vol.37, pp.1-14, 2014.

K. Viloria and N. J. Hill, Embracing the complexity of matricellular proteins: the functional and clinical significance of splice variation, Biomol. Concepts, vol.7, pp.117-132, 2016.

K. L. Brown, C. F. Cummings, R. M. Vanacore, and B. G. Hudson, Building collagen IV smart scaffolds on the outside of cells, Protein Sci. Publ. Protein Soc, vol.26, pp.2151-2161, 2017.

S. Ricard-blum, The collagen family, Cold Spring Harb. Perspect. Biol, vol.3, p.4978, 2011.

S. Ricard-blum, F. Ruggiero-;-collagen, . Springer, J. Brinckmann, H. Notbohm et al., The Collagen Superfamily, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00313933

M. A. Karsdal, T. Manon-jensen, F. Genovese, J. H. Kristensen, M. J. Nielsen et al., Novel insights into the function and dynamics of extracellular matrix in liver fibrosis, Am. J. Physiol. Gastrointest. Liver Physiol, vol.308, 2015.

M. A. Karsdal, S. H. Nielsen, D. J. Leeming, L. L. Langholm, M. J. Nielsen et al., The good and the bad collagens of fibrosis -Their role in signaling and organ function, Adv. Drug Deliv. Rev, 2017.

Y. Zhang and B. Stefanovic, LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression, Int. J. Mol. Sci, vol.17, p.419, 2016.

K. M. Mak, C. Y. Png, and D. J. Lee, Type V Collagen in Health, Disease, and Fibrosis, Anat. Rec. Hoboken NJ, vol.299, pp.613-629, 2007.

U. Specks, A. Nerlich, T. V. Colby, I. Wiest, and R. Timpl, Increased expression of type VI collagen in lung fibrosis, Am. J. Respir. Crit. Care Med, vol.151, pp.1956-1964, 1995.

T. Takahara, S. Sollberg, P. Muona, and J. Uitto, Type VI collagen gene expression in experimental liver fibrosis: quantitation and spatial distribution of mRNAs, and immunodetection of the protein, Liver, vol.15, pp.78-86, 1995.

K. M. Mak and R. Mei, Basement Membrane Type IV Collagen and Laminin: An Overview of Their Biology and Value as Fibrosis Biomarkers of Liver Disease, Anat. Rec. Hoboken NJ, vol.300, pp.1371-1390, 2007.

B. Skrbic, K. V. Engebretsen, M. E. Strand, I. G. Lunde, K. M. Herum et al., Lack of collagen VIII reduces fibrosis and promotes early mortality and cardiac dilatation in pressure overload in mice, Cardiovasc. Res, vol.106, pp.32-42, 2015.

M. Selman, A. Pardo, L. Barrera, A. Estrada, S. R. Watson et al., Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis, Am. J. Respir. Crit. Care Med, vol.173, pp.188-198, 2006.

M. Rojkind, M. Giambrone, and L. Biempica, Collagen types in normal and cirrhotic liver, Gastroenterology, vol.76, pp.710-719, 1979.

H. Ehrlich, H. Brown, and B. White, Evidence for type V and I trimer collagens in Dupuytren's Contracture palmar fascia, Biochem. Med, vol.28, pp.273-84, 1982.

A. Narayanan, R. Page, and D. Meyers, Characterization of collagens of diseased human gingiva, Biochemistry (Mosc.), vol.19, pp.5037-5080, 1980.

S. Han, E. Makareeva, N. Kuznetsova, A. Deridder, M. Sutter et al., Molecular mechanism of type I collagen homotrimer resistance to mammalian collagenases, J. Biol. Chem, vol.285, pp.22276-81, 2010.

J. Dennis, D. T. Meehan, D. Delimont, M. Zallocchi, G. A. Perry et al., Collagen XIII induced in vascular endothelium mediates alpha1beta1 integrin-dependent transmigration of monocytes in renal fibrosis, Am. J. Pathol, vol.177, pp.2527-2540, 2010.

M. E. Blaauboer, C. L. Emson, L. Verschuren, M. Van-erk, S. M. Turner et al., Novel combination of collagen dynamics analysis and transcriptional profiling reveals fibrosis-relevant genes and pathways, Matrix Biol. J. Int. Soc. Matrix Biol, vol.32, pp.424-431, 2013.

R. K. Bhogal, C. M. Stoica, T. L. Mcgaha, and C. A. Bona, Molecular aspects of regulation of collagen gene expression in fibrosis, J. Clin. Immunol, vol.25, pp.592-603, 2005.

F. Ramirez, S. Tanaka, and G. Bou-gharios, Transcriptional regulation of the human alpha2(I) collagen gene (COL1A2), an informative model system to study fibrotic diseases, Matrix Biol. J. Int. Soc. Matrix Biol, vol.25, pp.365-372, 2006.

P. Roche and M. P. Czubryt, Transcriptional control of collagen I gene expression, Cardiovasc. Hematol. Disord. Drug Targets, vol.14, pp.107-120, 2014.

R. I. Schwarz, Collagen I and the fibroblast: high protein expression requires a new paradigm of post-transcriptional, feedback regulation, Biochem. Biophys. Rep, vol.3, pp.38-44, 2015.

H. Yao and J. Li, Epigenetic modifications in fibrotic diseases: implications for pathogenesis and pharmacological targets, J. Pharmacol. Exp. Ther, vol.352, pp.2-13, 2015.

X. Meng, D. J. Nikolic-paterson, and H. Y. Lan, TGF-?: the master regulator of fibrosis, Nat. Rev. Nephrol, vol.12, pp.325-338, 2016.

S. J. Chen, W. Yuan, Y. Mori, A. Levenson, M. Trojanowska et al., Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3, J. Invest. Dermatol, vol.112, pp.49-57, 1999.

L. R. Ellis, D. R. Warner, R. M. Greene, and M. M. Pisano, Interaction of Smads with collagen types I, III, and V, Biochem. Biophys. Res. Commun, vol.310, pp.1117-1123, 2003.

F. Verrecchia, M. L. Chu, and A. Mauviel, Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach, J. Biol. Chem, vol.276, pp.17058-17062, 2001.

P. Sysa, J. J. Potter, X. Liu, and E. Mezey, Transforming growth factor-beta1 up-regulation of human alpha(1)(I) collagen is mediated by Sp1 and Smad2 transacting factors, DNA Cell Biol, vol.28, pp.425-434, 2009.

X. M. Meng, X. R. Huang, A. C. Chung, W. Qin, X. Shao et al., Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis, J. Am. Soc. Nephrol. JASN, vol.21, pp.1477-1487, 2010.

L. Zhang, C. Liu, X. Meng, C. Huang, F. Xu et al., Smad2 protects against TGF-?1/Smad3-mediated collagen synthesis in human hepatic stellate cells during hepatic fibrosis, Mol. Cell. Biochem, vol.400, pp.17-28, 2015.

D. Jeong, M. Hwang, J. Park, M. Goo, I. Hong et al., Smad3 deficiency ameliorates hepatic fibrogenesis through the expression of senescence marker protein-30, an antioxidantrelated protein, Int. J. Mol. Sci, vol.14, pp.23700-23710, 2013.

B. Schnabl, Y. O. Kweon, J. P. Frederick, X. F. Wang, R. A. Rippe et al., The role of Smad3 in mediating mouse hepatic stellate cell activation, Hepatol. Baltim. Md, vol.34, pp.89-100, 2001.

B. M. Stramer, J. S. Austin, A. B. Roberts, and M. E. Fini, Selective reduction of fibrotic markers in repairing corneas of mice deficient in Smad3, J. Cell. Physiol, vol.203, pp.226-232, 2005.

A. K. Ghosh, W. Yuan, Y. Mori, and J. Varga, Smad-dependent stimulation of type I collagen gene expression in human skin fibroblasts by TGF-beta involves functional cooperation with p300/CBP transcriptional coactivators, Oncogene, vol.19, pp.3546-3555, 2000.

A. C. Poncelet and H. W. Schnaper, Sp1 and Smad proteins cooperate to mediate transforming growth factor-beta 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells, J. Biol. Chem, vol.276, pp.6983-6992, 2001.

J. Rossert, C. Terraz, and S. Dupont, Regulation of type I collagen genes expression, Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. -Eur. Ren. Assoc, vol.15, issue.6, pp.66-68, 2000.

W. Zhang, J. Ou, Y. Inagaki, P. Greenwel, and F. Ramirez, Synergistic cooperation between Sp1 and Smad3/Smad4 mediates transforming growth factor beta1 stimulation of alpha 2(I)-collagen (COL1A2) transcription, J. Biol. Chem, vol.275, pp.39237-39245, 2000.

N. Bigot, G. Beauchef, M. Hervieu, T. Oddos, M. Demoor et al., NF-?B accumulation associated with COL1A1 transactivators defects during chronological aging represses type I collagen expression through a -112/-61-bp region of the COL1A1 promoter in human skin fibroblasts, J. Invest. Dermatol, vol.132, pp.2360-2367, 2012.

J. Czuwara-ladykowska, F. Shirasaki, P. Jackers, D. K. Watson, and M. Trojanowska, Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway, J. Biol. Chem, vol.276, pp.20839-20848, 2001.

R. A. Rippe, L. W. Schrum, B. Stefanovic, J. A. Solís-herruzo, and D. A. Brenner, NF-kappaB inhibits expression of the alpha1(I) collagen gene, DNA Cell Biol, vol.18, pp.751-761, 1999.

X. Sun, E. Chen, R. Dong, W. Chen, and Y. Hu, Nuclear factor (NF)-?B p65 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-?, Life Sci, vol.122, pp.8-14, 2015.

