H. Albiez, M. Cremer, C. Tiberi, L. Vecchio, L. Schermelleh et al., Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks, Chromosome Res, vol.14, pp.707-733, 2006.

D. Baddeley, V. O. Chagin, L. Schermelleh, S. Martin, A. Pombo et al., Measurement of replication structures at the nanometer scale using super-resolution light microscopy, Nucleic Acids Res, vol.38, 2010.

R. Berezney, D. D. Dubey, and J. A. Huberman, Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci, Chromosoma, vol.108, pp.471-484, 2000.

B. E. Bernstein, A. Meissner, and E. S. Lander, The mammalian epigenome, Cell, vol.128, pp.669-681, 2007.

V. O. Chagin, C. S. Casas-delucchi, M. Reinhart, L. Schermelleh, Y. Markaki et al., 4D Visualization of replication foci in mammalian cells corresponding to individual replicons, Nat. Commun, vol.7, p.11231, 2016.

P. R. Cook, The organization of replication and transcription, Science, vol.284, pp.1790-1795, 1999.

T. Cremer and C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet, vol.2, pp.292-301, 2001.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke et al., Role of chromosome territories in the functional compartmentalization of the cell nucleus, Cold Spring Harb. Symp. Quant. Biol, vol.58, pp.777-792, 1993.

J. A. Croft, J. M. Bridger, S. Boyle, P. Perry, P. Teague et al., Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol, vol.145, pp.1119-1131, 1999.

Z. Cseresnyes, U. Schwarz, and C. M. Green, Analysis of replication factories in human cells by super-resolution light microscopy, BMC Cell Biol, vol.10, p.88, 2009.

S. L. Davies, P. S. North, and I. D. Hickson, Role for BLM in replication-fork restart and suppression of origin firing after replicative stress, Nat. Struct. Mol. Biol, vol.14, pp.677-679, 2007.

R. Desprat, D. Thierry-mieg, N. Lailler, J. Lajugie, C. Schildkraut et al., Predictable dynamic program of timing of DNA replication in human cells, Genome Res, vol.19, pp.2288-2299, 2009.

J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li et al., Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, vol.485, pp.376-380, 2012.

J. R. Dixon, D. U. Gorkin, and B. Ren, Chromatin domains: The unit of chromosome organization, Mol. Cell, vol.62, pp.668-680, 2016.

M. Ester, M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, KDD-96 Proceedings, pp.226-231, 1996.

L. R. Feret, , 1931.

J. H. Gibcus and J. Dekker, The hierarchy of the 3D genome, Mol. Cell, vol.49, pp.773-782, 2013.

N. Gilbert, S. Gilchrist, and W. A. Bickmore, Chromatin organization in the mammalian nucleus, Int. Rev. Cytol, vol.242, pp.42007-42012, 2005.

D. U. Gorkin, D. Leung, and B. Ren, The 3D genome in transcriptional regulation and pluripotency, Cell Stem Cell, vol.14, pp.762-775, 2014.

A. Inoue and Y. Zhang, Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes, Nat. Struct. Mol. Biol, vol.21, pp.609-616, 2014.

D. A. Jackson and A. Pombo, Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells, J. Cell Biol, vol.140, pp.1285-1295, 1998.

J. Kind, L. Pagie, H. Ortabozkoyun, S. Boyle, S. S. De-vries et al., Single-cell dynamics of genome-nuclear lamina interactions, Cell, vol.153, pp.178-192, 2013.

A. Letourneau, F. A. Santoni, X. Bonilla, M. R. Sailani, D. Gonzalez et al., Domains of genome-wide gene expression dysregulation in Down's syndrome, Nature, vol.508, pp.345-350, 2014.

E. Lieberman-aiden, N. L. Van-berkum, L. Williams, M. Imakaev, T. Ragoczy et al., Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, vol.326, pp.289-293, 2009.

K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, and T. J. Richmond, Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature, vol.389, pp.251-260, 1997.

H. Ma, J. Samarabandu, R. S. Devdhar, R. Acharya, P. C. Cheng et al., Spatial and temporal dynamics of DNA replication sites in mammalian cells, J. Cell Biol, vol.143, pp.1415-1425, 1998.

H. Ma, J. Xu, J. Jin, Y. Huang, and Y. Liu, A simple marker-assisted 3D nanometer drift correction method for superresolution microscopy. Biophys, J, vol.112, pp.2196-2208, 2017.

A. Maya-mendoza, P. Olivares-chauvet, A. Shaw, and D. A. Jackson, S phase progression in human cells is dictated by the genetic continuity of DNA foci, PLoS Genet, vol.6, p.1000900, 2010.

