J. E. Cleaver, Nucleosome structure controls rates of excision repair in dna of human cells, Nature, vol.270, pp.451-453, 1977.

R. Murr, J. I. Loizou, Y. Yang, C. Cuenin, H. Li et al., Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks, Nat. Cell Biol, vol.8, pp.91-99, 2006.

A. A. Ali, G. Timinszky, R. Arribas-bosacoma, M. Kozlowski, P. O. Hassa et al., The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks, Nat. Struct. Mol. Biol, vol.19, pp.685-692, 2012.

D. D'amours, S. Desnoyers, I. Silva, and G. G. Poirier, Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions, Biochem. J, vol.342, pp.249-268, 1999.

H. Sellou, T. Lebeaupin, C. Chapuis, R. Smith, A. Hegele et al., The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage, Mol. Biol. Cell, vol.27, pp.3791-3799, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01382426

G. Smeenk, W. W. Wiegant, J. A. Marteijn, M. S. Luijsterburg, N. Sroczynski et al., Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling, J. Cell Sci, vol.126, pp.889-903, 2013.

H. Strickfaden, D. Mcdonald, M. J. Kruhlak, J. F. Haince, J. P. Th'ng et al., Poly(ADP-ribosyl)ation-dependent transient chromatin decondensation and histone displacement following laser microirradiation, J. Biol. Chem, vol.291, pp.1789-1802, 2016.

G. G. Poirier, G. De-murcia, J. Jongstra-bilen, C. Niedergang, and P. Mandel, Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure, Proc. Natl. Acad. Sci. U.S.A, vol.79, pp.3423-3427, 1982.

A. J. Gottschalk, G. Timinszky, S. E. Kong, J. Jin, Y. Cai et al., Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.13770-13774, 2009.

D. Ahel, Z. Horejsi, N. Wiechens, S. E. Polo, E. Garcia-wilson et al., Poly(ADP-ribose)-Dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1, Science, vol.325, pp.1240-1243, 2009.

M. J. Kruhlak, A. Celeste, G. Dellaire, O. Fernandez-capetillo, W. G. Muller et al., Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks, J. Cell Biol, vol.172, pp.823-834, 2006.

M. S. Luijsterburg, I. De-krijger, W. W. Wiegant, R. G. Shah, G. Smeenk et al., PARP1 links CHD2 mediated chromatin expansion and H3.3 deposition to DNA repair by non-homologous end-joining, Mol. Cell, vol.61, pp.547-562, 2016.

S. E. Polo, A. Kaidi, L. Baskcomb, Y. Galanty, and S. P. Jackson, Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4, EMBO J, vol.29, pp.3130-3139, 2010.

D. M. Chou, B. Adamson, N. E. Dephoure, X. Tan, A. C. Nottke et al., A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.18475-18480, 2010.

M. S. Luijsterburg, K. Acs, L. Ackermann, W. W. Wiegant, S. Bekker-jensen et al., A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure, EMBO J, vol.31, pp.2511-2527, 2012.

G. Smeenk, W. W. Wiegant, H. Vrolijk, A. P. Solari, A. Pastink et al., The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage, J. Cell Biol, vol.190, pp.741-749, 2010.

H. P. Seelig, M. Renz, I. N. Targoff, Q. Ge, and M. B. Frank, Two forms of the major antigenic protein of the dermatomyositis-specific Mi-2 autoantigen, Arthritis Rheumatism, vol.39, pp.1769-1771, 1996.

T. Woodage, M. A. Basrai, A. D. Baxevanis, P. Hieter, and F. S. Collins, Characterization of the CHD family of proteins, Proc. Natl. Acad. Sci. U.S.A, vol.94, pp.11472-11477, 1997.

Y. Zhang, G. Leroy, H. P. Seelig, W. S. Lane, and D. Reinberg, The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities, Cell, vol.95, pp.279-289, 1998.

Y. Xue, J. Wong, G. T. Moreno, M. K. Young, J. Cote et al., NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities, Mol. Cell, vol.2, pp.851-861, 1998.

J. K. Tong, C. A. Hassig, G. R. Schnitzler, R. E. Kingston, and S. L. Schreiber, Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex, Nature, vol.395, pp.917-921, 1998.

H. Hoffmeister, A. Fuchs, F. Erdel, S. Pinz, R. Grobner-ferreira et al., CHD3 and CHD4 form distinct NuRD complexes with different yet overlapping functionality, Nucleic Acids Res, vol.45, pp.10534-10554, 2017.

Y. Cai, E. J. Geutjes, K. De-lint, P. Roepman, L. Bruurs et al., The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes, Oncogene, vol.33, pp.2157-2168, 2014.

S. A. Denslow and P. A. Wade, The human Mi-2/NuRD complex and gene regulation, Oncogene, vol.26, pp.5433-5438, 2007.

W. J. Qi, H. Y. Chen, T. Xiao, R. X. Wang, T. Li et al., Acetyltransferase p300 collaborates with chromodomain helicase DNA-binding protein 4 (CHD4) to facilitate DNA double-strand break repair, Mutagenesis, vol.31, pp.193-203, 2016.