Y. Mu, S. K. Gudey, and M. Landström, Non-Smad signaling pathways, Cell Tissue Res, vol.347, 2012.

Y. E. Zhang, Non-Smad pathways in TGF-beta signaling, Cell Res, vol.19, pp.128-139, 2009.

S. Reif, A. Lang, J. N. Lindquist, Y. Yata, E. Gabele et al., The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression, J. Biol. Chem, vol.278, pp.8083-8090, 2003.

C. E. Runyan, H. W. Schnaper, and A. Poncelet, The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-beta1, J. Biol. Chem, vol.279, pp.2632-2639, 2004.

L. Shi, Y. Chang, Y. Yang, Y. Zhang, F. X. Yu et al., Activation of JNK signaling mediates connective tissue growth factor expression and scar formation in corneal wound healing, PloS One, vol.7, p.32128, 2012.

S. Tsukada, J. K. Westwick, K. Ikejima, N. Sato, and R. A. Rippe, SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells, J. Biol. Chem, vol.280, pp.10055-10064, 2005.

M. Varela-rey, C. Montiel-duarte, J. A. Osés-prieto, M. J. López-zabalza, J. P. Jaffrèzou et al., p38 MAPK mediates the regulation of alpha1(I) procollagen mRNA levels by TNF-alpha and TGF-beta in a cell line of rat hepatic stellate cells, FEBS Lett, vol.528, issue.1, pp.133-138, 2002.

L. Wang, R. Ma, R. A. Flavell, and M. E. Choi, Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for activation of p38alpha and p38delta MAPK isoforms by TGF-beta 1 in murine mesangial cells, J. Biol. Chem, vol.277, pp.47257-47262, 2002.

W. Jiang, Y. Zhang, H. Wu, X. Zhang, H. Gan et al., Role of cross-talk between the Smad2 and MAPK pathways in TGF-beta1-induced collagen IV expression in mesangial cells, Int. J. Mol. Med, vol.26, pp.571-576, 2010.

T. A. Wynn, Fibrotic disease and the T(H)1/T(H)2 paradigm, Nat. Rev. Immunol, vol.4, pp.583-594, 2004.

K. Higashi, Y. Inagaki, K. Fujimori, A. Nakao, H. Kaneko et al., Interferongamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3, J. Biol. Chem, vol.278, pp.43470-43479, 2003.

S. Dooley, H. M. Said, A. M. Gressner, J. Floege, A. En-nia et al., Y-box protein-1 is the crucial mediator of antifibrotic interferon-gamma effects, J. Biol. Chem, vol.281, pp.1784-1795, 2006.

H. Weng, P. R. Mertens, A. M. Gressner, and S. Dooley, IFN-gamma abrogates profibrogenic TGF-beta signaling in liver by targeting expression of inhibitory and receptor Smads, J. Hepatol, vol.46, pp.295-303, 2007.

F. Verrecchia, E. F. Wagner, and A. Mauviel, Distinct involvement of the Jun-N-terminal kinase and NF-kappaB pathways in the repression of the human COL1A2 gene by TNFalpha, EMBO Rep, vol.3, pp.1069-1074, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00147463

M. J. Iraburu, J. A. Domínguez-rosales, L. Fontana, A. Auster, E. R. García-trevijano et al., Tumor necrosis factor alpha down-regulates expression of the alpha1(I) collagen gene in rat hepatic stellate cells through a p20C/EBPbeta-and C/EBPdelta-dependent mechanism, Hepatol. Baltim. Md, vol.31, pp.1086-1093, 2000.

G. Poli and M. Parola, Oxidative damage and fibrogenesis, Free Radic, Biol. Med, vol.22, pp.287-305, 1997.

A. T. Dantas, M. C. Pereira, M. J. De-melo-rego, L. F. Da-rocha, I. Da-r.-pitta et al., The Role of PPAR Gamma in Systemic Sclerosis, PPAR Res, p.124624, 2015.

B. Piersma, R. A. Bank, and M. Boersema, Signaling in Fibrosis: TGF-?, WNT, and YAP/TAZ Converge, Front. Med, vol.2, p.59, 2015.

G. Andrieux, M. L. Borgne, and N. Théret, An integrative modeling framework reveals plasticity of TGF-? signaling, BMC Syst. Biol, vol.8, p.30, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00978313

A. Eccleston, F. Cesari, and M. Skipper, Transcription and epigenetics, Nature, vol.502, p.461, 2013.

S. O'reilly, Epigenetics in fibrosis, Mol. Aspects Med, vol.54, pp.89-102, 2017.

D. Schübeler, Function and information content of DNA methylation, Nature, vol.517, pp.321-326, 2015.

C. Dowson and S. O'reilly, DNA methylation in fibrosis, Eur. J. Cell Biol, vol.95, pp.323-330, 2016.

R. Neary, C. J. Watson, and J. A. Baugh, Epigenetics and the overhealing wound: the role of DNA methylation in fibrosis, Fibrogenesis Tissue Repair, vol.8, p.18, 2015.

X. Zhang, M. Hu, X. Lyu, C. Li, V. J. Thannickal et al., DNA methylation regulated gene expression in organ fibrosis, Biochim. Biophys. Acta, vol.1863, pp.2389-2397, 2017.

Y. Komatsu, T. Waku, N. Iwasaki, W. Ono, C. Yamaguchi et al., Global analysis of DNA methylation in early-stage liver fibrosis, BMC Med. Genomics, vol.5, p.5, 2012.

A. E. Taghdouini, A. L. Sørensen, A. H. Reiner, M. Coll, S. Verhulst et al., Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells, Oncotarget, vol.6, pp.26729-26745, 2015.

D. K. Guenette, J. D. Ritzenthaler, J. Foley, J. D. Jackson, and B. D. Smith, DNA methylation inhibits transcription of procollagen alpha 2(I) promoters, Biochem. J, vol.283, pp.699-703, 1992.

K. Rhodes, R. A. Rippe, A. Umezawa, M. Nehls, D. A. Brenner et al., DNA methylation represses the murine alpha 1(I) collagen promoter by an indirect mechanism, Mol. Cell. Biol, vol.14, pp.5950-5960, 1994.

A. Jüngel, J. H. Distler, S. Gay, and O. Distler, Epigenetic modifications: novel therapeutic strategies for systemic sclerosis?, Expert Rev. Clin. Immunol, vol.7, pp.475-480, 2011.

Y. Wang, P. Fan, and B. Kahaleh, Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts, Arthritis Rheum, vol.54, pp.2271-2279, 2006.

M. Krämer, C. Dees, J. Huang, I. Schlottmann, K. Palumbo-zerr et al., Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis, Ann. Rheum. Dis, vol.72, pp.614-620, 2013.

E. Bian, C. Huang, H. Wang, X. Chen, L. Zhang et al., Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats, Toxicol. Lett, vol.224, pp.175-185, 2014.

M. Kim, E. J. Kim, Y. Cheng, M. H. Shin, J. Oh et al., Inhibition of DNA Methylation in the COL1A2 Promoter by Anacardic Acid Prevents UV-Induced Decrease of Type I Procollagen Expression, J. Invest. Dermatol, vol.137, pp.1343-1352, 2017.

X. Pan, Z. Chen, R. Huang, Y. Yao, and G. Ma, Transforming growth factor ?1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts, PloS One, vol.8, p.60335, 2013.

T. Zhang, S. Cooper, and N. Brockdorff, The interplay of histone modifications -writers that read, EMBO Rep, vol.16, pp.1467-1481, 2015.

A. K. Ghosh and J. Varga, The transcriptional coactivator and acetyltransferase p300 in fibroblast biology and fibrosis, J. Cell. Physiol, vol.213, pp.663-671, 2007.

M. J. Perugorria, C. L. Wilson, M. Zeybel, M. Walsh, S. Amin et al., Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation, Hepatol. Baltim. Md, vol.56, pp.1129-1139, 2012.

W. Guo, B. Shan, R. C. Klingsberg, X. Qin, and J. A. Lasky, Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.297, 2009.

Z. Wang, C. Chen, S. N. Finger, S. Kwajah, M. Jung et al., Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis?, Eur. Respir. J, vol.34, pp.145-155, 2009.

X. Zhang, H. Liu, T. Hock, V. J. Thannickal, and Y. Y. Sanders, Histone deacetylase inhibition downregulates collagen 3A1 in fibrotic lung fibroblasts, Int. J. Mol. Sci, vol.14, pp.19605-19617, 2013.

S. Khan, G. Jena, and K. Tikoo, Sodium valproate ameliorates diabetes-induced fibrosis and renal damage by the inhibition of histone deacetylases in diabetic rat, Exp. Mol. Pathol, vol.98, pp.230-239, 2015.

M. G. Elsakkar, M. M. Eissa, W. A. Hewedy, R. M. Nassra, and S. F. Elatrebi, Sodium valproate, a histone deacetylase inhibitor, with praziquantel ameliorates Schistosoma mansoni-induced liver fibrosis in mice, Life Sci, vol.162, pp.95-101, 2016.

S. Y. Choi, Y. Ryu, H. J. Kee, S. Cho, G. R. Kim et al., Tubastatin A suppresses renal fibrosis via regulation of epigenetic histone modification and Smad3-dependent fibrotic genes, Vascul. Pharmacol, vol.72, pp.130-140, 2015.

Y. Zheng, Z. Khan, V. Zanfagnin, L. F. Correa, A. A. Delaney et al., Epigenetic Modulation of Collagen 1A1: Therapeutic Implications in Fibrosis and Endometriosis, Biol. Reprod, vol.94, p.87, 2016.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, pp.281-297, 2004.