X. Michalet, R. Ekong, F. Fougerousse, S. Rousseaux, C. Schurra et al., Dynamic molecular combing: Stretching the whole human genome for high-resolution studies, Science, vol.277, pp.1518-1523, 1997.

B. Moindrot, B. Audit, P. Klous, A. Baker, C. Thermes et al., 3D chromatin conformation correlates with replication timing and is conserved in resting cells, Nucleic Acids Res, vol.40, pp.9470-9481, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01557080

R. P. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald et al., Measuring image resolution in optical nanoscopy, Nat. Methods, vol.10, pp.557-562, 2013.

T. Nozaki, R. Imai, M. Tanbo, R. Nagashima, S. Tamura et al., Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging, Mol. Cell, vol.67, pp.282-293, 2017.

E. Palumbo, E. Tosoni, and A. Russo, General and specific replication profiles are detected in normal human cells by genome-wide and single-locus molecular combing, Exp. Cell Res, vol.319, pp.3081-3093, 2013.

I. Parra and B. Windle, High resolution visual mapping of stretched DNA by fluorescent hybridization, Nat. Genet, vol.5, pp.17-21, 1993.

J. E. Phillips and V. G. Corces, CTCF: Master weaver of the genome, Cell, vol.137, pp.1194-1211, 2009.

J. E. Phillips-cremins, M. E. Sauria, A. Sanyal, T. I. Gerasimova, B. R. Lajoie et al., Architectural protein subclasses shape 3D organization of genomes during lineage commitment, Cell, vol.153, pp.1281-1295, 2013.

B. D. Pope, T. Ryba, V. Dileep, F. Yue, W. Wu et al., Topologically associating domains are stable units of replication-timing regulation, Nature, vol.515, pp.402-405, 2014.

. R-core-team, R: A language and environment for computing. R Foundation for Statistical Computing, 2017.

J. C. Rivera-mulia and D. M. Gilbert, Replicating large genomes: Divide and conquer, Mol. Cell, vol.62, pp.756-765, 2016.

I. F. Sbalzarini and P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology, J. Struct. Biol, vol.151, pp.182-195, 2005.

L. Schermelleh, I. Solovei, D. Zink, and T. Cremer, Two-color fluorescence labeling of early and mid-to-late replicating chromatin in living cells, Chromosome Res, vol.9, pp.77-80, 2001.

T. Sexton, E. Yaffe, E. Kenigsberg, F. Bantignies, B. Leblanc et al., Three-dimensional folding and functional organization principles of the Drosophila genome, Cell, vol.148, pp.458-472, 2012.

A. Shaw, P. Olivares-chauvet, A. Maya-mendoza, and D. A. Jackson, S-phase progression in mammalian cells: modelling the influence of nuclear organization, Chromosome Res, vol.18, pp.163-178, 2010.

A. Sporbert, A. Gahl, R. Ankerhold, H. Leonhardt, and M. C. Cardoso, DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters, Mol. Cell, vol.10, pp.729-732, 2002.

A. Szymborska, A. Marco, N. Daigle, V. C. Cordes, J. A. Briggs et al., Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging, Science, vol.341, pp.655-658, 2013.

S. Wang, S. Wang, J. Su, B. J. Beliveau, B. Bintu et al., Spatial organization of chromatin domains and compartments in single chromosomes, Science, vol.353, pp.598-602, 2016.

A. Zidovska, D. A. Weitz, and T. J. Mitchison, Micron-scale coherence in interphase chromatin dynamics, Proc. Natl. Acad. Sci. USA, vol.110, pp.15555-15560, 2013.

, Images correspond to maximum-intensity projected z-stacks after deconvolution (50-nm pixels in x,y, 150-nm pixels in z) and overlay of ATTO 633 (green) and ATTO 565 (magenta) channels. Bars: 5 µm; (insets) 1 µm. Small boxes mark the position of the insets. Insets show zoomed-in detailed view of dual-color-labeled RDs, with yellow ellipses indicating exemplary pairs between which distances were measured and used to estimate median NND of neighboring RDs. (C) Violin plots showing the distribution and median NND between pairs of ATTO 633-and ATTO 565-dUTP-labeled RDs at increasing ?t. ?t = 0 min (n = 1,170 pairs, 11 cells, Figure 3. Dual-color confocal imaging shows neighboring domains spacing. (A) Schematics of the labeling pattern progression. A first round of co-replicative labeling with ATTO 633-dUTP yields a first set of labeled RDs (green circles