M. R. Pan, H. J. Hsieh, H. Dai, W. C. Hung, K. Y. Li et al., Chromodomain Helicase DNA-binding Protein 4 (CHD4) regulates homologous recombination DNA repair, and its deficiency sensitizes cells to Poly(ADP-ribose) polymerase (PARP) inhibitor treatment, J. Biol. Chem, vol.287, pp.6764-6772, 2012.

A. P. Silva, D. P. Ryan, Y. Galanty, J. K. Low, M. Vandevenne et al., The N-terminal region of chromodomain helicase DNA-binding Protein 4 (CHD4) is essential for activity and contains a high mobility group (HMG) Box-like-domain that can bind Poly(ADP-ribose), J. Biol. Chem, vol.291, pp.924-938, 2016.

M. Murawska, M. Hassler, R. Renkawitz-pohl, A. Ladurner, and A. Brehm, Stress-induced PARP activation mediates recruitment of Drosophila Mi-2 to promote heat shock gene expression, PLoS Genet, vol.7, p.1002206, 2011.

G. Timinszky, S. Till, P. O. Hassa, M. Hothorn, G. Kustatscher et al., A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation, Nat. Struct. Mol. Biol, vol.16, pp.923-929, 2009.

J. Beaudouin, F. Mora-bermúdez, T. Klee, N. Daigle, and J. Ellenberg, Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins, Biophys. J, vol.90, pp.1878-1894, 2006.

D. M. Shcherbakova and V. V. Verkhusha, Near-infrared fluorescent proteins for multicolor in vivo imaging, Nat. Methods, vol.10, pp.751-754, 2013.

M. H. Kubala, O. Kovtun, K. Alexandrov, and B. M. Collins, Structural and thermodynamic analysis of the GFP:GFP-nanobody complex, Protein Sci, vol.19, pp.2389-2401, 2010.

A. Bowman, L. Lercher, H. R. Singh, D. Zinne, G. Timinszky et al., The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats, Nucleic Acids Res, vol.44, pp.3105-3117, 2016.

A. Czarna, A. Berndt, H. R. Singh, A. Grudziecki, A. G. Ladurner et al., Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function, Cell, vol.153, pp.1394-1405, 2013.

A. Walter, C. Chapuis, S. Huet, and J. Ellenberg, Crowded chromatin is not sufficient for heterochromatin formation and not required for its maintenance, J. Struct. Biol, vol.184, pp.445-453, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00878345

M. Wachsmuth, C. Conrad, J. Bulkescher, B. Koch, R. Mahen et al., High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells, Nat. Biotechnol, vol.33, pp.384-389, 2015.

T. Lebeaupin, R. Smith, S. Huet, and G. Timinszky, Poly(ADP-Ribose)-dependent chromatin remodeling in DNA repair, Methods Mol. Biol, vol.1608, pp.165-183, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01579506

J. Murai, S. Y. Huang, B. B. Das, A. Renaud, Y. Zhang et al., Trapping of PARP1 and PARP2 by clinical PARP inhibitors, Cancer Res, vol.72, pp.5588-5599, 2012.

L. Izhar, B. Adamson, A. Ciccia, J. Lewis, L. Pontano-vaites et al., A Systematic analysis of factors localized to damaged chromatin reveals PARP-Dependent recruitment of transcription factors, Cell Rep, vol.11, pp.1486-1500, 2015.

Z. Liang, K. E. Brown, T. Carroll, B. Taylor, I. F. Vidal et al., A high-resolution map of transcriptional repression. eLife, vol.6, p.22767, 2017.

T. Lebeaupin, H. Sellou, G. Timinszky, and S. Huet, Chromatin dynamics at DNA breaks: what, how and why? Aims Biophys, vol.2, pp.458-475, 2015.

A. Tulin and A. Spradling, Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci, Science, vol.299, pp.560-562, 2003.

H. R. Singh, A. P. Nardozza, I. R. Moller, G. Knobloch, H. A. Kistemaker et al., A Poly-ADP-Ribose trigger releases the Auto-Inhibition of a chromatin remodeling oncogene, Mol. Cell, vol.68, pp.860-871, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01670193

L. C. Lehmann, G. Hewitt, S. Aibara, A. Leitner, E. Marklund et al., Mechanistic Insights into autoinhibition of the oncogenic chromatin remodeler ALC1, Mol. Cell, vol.68, pp.847-859, 2017.

H. D. Ou, S. Phan, T. J. Deerinck, A. Thor, M. H. Ellisman et al., ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells, Science, vol.357, p.25, 2017.

H. X. Zhou, G. Rivas, and A. P. Minton, Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences, Annu. Rev. Biophys, vol.37, pp.375-397, 2008.