S. Vettori, S. Gay, and O. Distler, Role of MicroRNAs in Fibrosis, Open Rheumatol. J, vol.6, pp.130-139, 2012.

C. Chou, N. Chang, S. Shrestha, S. Hsu, Y. Lin et al., Nucleic Acids Res, vol.44, pp.239-247, 2016.

B. Wang, R. Komers, R. Carew, C. E. Winbanks, B. Xu et al., Suppression of microRNA-29 expression by TGF-?1 promotes collagen expression and renal fibrosis, J. Am. Soc. Nephrol. JASN, vol.23, pp.252-265, 2012.

L. Jiang, Y. Zhou, M. Xiong, L. Fang, P. Wen et al., Sp1 mediates microRNA-29c-regulated type I collagen production in renal tubular epithelial cells, Exp. Cell Res, vol.319, pp.2254-2265, 2013.

A. Nijhuis, P. Biancheri, A. Lewis, C. L. Bishop, P. Giuffrida et al., In Crohn's disease fibrosis-reduced expression of the miR-29 family enhances collagen expression in intestinal fibroblasts, Clin. Sci. Lond. Engl, vol.127, pp.341-350, 1979.

N. Honda, M. Jinnin, T. Kira-etoh, K. Makino, I. Kajihara et al., down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin ?3, Am. J. Pathol, vol.182, pp.206-216, 2013.

K. Kashiyama, N. Mitsutake, M. Matsuse, T. Ogi, V. A. Saenko et al., miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts, J. Invest. Dermatol, vol.132, pp.1597-1604, 2012.

K. Makino, M. Jinnin, A. Hirano, K. Yamane, M. Eto et al., The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma, J. Immunol. Baltim. Md, vol.190, pp.3905-3915, 1950.

F. He, F. Peng, X. Xia, C. Zhao, Q. Luo et al., MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1, vol.57, pp.1726-1736, 2014.

Y. Naito, N. Sakamoto, N. Oue, M. Yashiro, K. Sentani et al., MicroRNA-143 regulates collagen type III expression in stromal fibroblasts of scirrhous type gastric cancer, Cancer Sci, vol.105, pp.228-235, 2014.

M. Sun, H. Yu, Y. Zhang, Z. Li, and W. Gao, MicroRNA-214 Mediates Isoproterenolinduced Proliferation and Collagen Synthesis in Cardiac Fibroblasts, Sci. Rep, vol.5, p.18351, 2015.

G. Liu, A. Friggeri, Y. Yang, J. Milosevic, Q. Ding et al., miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis, J. Exp. Med, vol.207, pp.1589-1597, 2010.

L. L. Kennedy, F. Meng, J. K. Venter, T. Zhou, W. A. Karstens et al., Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice, Lab. Investig. J. Tech. Methods Pathol, vol.96, pp.1256-1267, 2016.

J. Wei, L. Feng, Z. Li, G. Xu, and X. Fan, MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling, Biomed. Pharmacother. Biomedecine Pharmacother, vol.67, pp.387-392, 2013.

A. D. Mcclelland, M. Herman-edelstein, R. Komers, J. C. Jha, C. E. Winbanks et al., miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7, vol.129, pp.1237-1249, 1979.

R. Fu, D. Hu, Y. Hu, L. Hong, Q. Sun et al., Ding, miR-21 promotes ?-SMA and collagen I expression in hepatic stellate cells via the Smad7 signaling pathway, Mol. Med. Rep, vol.16, pp.4327-4333, 2017.

X. Li, L. Guo, Y. Liu, Y. Su, Y. Xie et al., MicroRNA-21 promotes wound healing via the Smad7-Smad2/3-Elastin pathway, Exp. Cell Res, 2017.

R. Zhou, C. Wang, C. Wen, and D. Wang, miR-21 promotes collagen production in keloid via Smad7, Burns J. Int. Soc. Burn Inj, vol.43, pp.555-561, 2017.

J. Wang, Y. Gao, M. Ma, M. Li, D. Zou et al., Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice, Cell Biochem. Biophys, vol.67, pp.537-546, 2013.

X. Wu and G. Brewer, The regulation of mRNA stability in mammalian cells: 2.0, Gene, vol.500, pp.10-21, 2012.

B. Stefanovic, RNA protein interactions governing expression of the most abundant protein in human body, type I collagen, Wiley Interdiscip. Rev. RNA, vol.4, pp.535-545, 2013.

B. Stefanovic, C. Hellerbrand, M. Holcik, M. Briendl, S. Aliebhaber et al., Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells, Mol. Cell. Biol, vol.17, pp.5201-5209, 1997.

A. Määttä and R. P. Penttinen, A fibroblast protein binds the 3'-untranslated region of proalpha 1(I) collagen mRNA, Biochem. J, vol.295, issue.3, pp.691-698, 1993.

L. Cai, D. Fritz, L. Stefanovic, and B. Stefanovic, Binding of LARP6 to the conserved 5' stem-loop regulates translation of mRNAs encoding type I collagen, J. Mol. Biol, vol.395, pp.309-326, 2010.

A. A. Challa and B. Stefanovic, A novel role of vimentin filaments: binding and stabilization of collagen mRNAs, Mol. Cell. Biol, vol.31, pp.3773-3789, 2011.

M. Vukmirovic, Z. Manojlovic, and B. Stefanovic, Serine-threonine kinase receptorassociated protein (STRAP) regulates translation of type I collagen mRNAs, Mol. Cell. Biol, vol.33, pp.3893-3906, 2013.

Y. Zhang and B. , Stefanovic, mTORC1 phosphorylates LARP6 to stimulate type I collagen expression, Sci. Rep, vol.7, p.41173, 2017.

J. Ge, N. Chang, Z. Zhao, L. Tian, X. Duan et al., Essential Roles of RNAbinding Protein HuR in Activation of Hepatic Stellate Cells Induced by Transforming Growth Factor-?1, Sci. Rep, vol.6, p.22141, 2016.

A. Woodhoo, M. Iruarrizaga-lejarreta, N. Beraza, J. L. García-rodríguez, N. Embade et al., Human antigen R contributes to hepatic stellate cell activation and liver fibrosis, Hepatol. Baltim. Md, vol.56, pp.1870-1882, 2012.

M. N. Hinman and H. Lou, Diverse molecular functions of Hu proteins, Cell. Mol. Life Sci. CMLS, vol.65, pp.3168-3181, 2008.

Z. Wang, M. Jinnin, K. Nakamura, M. Harada, H. Kudo et al., Long non-coding RNA TSIX is upregulated in scleroderma dermal fibroblasts and controls collagen mRNA stabilization, Exp. Dermatol, vol.25, pp.131-136, 2016.

R. T. Miller, Mechanical properties of basement membrane in health and disease, Matrix Biol. J. Int. Soc. Matrix Biol, pp.366-373, 2017.

M. W. Chan, B. Hinz, and C. A. Mcculloch, Mechanical induction of gene expression in connective tissue cells, Methods Cell Biol, vol.98, issue.10, pp.98008-98012, 2010.

A. Santos and D. Lagares, Matrix Stiffness: the Conductor of Organ Fibrosis, Curr. Rheumatol. Rep, vol.20, 2018.

J. D. Humphrey, E. R. Dufresne, and M. A. Schwartz, Mechanotransduction and extracellular matrix homeostasis, Nat. Rev. Mol. Cell Biol, vol.15, pp.802-812, 2014.

T. Panciera, L. Azzolin, M. Cordenonsi, and S. Piccolo, Mechanobiology of YAP and TAZ in physiology and disease, Nat. Rev. Mol. Cell Biol, vol.18, pp.758-770, 2017.

I. Mannaerts, S. B. Leite, S. Verhulst, S. Claerhout, N. Eysackers et al., The Hippo pathway effector YAP controls mouse hepatic stellate cell activation, J. Hepatol, vol.63, pp.679-688, 2015.

F. Liu, D. Lagares, K. M. Choi, L. Stopfer, A. Marinkovi? et al., Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.308, pp.344-357, 2015.

B. Piersma, S. De-rond, P. M. Werker, S. Boo, B. Hinz et al., YAP1 Is a Driver of Myofibroblast Differentiation in Normal and Diseased Fibroblasts, Am. J. Pathol, vol.185, pp.3326-3337, 2015.

G. Nardone, J. Oliver-de-la, J. Cruz, C. Vrbsky, J. Martini et al., YAP regulates cell mechanics by controlling focal adhesion assembly, Nat. Commun, vol.8, p.15321, 2017.

K. Martin, J. Pritchett, J. Llewellyn, A. F. Mullan, V. S. Athwal et al., PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis, Nat. Commun, vol.7, p.12502, 2016.

P. Wipff and B. Hinz, Integrins and the activation of latent transforming growth factor beta1 -an intimate relationship, Eur. J. Cell Biol, vol.87, pp.601-615, 2008.

G. Jenkins, The role of proteases in transforming growth factor-beta activation, Int. J. Biochem. Cell Biol, vol.40, pp.1068-1078, 2008.

P. Wipff, D. B. Rifkin, J. Meister, and B. Hinz, Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix, J. Cell Biol, vol.179, pp.1311-1323, 2007.

J. Massagué, TGF? signalling in context, Nat. Rev. Mol. Cell Biol, vol.13, pp.616-630, 2012.

R. A. Gjaltema and R. A. Bank, Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease, Crit. Rev. Biochem. Mol. Biol, vol.52, pp.74-95, 2017.

M. Yamauchi and M. Sricholpech, Lysine post-translational modifications of collagen, Essays Biochem, vol.52, pp.113-133, 2012.

A. J. Van-der-slot-verhoeven, E. A. Van-dura, J. Attema, B. Blauw, J. Degroot et al., The type of collagen cross-link determines the reversibility of experimental skin fibrosis, Biochim. Biophys. Acta, vol.1740, pp.60-67, 2005.

S. P. Robins, Biochemistry and functional significance of collagen cross-linking, Biochem. Soc. Trans, vol.35, pp.849-852, 2007.

