J. Dore, D. Ong, S. Varlamov, R. Egan, and M. A. Green, Progress in laser-crystallized thinfilm polycrystalline silicon solar cells: intermediate layers, light trapping, and metallization, IEEE J. Photovolt, vol.4, pp.33-39, 2014.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau et al., Polycrystalline silicon thin-film solar cells: Status and perspectives, Sol. Ener. Mat. Sol. C, vol.119, pp.112-123, 2013.

P. J. French and A. G. Evans, Piezoresistance in polysilicon and its applications to strain gauges, Solid state Electron, vol.32, pp.1-10, 1989.

V. Mosser, J. Suski, J. Goss, and E. Obermeier, Piezoresistive pressure sensors based on polycrystalline silicon, Sensor. Actuat. A-Phys, vol.28, pp.113-132, 1991.

H. C. Card and E. H. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes, J. Phys. D Appl. Phys, vol.4, p.1589, 1971.
DOI : 10.1088/0022-3727/4/10/320

P. Estrela and P. Migliorato, Chemical and biological sensors using polycrystalline silicon TFTs, J. Mater. Chem, vol.17, pp.219-224, 2007.
DOI : 10.1039/b612469k

URL : http://opus.bath.ac.uk/12122/1/Estrela_JMC_2007_17_3_219.pdf

O. Knopfmacher, M. L. Hammock, A. L. Appleton, G. Schwartz, J. Mei et al., Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment, Nat. Commun, vol.5, p.2954, 2014.
DOI : 10.1038/ncomms3954

URL : https://www.nature.com/articles/ncomms3954.pdf

S. Chen, A. Van-den-berg, and E. T. Carlen, Sensitivity and detection limit analysis of silicon nanowire bio (chemical) sensors, Sensor. Actuat. B-Chem, vol.209, pp.486-489, 2015.
DOI : 10.1016/j.snb.2014.12.007

K. M. Frazier, K. A. Mirica, J. Walish, and T. M. Swager, Fully-drawn carbon-based chemical sensors on organic and inorganic surfaces, Lab Chip, vol.14, pp.4059-4066, 2014.
DOI : 10.1039/c4lc00864b

URL : http://europepmc.org/articles/pmc4180506?pdf=render

M. G. Nikolaides, S. Rauschenbach, S. Luber, K. Buchholz, M. Tornow et al., Silicon-on-Insulator Based Thin-Film Resistor for Chemical and Biological Sensor Applications, ChemPhysChem, vol.4, pp.1104-1106, 2003.
DOI : 10.1002/cphc.200300785

A. C. Irvine, Z. A. Durrani, H. Ahmed, and S. Biesemans, Single-electron effects in heavily doped polycrystalline silicon nanowires, Appl. Phys. Lett, vol.73, pp.1113-1115, 1998.
DOI : 10.1063/1.122101

URL : http://spiral.imperial.ac.uk/bitstream/10044/1/13755/2/Durrani_Irvine%20et%20al%2c%20Single-electron%20effects%20in%20heavily%20doped%20polycrystalline%20silicon%20nanowires.pdf

L. C. Yen, T. M. Pan, C. H. Lee, and T. S. Chao, Label-free and real-time detection of ferritin using a horn-like polycrystalline-silicon nanowire field-effect transistor biosensor, Sensor. Actuat. B-Chem, vol.230, pp.398-404, 2016.

M. M. Hakim, M. Lombardini, K. Sun, F. Giustiniano, P. L. Roach et al., Thin film polycrystalline silicon nanowire biosensors, Nano Lett, vol.12, pp.1868-1872, 2012.
DOI : 10.1021/nl2042276

URL : https://eprints.soton.ac.uk/336302/1/Hakim_NanoLett_2012.pdf

I. Zeimpekis, K. Sun, C. Hu, N. M. Ditshego, O. Thomas et al., Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins, Nanotechnology, vol.27, p.165502, 2016.
DOI : 10.1088/0957-4484/27/16/165502

URL : https://eprints.soton.ac.uk/388330/1/Ioannis_Zeimpekis_Accepted_Manuscript.pdf

K. Sun, I. Zeimpekis, C. Hu, N. M. Ditshego, O. Thomas et al.,

H. Chong, P. Morgan, and . Ashburn, Effect of subthreshold slope on the sensitivity of nanoribbon sensors, Nanotechnology, vol.27, p.285501, 2016.