S. Ricard-blum, S. Bresson-hadni, D. A. Vuitton, G. Ville, and J. A. Grimaud, Hydroxypyridinium collagen cross-links in human liver fibrosis: study of alveolar echinococcosis, Hepatol. Baltim. Md, vol.15, pp.599-602, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00313967

S. Ricard-blum, S. Bresson-hadni, S. Guerret, P. Grenard, P. J. Volle et al., Mechanism of collagen network stabilization in human irreversible granulomatous liver fibrosis, Gastroenterology, vol.111, pp.172-182, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00313958

P. Grenard, S. Bresson-hadni, S. E. Alaoui, M. Chevallier, D. A. Vuitton et al., Transglutaminase-mediated cross-linking is involved in the stabilization of extracellular matrix in human liver fibrosis, J. Hepatol, vol.35, pp.367-375, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00313941

M. Perepelyuk, M. Terajima, A. Y. Wang, P. C. Georges, P. A. Janmey et al., Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury, Am. J. Physiol. Gastrointest. Liver Physiol, vol.304, pp.605-614, 2013.

S. Ricard-blum, G. Ville, and J. A. Grimaud, Pyridinoline, a mature collagen cross-link, in fibrotic livers from Schistosoma mansoni-infected mice, Am. J. Trop. Med. Hyg, vol.47, pp.816-820, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00313965

S. Ricard-blum, M. Liance, R. Houin, J. A. Grimaud, and D. A. Vuitton, Covalent crosslinking of liver collagen by pyridinoline increases in the course of experimental alveolar echinococcosis, Parasite Paris Fr, vol.2, pp.113-118, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00313962

S. Ricard-blum, P. Esterre, and J. A. Grimaud, Collagen cross-linking by pyridinoline occurs in non-reversible skin fibrosis, Cell. Mol. Biol. Noisy--Gd. Fr, vol.39, pp.723-727, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00313964

S. Ricard-blum, D. J. Hartmann, P. Grenard, V. E. Ravaoalimalala, P. Boisier et al., Relationships between several markers of extracellular matrix turn-over and ultrasonography in human Schistosomiasis mansoni, Am. J. Trop. Med. Hyg, vol.60, pp.658-663, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00313950

P. Grenard, B. Blanquier, and S. Ricard-blum, Urinary excretion of the collagen cross-link pyridinoline increases during liver fibrogenesis, J. Hepatol, vol.26, pp.1356-1362, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00313957

M. Liance, S. Ricard-blum, I. Emery, R. Houin, and D. A. Vuitton, Echinococcus multilocularis infection in mice: in vivo treatment with a low dose of IFN-gamma decreases metacestode growth and liver fibrogenesis, Parasite Paris Fr, vol.5, pp.231-237, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00313953

S. Ricard-blum, S. Bresson-hadni, P. Grenard, P. Humbert, J. P. Carbillet et al., The level of the collagen cross-link pyridinoline reflects the improvement of cutaneous lesions in one case of skin alveolar echinococcosis, Parasitol. Res, vol.84, pp.715-719, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00313955

S. Ricard-blum, D. J. Hartmann, and P. Esterre, Monitoring of extracellular matrix metabolism and cross-linking in tissue, serum and urine of patients with chromoblastomycosis, a chronic skin fibrosis, Eur. J. Clin. Invest, vol.28, pp.748-754, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00313954

A. J. Van-der-slot, A. Zuurmond, A. F. Bardoel, C. Wijmenga, H. E. Pruijs et al., Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis, J. Biol. Chem, vol.278, pp.40967-40972, 2003.

A. J. Van-der-slot, A. Zuurmond, A. J. Van-den, M. M. Bogaerdt, E. Ulrich et al., Increased formation of pyridinoline cross-links due to higher telopeptide lysyl hydroxylase levels is a general fibrotic phenomenon, Matrix Biol. J. Int. Soc. Matrix Biol, vol.23, pp.251-257, 2004.

D. F. Remst, E. N. Blaney-davidson, E. L. Vitters, A. B. Blom, R. Stoop et al., Osteoarthritis-related fibrosis is associated with both elevated pyridinoline cross-link formation and lysyl hydroxylase 2b expression, Osteoarthritis Cartilage, vol.21, pp.157-164, 2013.

R. A. Gjaltema, M. M. Van-der-stoel, M. Boersema, and R. A. Bank, Disentangling mechanisms involved in collagen pyridinoline cross-linking: The immunophilin FKBP65 is critical for dimerization of lysyl hydroxylase 2, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.7142-7147, 2016.

A. J. Van-der-slot, E. A. Van-dura, E. C. De-wit, J. De-groot, T. W. Huizinga et al., Elevated formation of pyridinoline cross-links by profibrotic cytokines is associated with enhanced lysyl hydroxylase 2b levels, Biochim. Biophys. Acta, vol.1741, pp.95-102, 2005.

D. F. Remst, E. N. Blaney-davidson, E. L. Vitters, R. A. Bank, W. B. Van-den et al., TGF-ß induces Lysyl hydroxylase 2b in human synovial osteoarthritic fibroblasts through ALK5 signaling, Cell Tissue Res, vol.355, pp.163-171, 2014.

J. M. Mäki, Lysyl oxidases in mammalian development and certain pathological conditions, Histol. Histopathol, vol.24, pp.651-660, 2009.

P. C. Trackman, Lysyl Oxidase Isoforms and Potential Therapeutic Opportunities for Fibrosis and Cancer, Expert Opin. Ther. Targets, vol.20, pp.935-945, 2016.

H. Wakasaki and A. Ooshima, Synthesis of lysyl oxidase in experimental hepatic fibrosis, Biochem. Biophys. Res. Commun, vol.166, pp.1201-1204, 1990.

R. C. Siegel, K. H. Chen, J. S. Greenspan, and J. M. Aguiar, Biochemical and immunochemical study of lysyl oxidase in experimental hepatic fibrosis in the rat, Proc. Natl. Acad. Sci. U. S. A, vol.75, pp.2945-2949, 1978.

A. Konishi, H. Iguchi, J. Ochi, R. Kinoshita, K. Miura et al., Increased lysyl oxidase activity in culture medium of nonparenchymal cells from fibrotic livers, Gastroenterology, vol.89, pp.709-715, 1985.

S. B. Liu, N. Ikenaga, Z. Peng, D. Y. Sverdlov, A. Greenstein et al., Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.30, pp.1599-1609, 2016.

A. Desmoulière, I. Darby, A. M. Costa, M. Raccurt, B. Tuchweber et al., Extracellular matrix deposition, lysyl oxidase expression, and myofibroblastic differentiation during the initial stages of cholestatic fibrosis in the rat, Lab. Investig. J. Tech. Methods Pathol, vol.76, pp.765-778, 1997.

B. López, A. González, N. Hermida, F. Valencia, E. De-teresa et al., Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects, Am. J. Physiol. Heart Circ. Physiol, vol.299, pp.1-9, 2010.

N. Ronin, M. Sopel, A. Falkenham, T. Myers, T. Lee et al., Age Related Fibrosis Is Improved by Reducing Collagen Cross-Linking With Lysyl Oxidase Inhibition, p.247, 2013.

A. Eliades, N. Papadantonakis, A. Bhupatiraju, K. A. Burridge, H. A. Johnston-cox et al., Control of megakaryocyte expansion and bone marrow fibrosis by lysyl oxidase, J. Biol. Chem, vol.286, pp.27630-27638, 2011.

N. Papadantonakis, S. Matsuura, and K. Ravid, Megakaryocyte pathology and bone marrow fibrosis: the lysyl oxidase connection, Blood, vol.120, pp.1774-1781, 2012.

A. A. Zahr, M. E. Salama, N. Carreau, D. Tremblay, S. Verstovsek et al., Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies, Haematologica, vol.101, pp.660-671, 2016.

T. R. Cox, D. Bird, A. Baker, H. E. Barker, M. W. et al., LOXmediated collagen crosslinking is responsible for fibrosis-enhanced metastasis, Cancer Res, vol.73, pp.1721-1732, 2013.

T. Cheng, Q. Liu, R. Zhang, Y. Zhang, J. Chen et al., Lysyl oxidase promotes bleomycin-induced lung fibrosis through modulating inflammation, J. Mol. Cell Biol, vol.6, pp.506-515, 2014.

T. Nishimoto, T. Takihara, L. Mlakar, and C. Feghali-bostwick, Lysyl Oxidase Induces Fibrosis Via Upregulation of IL-6 and Serves As a Biomarker to Monitor Response to Therapy, 2015.

T. R. Cox, D. Bird, A. Baker, H. E. Barker, M. W. et al., LOXmediated collagen crosslinking is responsible for fibrosis-enhanced metastasis, Cancer Res, vol.73, pp.1721-1732, 2013.

G. Tjin, E. S. White, A. Faiz, D. Sicard, D. J. Tschumperlin et al., Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis, Dis. Model. Mech, vol.10, pp.1301-1312, 2017.

P. Gavriel and H. M. Kagan, Inhibition by heparin of the oxidation of lysine in collagen by lysyl oxidase, Biochemistry (Mosc.), vol.27, pp.2811-2815, 1988.

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t-48,

R. Janssen, Lysyl Oxidase Inhibition by Heparin in Idiopathic Pulmonary Fibrosis: Is There Still Hope?, Am. J. Respir. Crit. Care Med, vol.195, pp.141-142, 2017.

M. E. Hajj, E. E. Hajj, J. Bradley, and J. Gardner, Inhibition of lysyl oxidase activity reverses fibrosis and improves cardiac function, FASEB J, 2014.

C. R. Harlow, X. Wu, M. Van-deemter, F. Gardiner, C. Poland et al., Targeting lysyl oxidase reduces peritoneal fibrosis, PloS One, vol.12, p.183013, 2017.

C. Añazco, A. J. López-jiménez, M. Rafi, L. Vega-montoto, M. Zhang et al., Lysyl Oxidase-like-2 Cross-links Collagen IV of Glomerular Basement Membrane, J. Biol. Chem, vol.291, pp.25999-26012, 2016.

N. Ikenaga, Z. Peng, K. A. Vaid, S. B. Liu, S. Yoshida et al., Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal, Gut, vol.66, pp.1697-1708, 2017.

J. Yang, K. Savvatis, J. S. Kang, P. Fan, H. Zhong et al., Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment, Nat. Commun, vol.7, p.13710, 2016.

D. Rimar, I. Rosner, Y. Nov, G. Slobodin, M. Rozenbaum et al., Brief report: lysyl oxidase is a potential biomarker of fibrosis in systemic sclerosis, Arthritis Rheumatol. Hoboken NJ, vol.66, 2014.

D. Rimar, I. Rosner, G. Slobodin, M. Rozenbaum, L. Kaly et al., Lysyl Oxidase in Systemic Sclerosis: Getting Under the Skin, Isr. Med. Assoc. J. IMAJ, vol.18, pp.534-536, 2016.

Z. Péterfi and M. Geiszt, Peroxidasins: novel players in tissue genesis, Trends Biochem. Sci, vol.39, pp.305-307, 2014.

G. Bhave, C. F. Cummings, R. M. Vanacore, C. Kumagai-cresse, I. A. Ero-tolliver et al., Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis, Nat. Chem. Biol, vol.8, pp.784-790, 2012.

R. Vanacore, A. L. Ham, M. Voehler, C. R. Sanders, T. P. Conrads et al., A sulfilimine bond identified in collagen IV, Science, vol.325, pp.1230-1234, 2009.

D. E. Ingber, Can cancer be reversed by engineering the tumor microenvironment?, Semin. Cancer Biol, vol.18, pp.356-364, 2008.

M. Egeblad, M. G. Rasch, and V. M. Weaver, Dynamic interplay between the collagen scaffold and tumor evolution, Curr. Opin. Cell Biol, vol.22, pp.697-706, 2010.

J. J. Northey, L. Przybyla, and V. M. Weaver, Tissue Force Programs Cell Fate and Tumor Aggression, Cancer Discov, vol.7, pp.1224-1237, 2017.

J. Bomo, F. Ezan, F. Tiaho, M. Bellamri, S. Langouët et al., Increasing 3D Matrix Rigidity Strengthens Proliferation and Spheroid Development of Human Liver Cells in a Constant Growth Factor Environment, J. Cell. Biochem, vol.117, pp.708-720, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01196600

G. Ou and V. M. Weaver, Tumor-induced solid stress activates ?-catenin signaling to drive malignant behavior in normal, tumor-adjacent cells, BioEssays News Rev. Mol. Cell. Dev. Biol, vol.37, pp.1293-1297, 2015.

P. Friedl, Dynamic imaging of cellular interactions with extracellular matrix, Histochem. Cell Biol, vol.122, pp.183-190, 2004.

L. Petitclerc, G. Sebastiani, G. Gilbert, G. Cloutier, and A. Tang, Liver fibrosis: Review of current imaging and MRI quantification techniques, J. Magn. Reson. Imaging JMRI, vol.45, pp.1276-1295, 2017.

E. Brown, T. Mckee, E. Ditomaso, A. Pluen, B. Seed et al., Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation, Nat. Med, vol.9, pp.796-800, 2003.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, High-resolution nonlinear optical imaging of live cells by second harmonic generation, Biophys. J, vol.77, pp.3341-3349, 1999.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone et al., Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues, Biophys. J, vol.82, pp.493-508, 2002.

A. Zoumi, A. Yeh, and B. J. Tromberg, Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.11014-11019, 2002.

K. M. Riching, B. L. Cox, M. R. Salick, C. Pehlke, A. S. Riching et al., 3D collagen alignment limits protrusions to enhance breast cancer cell persistence, Biophys. J, vol.107, pp.2546-2558, 2014.

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri et al., Aligned collagen is a prognostic signature for survival in human breast carcinoma, Am. J. Pathol, vol.178, pp.1221-1232, 2011.

P. J. Campagnola and L. M. Loew, Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms, Nat. Biotechnol, vol.21, pp.1356-1360, 2003.

R. M. Williams, W. R. Zipfel, and W. W. Webb, Interpreting second-harmonic generation images of collagen I fibrils, Biophys. J, vol.88, pp.1377-1386, 2005.

M. Strupler, A. Pena, M. Hernest, P. Tharaux, J. Martin et al., Second harmonic imaging and scoring of collagen in fibrotic tissues, Opt. Express, vol.15, pp.4054-4065, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00824058

G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi et al., 3-dimensional imaging of collagen using second harmonic generation, J. Struct. Biol, vol.141, pp.53-62, 2003.

L. Gailhouste, Y. L. Grand, C. Odin, D. Guyader, B. Turlin et al., Fibrillar collagen scoring by second harmonic microscopy: a new tool in the assessment of liver fibrosis, J. Hepatol, vol.52, pp.398-406, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00657949

A. Pena, D. Fagot, C. Olive, J. Michelet, J. Galey et al., Multiphoton microscopy of engineered dermal substitutes: assessment of 3-D collagen matrix remodeling induced by fibroblast contraction, J. Biomed. Opt, vol.15, p.56018, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01619016

W. Sun, S. Chang, D. C. Tai, N. Tan, G. Xiao et al., Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies, J. Biomed. Opt, vol.13, p.64010, 2008.

D. C. Tai, N. Tan, S. Xu, C. H. Kang, S. M. Chia et al., Fibro-C-Index: comprehensive, morphology-based quantification of liver fibrosis using second harmonic generation and two-photon microscopy, J. Biomed. Opt, vol.14, p.44013, 2009.

V. Lutz, M. Sattler, S. Gallinat, H. Wenck, R. Poertner et al., Characterization of fibrillar collagen types using multi-dimensional multiphoton laser scanning microscopy, Int. J. Cosmet. Sci, vol.34, pp.209-215, 2012.

V. Ajeti, O. Nadiarnykh, S. M. Ponik, P. J. Keely, K. W. Eliceiri et al., Structural changes in mixed Col I/Col V collagen gels probed by SHG microscopy: implications for probing stromal alterations in human breast cancer, Biomed. Opt. Express, vol.2, pp.2307-2316, 2011.

D. Akilbekova and K. M. Bratlie, Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging, PloS One, vol.10, p.130386, 2015.

S. Ranjit, A. Dvornikov, M. Stakic, S. Hong, M. Levi et al., Imaging Fibrosis and Separating Collagens using Second Harmonic Generation and Phasor Approach to Fluorescence Lifetime Imaging, Sci. Rep, vol.5, p.13378, 2015.

K. R. Campbell and P. J. Campagnola, Wavelength-Dependent Second Harmonic Generation Circular Dichroism for Differentiation of Col I and Col III Isoforms in Stromal Models of Ovarian Cancer Based on Intrinsic Chirality Differences, J. Phys. Chem. B, vol.121, pp.1749-1757, 2017.

K. König, K. Schenke-layland, I. Riemann, and U. A. Stock, Multiphoton autofluorescence imaging of intratissue elastic fibers, Biomaterials, vol.26, pp.495-500, 2005.

K. Tilbury, J. Hocker, B. L. Wen, N. Sandbo, V. Singh et al., Second harmonic generation microscopy analysis of extracellular matrix changes in human idiopathic pulmonary fibrosis, J. Biomed. Opt, vol.19, p.86014, 2014.

H. S. Qian, S. M. Weldon, D. Matera, C. Lee, H. Yang et al., Quantification and Comparison of Anti-Fibrotic Therapies by Polarized SRM and SHG-Based Morphometry in Rat UUO Model, PloS One, vol.11, p.156734, 2016.

T. Abraham, J. Carthy, and B. Mcmanus, Collagen matrix remodeling in 3-dimensional cellular space resolved using second harmonic generation and multiphoton excitation fluorescence, J. Struct. Biol, vol.169, pp.36-44, 2010.

K. Burke, M. Smid, R. P. Dawes, M. A. Timmermans, P. Salzman et al., Using second harmonic generation to predict patient outcome in solid tumors, BMC Cancer, vol.15, p.929, 2015.

C. J. Hanley, F. Noble, M. Ward, M. Bullock, C. Drifka et al., A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers, Oncotarget, vol.7, pp.6159-6174, 2016.

L. B. Mostaço-guidolin, A. C. Ko, F. Wang, B. Xiang, M. Hewko et al., Collagen morphology and texture analysis: from statistics to classification, Sci. Rep, vol.3, p.2190, 2013.

S. G. Stanciu, S. Xu, Q. Peng, J. Yan, G. A. Stanciu et al., Experimenting liver fibrosis diagnostic by two photon excitation microscopy and Bag-of-Features image classification, Sci. Rep, vol.4, p.4636, 2014.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P. Tharaux et al., Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation, Sci. Rep, vol.6, p.29863, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01421632

D. Sevrain, M. Dubreuil, G. E. Dolman, A. Zaitoun, W. Irving et al., Evaluation of area-based collagen scoring by nonlinear microscopy in chronic hepatitis C-induced liver fibrosis, Biomed. Opt. Express, vol.6, pp.1209-1218, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134629

T. Guilbert, C. Odin, Y. L. Grand, L. Gailhouste, B. Turlin et al., A robust collagen scoring method for human liver fibrosis by second harmonic microscopy, Opt. Express, vol.18, pp.25794-25807, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00684532

C. Odin, Y. L. Grand, A. Renault, L. Gailhouste, and G. Baffet, Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy, J. Microsc, vol.229, pp.32-38, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00672827

D. Rouède, J. Bellanger, J. Bomo, G. Baffet, and F. Tiaho, Linear least square (LLS) method for pixel-resolution analysis of polarization dependent SHG images of collagen fibrils, Opt. Express, vol.23, pp.13309-13319, 2015.