L. Pichon, K. Mourgues, F. Raoult, T. Mohammed-brahim, K. Kis-sion et al., Thin film transistors fabricated by in situ doped unhydrogenated polysilicon films obtained by solid phase crystallization, Semicond. Sci. Tech, vol.16, p.918, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00994988

T. Matsuyama, N. Terada, T. Baba, T. Sawada, S. Tsuge et al., Highquality polycrystalline silicon thin film prepared by a solid phase crystallization method, J. Non-Cryst. Solids, vol.198, pp.940-944, 1996.

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-evans et al.,

D. A. Hamilton, T. M. Lavan, M. A. Fahmy, and . Reed, Label-free immunodetection with CMOScompatible semiconducting nanowires, Nature, p.519, 2007.

G. Godem-wenga, E. Jacques, A. C. Salaün, R. Rogel, L. Pichon et al., Polysilicon nanowires based field effect transistor compatible with MOS technology for integrated labelfree direct detection of DNA hybridization, Biosensors, p.1, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00921598

J. Pinson and F. Podvorica, Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts, Chem. Soc. Rev, vol.34, pp.429-439, 2005.

M. P. Stewart, F. Maya, D. V. Kosynkin, S. M. Dirk, J. J. Stapleton et al.,

J. M. Allara and . Tour, Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts, J. Am. Chem. Soc, vol.126, pp.370-378, 2004.

A. Girard, N. Coulon, C. Cardinaud, T. Mohammed-brahim, F. Geneste et al., Effect of doping on the modification of polycrystalline silicon by spontaneous reduction of diazonium salts, Appl. Surf. Sci, vol.314, pp.358-366, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01086621

P. Allongue, C. H. De-villeneuve, J. Pinson, F. Ozanam, J. N. Chazalviel et al., Organic monolayers on Si (111) by electrochemical method, Electrochim. Acta, vol.43, pp.2791-2798, 1998.

P. Allongue, C. H. De-villeneuve, and J. Pinson, Structural characterization of organic monolayers on Si <111> from capacitance measurements, Electrochim. Acta, vol.45, pp.3241-3248, 2000.

R. Haight, L. Sekaric, A. Afzali, and D. Newns, Controlling the electronic properties of silicon nanowires with functional molecular groups, Nano Lett, vol.9, pp.3165-3170, 2009.

K. Balasubramanian and M. Burghard, Chemically functionalized carbon nanotubes. Small, vol.1, pp.180-192, 2005.

L. Fan, J. Chen, S. Zhu, M. Wang, and G. Xu, Determination of Cd2+ and Pb2+ on glassy carbon electrode modified by electrochemical reduction of aromatic diazonium salts, Electrochem. Commun, vol.11, pp.1823-1825, 2009.

A. Roglans, A. Pla-quintana, and M. Moreno-manas, Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions, Chem. Rev, vol.106, pp.4622-4643, 2006.

C. Bourdillon, M. Delamar, C. Demaille, R. Hitmi, J. Moiroux et al., Immobilization of glucose oxidase on a carbon surface derivatized by electrochemical reduction of diazonium salts, J. Electroanal. Chem, vol.336, pp.113-123, 1992.

, CasaXPS software

B. Chen, A. K. Flatt, H. Jian, J. L. Hudson, and J. M. Tour, Molecular grafting to silicon surfaces in air using organic triazenes as stable diazonium sources and HF as a constant hydride-passivation source, Chemistry of materials, vol.17, pp.4832-4836, 2005.

G. Liu, T. Böcking, and J. J. Gooding, Diazonium salts: Stable monolayers on gold electrodes for sensing applications, J. Electroanal. Chem, vol.600, pp.335-344, 2007.

M. Liu, W. Liu, and . Chen, Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability, Biosens. Bioelectron, vol.45, pp.206-212, 2013.

R. Nasraoui, D. Floner, and F. Geneste, Improvement in performance of a flow electrochemical sensor by using carbamoyl-arms polyazamacrocycle for the preconcentration of lead ions onto the electrode, Electrochem. Commun, vol.12, pp.98-100, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00448811