S. Xu, Y. Wang, D. C. Tai, S. Wang, C. L. Cheng et al., qFibrosis: a fully-quantitative innovative method incorporating histological features to facilitate accurate fibrosis scoring in animal model and chronic hepatitis B patients, J. Hepatol, vol.61, pp.260-269, 2014.

S. Xu, C. H. Kang, X. Gou, Q. Peng, J. Yan et al., Quantification of liver fibrosis via second harmonic imaging of the Glisson's capsule from liver surface, J. Biophotonics, vol.9, pp.351-363, 2016.

A. Pena, A. Fabre, D. Débarre, J. Marchal-somme, B. Crestani et al., Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy, Microsc. Res. Tech, vol.70, pp.162-170, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00144476

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas et al., Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing, Sci. Rep, vol.7, p.3792, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01617700

T. Wang, T. Chen, X. Teng, K. Liang, and C. Yeh, Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy, Sci. Rep, vol.5, p.12962, 2015.

J. Pirhonen, J. Arola, S. Sädevirta, P. Luukkonen, S. Karppinen et al., Continuous Grading of Early Fibrosis in NAFLD Using Label-Free Imaging: A Proof-of-Concept Study, vol.11, p.147804, 2016.

S. Yamamoto, Y. Oshima, T. Saitou, T. Watanabe, T. Miyake et al., Quantitative imaging of fibrotic and morphological changes in liver of non-alcoholic steatohepatitis (NASH) model mice by second harmonic generation (SHG) and auto-fluorescence (AF) imaging using twophoton excitation microscopy (TPEM), Biochem. Biophys. Rep, vol.8, pp.277-283, 2016.

J. S. Bredfeldt, Y. Liu, C. A. Pehlke, M. W. Conklin, J. M. Szulczewski et al., Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer, J. Biomed. Opt, vol.19, p.16007, 2014.

F. Tiaho, G. Recher, and D. Rouède, Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy, Opt. Express, vol.15, pp.12286-12295, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00905326

D. Rouède, E. Schaub, J. Bellanger, F. Ezan, J. Scimeca et al., Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy, Sci. Rep, vol.7, p.12197, 2017.

S. Brasselet, D. Aït-belkacem, A. Gasecka, F. Munhoz, S. Brustlein et al., Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging, Opt. Express, vol.18, pp.14859-14870, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00519609

I. Gusachenko, G. Latour, and M. Schanne-klein, Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues, Opt. Express, vol.18, pp.19339-19352, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00807877

O. Nadiarnykh and P. J. Campagnola, Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing, Opt. Express, vol.17, pp.5794-5806, 2009.

K. Reiser, P. Stoller, and A. Knoesen, Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry, Sci. Rep, vol.7, p.2642, 2017.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, Polarization-modulated second harmonic generation in collagen, Biophys. J, vol.82, pp.75673-75680, 2002.

S. Bancelin, C. Aimé, I. Gusachenko, L. Kowalczuk, G. Latour et al.,

. Schanne-klein, Determination of collagen fibril size via absolute measurements of second-harmonic generation signals, Nat. Commun, vol.5, p.4920, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01079871

J. Lin, S. Pan, W. Zheng, and Z. Huang, Polarization-resolved second-harmonic generation imaging for liver fibrosis assessment without labeling, Appl. Phys. Lett, p.173701, 2013.

F. Song, K. Wisithphrom, J. Zhou, and L. J. Windsor, Matrix metalloproteinase dependent and independent collagen degradation, Front. Biosci. J. Virtual Libr, vol.11, pp.3100-3120, 2006.

S. S. Apte and W. C. Parks, Metalloproteinases: A parade of functions in matrix biology and an outlook for the future, Matrix Biol. J. Int. Soc. Matrix Biol, pp.1-6, 2015.

M. Giannandrea and W. C. Parks, Diverse functions of matrix metalloproteinases during fibrosis, Dis. Model. Mech, vol.7, pp.193-203, 2014.

J. L. Lauer-fields, D. Juska, and G. B. Fields, Matrix metalloproteinases and collagen catabolism, Biopolymers, vol.66, pp.19-32, 2002.

V. Arpino, M. Brock, and S. E. Gill, The role of TIMPs in regulation of extracellular matrix proteolysis, Matrix Biol. J. Int. Soc. Matrix Biol, pp.247-254, 2015.

K. Reiss and P. Saftig, The "a disintegrin and metalloprotease" (ADAM) family of sheddases: physiological and cellular functions, Semin. Cell Dev. Biol, vol.20, pp.126-137, 2009.

A. Mazzocca, R. Coppari, R. Franco, J. Cho, T. A. Libermann et al., A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions, Cancer Res, vol.65, pp.4728-4738, 2005.

R. Roychaudhuri, A. H. Hergrueter, F. Polverino, M. E. Laucho-contreras, K. Gupta et al., ADAM9 is a novel product of polymorphonuclear neutrophils: regulation of expression and contributions to extracellular matrix protein degradation during acute lung injury, J. Immunol. Baltim. Md, vol.193, pp.2469-2482, 1950.

L. Schwettmann and H. Tschesche, Cloning and expression in Pichia pastoris of metalloprotease domain of ADAM 9 catalytically active against fibronectin, Protein Expr. Purif, vol.21, pp.65-70, 2001.

M. I. Millichip, D. J. Dallas, E. Wu, S. Dale, and N. Mckie, The metallo-disintegrin ADAM10 (MADM) from bovine kidney has type IV collagenase activity in vitro, Biochem. Biophys. Res. Commun, vol.245, pp.594-598, 1998.

R. Roy, U. M. Wewer, D. Zurakowski, S. E. Pories, and M. A. Moses, ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage, J. Biol. Chem, vol.279, 2004.

J. Martin, L. V. Eynstone, M. Davies, J. D. Williams, and R. Steadman, The role of ADAM 15 in glomerular mesangial cell migration, J. Biol. Chem, vol.277, pp.33683-33689, 2002.

S. Porter, I. M. Clark, L. Kevorkian, and D. R. Edwards, The ADAMTS metalloproteinases, Biochem. J, vol.386, pp.15-27, 2005.

S. S. Apte, A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms, J. Biol. Chem, vol.284, pp.31493-31497, 2009.

R. Kelwick, I. Desanlis, G. N. Wheeler, and D. R. Edwards, The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family, Genome Biol, vol.16, p.113, 2015.

T. Lind, M. A. Birch, and N. Mckie, Purification of an insect derived recombinant human ADAMTS-1 reveals novel gelatin (type I collagen) degrading activities, Mol. Cell. Biochem, vol.281, pp.95-102, 2006.

T. N. Bukong, S. B. Maurice, B. Chahal, D. F. Schaeffer, and P. J. Winwood, Versican: a novel modulator of hepatic fibrosis, Lab. Investig. J. Tech. Methods Pathol, vol.96, pp.361-374, 2016.

J. Velasco, J. Li, L. Dipietro, M. A. Stepp, J. D. Sandy et al., Adamts5 deletion blocks murine dermal repair through CD44-mediated aggrecan accumulation and modulation of transforming growth factor ?1 (TGF?1) signaling, J. Biol. Chem, vol.286, pp.26016-26027, 2011.

H. L. Pabic, D. Bonnier, U. M. Wewer, A. Coutand, O. Musso et al., ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling, Hepatol. Baltim. Md, vol.37, pp.1056-1066, 2003.

H. L. Pabic, A. Helgoualc'h, A. Coutant, U. M. Wewer, G. Baffet et al., Involvement of the serine/threonine p70S6 kinase in TGF-beta1-induced ADAM12 expression in cultured human hepatic stellate cells, J. Hepatol, vol.43, pp.1038-1044, 2005.

A. Atfi, E. Dumont, F. Colland, D. Bonnier, A. et al., The disintegrin and metalloproteinase ADAM12 contributes to TGF-beta signaling through interaction with the type II receptor, J. Cell Biol, vol.178, pp.201-208, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00697048

J. Gruel, M. Leborgne, N. Lemeur, and N. Théret, In silico investigation of ADAM12 effect on TGF-beta receptors trafficking, BMC Res. Notes, vol.2, p.193, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00663589

K. Bourd-boittin, H. L. Pabic, D. Bonnier, A. Helgoualc'h, and N. Théret, RACK1, a new ADAM12 interacting protein. Contribution to liver fibrogenesis, J. Biol. Chem, vol.283, pp.26000-26009, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00677792

A. Leyme, K. Bourd-boittin, D. Bonnier, A. Falconer, Y. Arlot-bonnemains et al., Identification of ILK as a new partner of the ADAM12 disintegrin and metalloprotease in cell adhesion and survival, Mol. Biol. Cell, vol.23, pp.3461-3472, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00717429

K. Bourd-boittin, D. Bonnier, A. Leyme, B. Mari, P. Tuffery et al., Protease profiling of liver fibrosis reveals the ADAM metallopeptidase with thrombospondin type 1 motif, 1 as a central activator of transforming growth factor beta, Hepatol. Baltim. Md, vol.54, pp.2173-2184, 2011.

L. Q. Hong-brown, C. R. Brown, M. Navaratnarajah, and C. H. Lang, Adamts1 mediates ethanol-induced alterations in collagen and elastin via a FoxO1-sestrin3-AMPK signaling cascade in myocytes, J. Cell. Biochem, vol.116, pp.91-101, 2015.

L. Zilberberg, V. Todorovic, B. Dabovic, M. Horiguchi, T. Couroussé et al., Specificity of latent TGF-? binding protein (LTBP) incorporation into matrix: role of fibrillins and fibronectin, J. Cell. Physiol, vol.227, pp.3828-3836, 2012.

C. L. Goff, F. Morice-picard, N. Dagoneau, L. W. Wang, C. Perrot et al., ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation, vol.40, pp.1119-1123, 2008.

D. Hubmacher and S. S. Apte, ADAMTS proteins as modulators of microfibril formation and function, Matrix Biol. J. Int. Soc. Matrix Biol, vol.47, pp.34-43, 2015.

C. L. Goff and V. Cormier-daire, The ADAMTS(L) family and human genetic disorders, Hum. Mol. Genet, vol.20, pp.163-167, 2011.

M. Bekhouche and A. Colige, The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology, Matrix Biol. J. Int. Soc. Matrix Biol, pp.46-53, 2015.

S. Vadon-le-goff, D. J. Hulmes, and C. Moali, BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling, Matrix Biol. J. Int. Soc. Matrix Biol, pp.14-23, 2015.

F. Kesteloot, A. Desmoulière, I. Leclercq, M. Thiry, J. E. Arrese et al., ADAM metallopeptidase with thrombospondin type 1 motif 2 inactivation reduces the extent and stability of carbon tetrachloride-induced hepatic fibrosis in mice, Hepatol. Baltim. Md, vol.46, pp.1620-1631, 2007.

M. Bekhouche, C. Leduc, L. Dupont, L. Janssen, F. Delolme et al.,

D. J. Nusgens, C. Hulmes, A. Moali, and . Colige, Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-? signaling as primary targets, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.30, pp.1741-1756, 2016.

F. Delolme, C. Anastasi, L. B. Alcaraz, V. Mendoza, S. Vadon-le-goff et al., Proteolytic control of TGF-? co-receptor activity by BMP-1/tolloid-like proteases revealed by quantitative iTRAQ proteomics, Cell. Mol. Life Sci. CMLS, vol.72, pp.1009-1027, 2015.

M. Fonovi? and B. Turk, Cysteine cathepsins and extracellular matrix degradation, Biochim. Biophys. Acta, vol.1840, 2014.

G. Lalmanach, A. Saidi, S. Marchand-adam, F. Lecaille, and M. Kasabova, Cysteine cathepsins and cystatins: from ancillary tasks to prominent status in lung diseases, Biol. Chem, vol.396, pp.111-130, 2015.

G. B. Fields, Interstitial collagen catabolism, J. Biol. Chem, vol.288, pp.8785-8793, 2013.

A. H. Aguda, P. Panwar, X. Du, N. T. Nguyen, G. D. Brayer et al., Structural basis of collagen fiber degradation by cathepsin K, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.17474-17479, 2014.

Y. Tatara, S. Suto, and K. Itoh, Novel roles of glycosaminoglycans in the degradation of type I collagen by cathepsin K, Glycobiology, vol.27, pp.1089-1098, 2017.

D. Zhang, N. Leung, E. Weber, P. Saftig, and D. Brömme, The effect of cathepsin K deficiency on airway development and TGF-?1 degradation, Respir. Res, vol.12, p.72, 2011.

J. Christensen and V. P. Shastri, Matrix-metalloproteinase-9 is cleaved and activated by cathepsin K, BMC Res. Notes, vol.8, p.322, 2015.

A. Canbay, M. E. Guicciardi, H. Higuchi, A. Feldstein, S. F. Bronk et al., Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis, J. Clin. Invest, vol.112, pp.152-159, 2003.

A. Moles, N. Tarrats, J. C. Fernández-checa, and M. Marí, Cathepsins B and D drive hepatic stellate cell proliferation and promote their fibrogenic potential, Hepatol. Baltim. Md, vol.49, pp.1297-1307, 2009.

M. Kasabova, A. Joulin-giet, F. Lecaille, B. F. Gilmore, S. Marchand-adam et al., Regulation of TGF-?1-driven differentiation of human lung fibroblasts: emerging roles of cathepsin B and cystatin C, J. Biol. Chem, vol.289, pp.16239-16251, 2014.

M. Kruse, C. Becker, D. Lottaz, D. Köhler, I. Yiallouros et al., Human meprin alpha and beta homo-oligomers: cleavage of basement membrane proteins and sensitivity to metalloprotease inhibitors, Biochem. J, vol.378, pp.383-389, 2004.

C. Broder, P. Arnold, S. Vadon-le-goff, M. A. Konerding, K. Bahr et al., Metalloproteases meprin ? and meprin ? are C-and N-procollagen proteinases important for collagen assembly and tensile strength, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.14219-14224, 2013.

D. Kronenberg, B. C. Bruns, C. Moali, S. Vadon-le-goff, E. E. Sterchi et al., new players in extracellular matrix assembly?, J. Invest. Dermatol, vol.130, pp.2727-2735, 2010.

J. Prox, P. Arnold, and C. Becker-pauly, Meprin ? and meprin ?: Procollagen proteinases in health and disease, Matrix Biol. J. Int. Soc. Matrix Biol, pp.7-13, 2015.

P. Flevaris and D. Vaughan, The Role of Plasminogen Activator Inhibitor Type-1 in Fibrosis, Semin. Thromb. Hemost, vol.43, pp.169-177, 2017.

D. H. Madsen, H. J. Jürgensen, S. Ingvarsen, M. C. Melander, B. Vainer et al., Endocytic collagen degradation: a novel mechanism involved in protection against liver fibrosis, J. Pathol, vol.227, pp.94-105, 2012.

S. Ricard-blum and R. Salza, Matricryptins and matrikines: biologically active fragments of the extracellular matrix, Exp. Dermatol, vol.23, pp.457-463, 2014.

S. Ricard-blum and S. Vallet, Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs, Matrix Biol. J. Int. Soc. Matrix Biol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02109885

S. Ricard-blum and S. D. Vallet, Matricryptins Network with Matricellular Receptors at the Surface of Endothelial and Tumor Cells, Front. Pharmacol, vol.7, p.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01406693

S. Ricard-blum and S. D. Vallet, Proteases decode the extracellular matrix cryptome, Biochimie, vol.122, pp.300-313, 2016.

T. Nishimoto, L. Mlakar, T. Takihara, and C. Feghali-bostwick, An endostatin-derived peptide orally exerts anti-fibrotic activity in a murine pulmonary fibrosis model, Int. Immunopharmacol, vol.28, pp.1102-1105, 2015.

Y. Wan, G. Tian, H. Guo, Y. Kang, Z. Yao et al., Endostatin, an angiogenesis inhibitor, ameliorates bleomycin-induced pulmonary fibrosis in rats, Respir. Res, vol.14, p.56, 2013.

Y. Yamaguchi, T. Takihara, R. A. Chambers, K. L. Veraldi, A. T. Larregina et al., A peptide derived from endostatin ameliorates organ fibrosis, Sci. Transl. Med, vol.4, pp.136-71, 2012.

J. Chen, D. Liu, G. Yang, L. Kong, Y. Du et al., Endostar, a novel human recombinant endostatin, attenuates liver fibrosis in CCl4-induced mice, Exp. Biol. Med. Maywood NJ, vol.239, pp.998-1006, 2014.

Q. You, L. Kong, F. Li, H. Wang, D. Liu et al., Human recombinant endostatin Endostar attenuates hepatic sinusoidal endothelial cell capillarization in CCl4-induced fibrosis in mice, Mol. Med. Rep, vol.12, pp.5594-5600, 2015.

Y. Li and H. Ren, Endostatin inhibits fibrosis by modulating the PDGFR/ERK signal pathway: an in vitro study, J. Zhejiang Univ. Sci. B, vol.18, pp.994-1001, 2017.

A. G. Richter, S. Mckeown, S. Rathinam, L. Harper, P. Rajesh et al., Soluble endostatin is a novel inhibitor of epithelial repair in idiopathic pulmonary fibrosis, Thorax, vol.64, pp.156-161, 2009.

C. H. Lin, J. Chen, B. Ziman, S. Marshall, J. Maizel et al., Endostatin and kidney fibrosis in aging: a case for antagonistic pleiotropy?, Am. J. Physiol. Heart Circ. Physiol, vol.306, pp.1692-1699, 2014.

C. H. Lin, J. Chen, Z. Zhang, G. V. Johnson, A. J. Cooper et al., Endostatin and transglutaminase 2 are involved in fibrosis of the aging kidney, Kidney Int, vol.89, pp.1281-1292, 2016.

S. Reiseter, Ø. Molberg, R. Gunnarsson, M. B. Lund, T. M. Aalokken et al., Associations between circulating endostatin levels and vascular organ damage in systemic sclerosis and mixed connective tissue disease: an observational study, Arthritis Res. Ther, vol.17, p.231, 2015.

M. Sumi, H. Satoh, K. Kagohashi, H. Ishikawa, and K. Sekizawa, Increased serum levels of endostatin in patients with idiopathic pulmonary fibrosis, J. Clin. Lab. Anal, vol.19, pp.146-149, 2005.

T. Colakoglu, M. Keskek, S. Colakoglu, B. Can, and I. Sayek, Serum endostatin levels and regenerative capacities of normal and cirrhotic livers following partial hepatectomy in mice: the response to different resection sizes, J. Surg. Res, vol.143, pp.337-343, 2007.

J. Park and P. E. Scherer, Endotrophin -a novel factor linking obesity with aggressive tumor growth, Oncotarget, issue.3, pp.1487-1488, 2012.

K. Sun, J. Park, O. T. Gupta, W. L. Holland, P. Auerbach et al., Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction, Nat. Commun, vol.5, p.3485, 2014.

A. Fenton, M. D. Jesky, C. J. Ferro, J. Sørensen, M. A. Karsdal et al., Serum endotrophin, a type VI collagen cleavage product, is associated with increased mortality in chronic kidney disease, PloS One, vol.12, p.175200, 2017.

S. Akthar, D. F. Patel, R. C. Beale, T. Peiró, X. Xu et al., Matrikines are key regulators in modulating the amplitude of lung inflammation in acute pulmonary infection, Nat. Commun, vol.6, p.8423, 2015.

N. M. Weathington, A. H. Van-houwelingen, B. D. Noerager, P. L. Jackson, A. D. Kraneveld et al., A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation, Nat. Med, vol.12, pp.317-323, 2006.

A. Uchinaka, Y. Hamada, S. Mori, S. Miyagawa, A. Saito et al., SVVYGLR motif of the thrombin-cleaved N-terminal osteopontin fragment enhances the synthesis of collagen type III in myocardial fibrosis, Mol. Cell. Biochem, vol.408, pp.191-203, 2015.

F. Genovese and M. A. , Protein degradation fragments as diagnostic and prognostic biomarkers of connective tissue diseases: understanding the extracellular matrix message and implication for current and future serological biomarkers, Expert Rev. Proteomics, vol.13, pp.213-225, 2016.

M. A. Karsdal, H. Krarup, J. M. Sand, P. B. Christensen, J. Gerstoft et al., Review article: the efficacy of biomarkers in chronic fibroproliferative diseases -early diagnosis and prognosis, with liver fibrosis as an exemplar, Aliment. Pharmacol. Ther, vol.40, pp.233-249, 2014.

P. J. Lijnen, T. Maharani, N. Finahari, and J. S. Prihadi, Serum collagen markers and heart failure, Cardiovasc. Hematol. Disord. Drug Targets, vol.12, pp.51-55, 2012.

M. A. Karsdal, F. Genovese, E. A. Madsen, T. Manon-jensen, and D. Schuppan, Collagen and tissue turnover as a function of age: Implications for fibrosis, J. Hepatol, vol.64, pp.103-109, 2016.

N. U. Hansen, M. A. Karsdal, S. Brockbank, S. Cruwys, S. Rønnow et al., Tissue turnover of collagen type I, III and elastin is elevated in the PCLS model of IPF and can be restored back to vehicle levels using a phosphodiesterase inhibitor, Respir. Res, vol.17, p.76, 2016.

D. Leeming, Y. He, S. Veidal, Q. Nguyen, D. Larsen et al., A novel marker for assessment of liver matrix remodeling: an enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M), Biomark. Biochem. Indic. Expo. Response Susceptibility Chem, vol.16, pp.616-628, 2011.

M. J. Nielsen, K. Kazankov, D. J. Leeming, M. A. Karsdal, A. Krag et al., Markers of Collagen Remodeling Detect Clinically Significant Fibrosis in Chronic Hepatitis C Patients, PloS One, vol.10, p.137302, 2015.

S. Ricard-blum, P. Chossegros, S. Guerret, C. Trepo, J. A. Grimaud et al., The carboxy-terminal cross-linked telopeptide of type I collagen (ICTP) is a potential serum marker of ongoing liver fibrosis, Clin. Chim. Acta Int. J. Clin. Chem, vol.248, pp.187-195, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00313959

M. J. Nielsen, A. F. Nedergaard, S. Sun, S. S. Veidal, L. Larsen et al., The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters, Am. J. Transl. Res, vol.5, pp.303-315, 2013.

M. A. Karsdal, K. Henriksen, M. J. Nielsen, I. Byrjalsen, D. J. Leeming et al., Fibrogenesis assessed by serological type III collagen formation identifies patients with progressive liver fibrosis and responders to a potential antifibrotic therapy, Am. J. Physiol. Gastrointest. Liver Physiol, vol.311, 2016.

C. Jansen, D. J. Leeming, M. Mandorfer, I. Byrjalsen, R. Schierwagen et al., PRO-C3-levels in patients with HIV/HCVCo-infection reflect fibrosis stage and degree of portal hypertension, PloS One, vol.9, p.108544, 2014.

N. Barascuk, S. S. Veidal, L. Larsen, D. V. Larsen, M. R. Larsen et al., A novel assay for extracellular matrix remodeling associated with liver fibrosis: An enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen, Clin. Biochem, vol.43, pp.899-904, 2010.

T. Segovia-silvestre, V. Reichenbach, G. Fernández-varo, E. Vassiliadis, N. Barascuk et al., Circulating CO3-610, a degradation product of collagen III, closely reflects liver collagen and portal pressure in rats with fibrosis, Fibrogenesis Tissue Repair, vol.4, p.19, 2011.

M. J. Nielsen, S. S. Veidal, M. A. Karsdal, D. J. Ørsnes-leeming, B. Vainer et al., Plasma Pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with chronic hepatitis C, Liver Int. Off. J. Int. Assoc. Study Liver, vol.35, pp.429-437, 2015.

D. G. Rasmussen, J. M. Sand, M. A. Karsdal, and F. Genovese, Development of a Novel Enzyme-Linked Immunosorbent Assay Targeting a Neo-Epitope Generated by Cathepsin-Mediated Turnover of Type III Collagen and Its Application in Chronic Obstructive Pulmonary Disease, PloS One, vol.12, p.170023, 2017.

D. J. Leeming, J. M. Sand, M. J. Nielsen, F. Genovese, F. J. Martinez et al., Serological investigation of the collagen degradation profile of patients with chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis, Biomark. Insights, vol.7, pp.119-126, 2012.

S. S. Veidal, M. A. Karsdal, A. Nawrocki, M. R. Larsen, Y. Dai et al., Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis, Fibrogenesis Tissue Repair, vol.4, p.22, 2011.

S. S. Veidal, M. A. Karsdal, E. Vassiliadis, A. Nawrocki, M. R. Larsen et al., MMP mediated degradation of type VI collagen is highly associated with liver fibrosis--identification and validation of a novel biochemical marker assay, PloS One, vol.6, p.24753, 2011.

N. U. Hansen, N. Willumsen, J. M. Sand, L. Larsen, M. A. Karsdal et al., Type VIII collagen is elevated in diseases associated with angiogenesis and vascular remodeling, Clin. Biochem, vol.49, pp.903-908, 2016.

M. J. Nielsen, M. A. Karsdal, K. Kazankov, H. Grønbaek, A. Krag et al., Fibrosis is not just fibrosis -basement membrane modelling and collagen metabolism differs between hepatitis B-and C-induced injury, Aliment. Pharmacol. Ther, vol.44, pp.1242-1252, 2016.

R. Schierwagen, D. J. Leeming, S. Klein, M. Granzow, M. J. Nielsen et al., Serum markers of the extracellular matrix remodeling reflect antifibrotic therapy in bile-duct ligated rats, Front. Physiol, vol.4, p.195, 2013.

S. Tanwar, P. M. Trembling, B. J. Hogan, A. Srivastava, J. Parkes et al., Noninvasive markers of liver fibrosis: on-treatment changes of serum markers predict the outcome of antifibrotic therapy, Eur. J. Gastroenterol. Hepatol, vol.29, pp.289-296, 2017.

C. Moali, B. Font, F. Ruggiero, D. Eichenberger, P. Rousselle et al., Substrate-specific modulation of a multisubstrate proteinase. C-terminal processing of fibrillar procollagens is the only BMP-1-dependent activity to be enhanced by PCPE-1, J. Biol. Chem, vol.280, pp.24188-94, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00014264

E. Hassoun, M. Safrin, H. Ziv, S. Pri-chen, and E. Kessler, Procollagen C-Proteinase Enhancer 1 (PCPE-1) as a Plasma Marker of Muscle and Liver Fibrosis in Mice, PloS One, vol.11, p.159606, 2016.

M. Papasotiriou, F. Genovese, B. M. Klinkhammer, U. Kunter, S. H. Nielsen et al., Serum and urine markers of collagen degradation reflect renal fibrosis in experimental kidney diseases, Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. -Eur. Ren. Assoc, vol.30, pp.1112-1121, 2015.

D. Fritz, L. Cai, L. Stefanovic, and B. Stefanovic, Progress towards discovery of antifibrotic drugs targeting synthesis of type I collagen, Curr. Med. Chem, vol.18, pp.3410-3416, 2011.

B. Stefanovic and L. Stefanovic, Screening for antifibrotic compounds using high throughput system based on fluorescence polarization, Biology, vol.3, pp.281-294, 2014.

M. M. Mia and R. A. Bank, The pro-fibrotic properties of transforming growth factor on human fibroblasts are counteracted by caffeic acid by inhibiting myofibroblast formation and collagen synthesis, Cell Tissue Res, vol.363, pp.775-789, 2016.

W. Mckleroy, T. Lee, and K. Atabai, Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.304, pp.709-721, 2013.

L. Goffin, S. Fagagnini, A. Vicari, C. Mamie, H. Melhem et al., Anti-MMP-9 Antibody: A Promising Therapeutic Strategy for Treatment of Inflammatory Bowel Disease Complications with Fibrosis, vol.22, pp.2041-2057, 2016.

H. J. Chung, A. Steplewski, K. Y. Chung, J. Uitto, and A. Fertala, Collagen fibril formation. A new target to limit fibrosis, J. Biol. Chem, vol.283, pp.25879-25886, 2008.

A. Steplewski and A. Fertala, Inhibition of collagen fibril formation, Fibrogenesis Tissue Repair, vol.5, p.29, 2012.

J. Fertala, J. Kostas, C. Hou, A. Steplewski, P. Beredjiklian et al., Testing the anti-fibrotic potential of the single-chain Fv antibody against the ?2 C-terminal telopeptide of collagen I, Connect. Tissue Res, vol.55, pp.115-122, 2014.

N. M. Coelho and C. A. Mcculloch, Contribution of collagen adhesion receptors to tissue fibrosis, Cell Tissue Res, vol.365, pp.521-538, 2016.