U. Resch-genger and H. H. Gorris, Perspectives and Challenges of Photon-Upconversion Nanoparticles-Part I: Routes to Brighter Particles and Quantitative Spectroscopic Studies, Anal. Bioanal. Chem, issue.25, pp.5855-5874, 2017.

F. Auzel, Upconversion and Anti-Stokes Processes with f and d Ions in Solids, Chem. Rev, vol.104, issue.1, pp.139-174, 2004.

X. Liu and J. Qiu, Recent Advances in Energy Transfer in Bulk and Nanoscale Luminescent Materials: From Spectroscopy to Applications, Chem. Soc. Rev, vol.44, issue.23, pp.8714-8746, 2015.

M. Haase, H. U. Schäfer, and . Nanoparticles, Angew. Chem. Int. Ed, vol.50, issue.26, pp.5808-5829, 2011.

Y. Suffren, B. Golesorkhi, D. Zare, L. Guénée, H. Nozary et al., Taming Lanthanide-Centered Upconversion at the Molecular Level, Inorg. Chem, issue.20, pp.9964-9972, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01338695

I. Hyppänen, S. Lahtinen, T. Ääritalo, J. Mäkelä, J. Kankare et al., Photon Upconversion in a Molecular Lanthanide Complex in Anhydrous Solution at Room Temperature, ACS Photonics, vol.2014, issue.5, pp.394-397

A. Nonat, C. F. Chan, T. Liu, C. Platas-iglesias, Z. Liu et al., Room Temperature Molecular up Conversion in Solution, Nat. Commun, 2016.

N. Souri, P. Tian, C. Platas-iglesias, K. Wong, A. Nonat et al., Upconverted Photosensitization of Tb Visible Emission by NIR Yb Excitation in Discrete Supramolecular Heteropolynuclear Complexes, J. Am. Chem. Soc, vol.139, pp.1456-1459, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01486587

L. J. Charbonnière, A. Nonat, T. Liu, O. Jeannin, F. Camerel et al., Energy Transfer in Supramolecular Heteronuclear Lanthanide Dimers and Application to Fluoride Sensing in Water, Advance Article, vol.24, pp.3784-3792, 2018.

N. Souri, P. Tian, A. Lecointre, Z. Lemaire, S. Chafaa et al., Step by Step Assembly of

, Polynuclear Lanthanide Complexes with a Phosphonated Bipyridine Ligand, Inorg. Chem, issue.24, pp.12962-12974, 2016.

L. Charbonnière, R. Ziessel, M. Guardigli, A. Roda, N. Sabbatini et al., Water Stability and Luminescence of Lanthanide Complexes of Tripodal Ligands Derived from 1,4,7-Triazacyclononane: Pyridinecarboxamide versus Pyridinecarboxylate Donors, J. Am. Chem. Soc, vol.123, issue.10, pp.2257-2273, 2001.

A. Nonat, D. Imbert, J. Pécaut, M. Giraud, and M. Mazzanti, Structural and Photophysical Studies of Highly Stable Lanthanide Complexes of Tripodal 8-Hydroxyquinolinate Ligands Based on 1,4,7-Triazacyclononane, Inorg. Chem, vol.48, issue.9, pp.4207-4218, 2009.

J. W. Walton, L. Di-bari, D. Parker, G. Pescitelli, H. Puschmann et al., Resolution and Chiroptical Analysis of Stable Lanthanide Complexes of a Pyridylphenylphosphinate Triazacyclononane Ligand, Chem. Commun, vol.47, issue.45, pp.12289-12291, 2011.

M. Starck, R. Pal, and D. Parker, Structural Control of Cell Permeability with Highly Emissive Europium(III) Complexes Permits Different Microscopy Applications, Chem.Eur. J, vol.22, issue.2, pp.570-580, 2016.

A. T. Frawley, R. Pal, D. Parker, . Very, and . Bright, Enantiopure Europium(III) Complexes Allow Time-Gated Chiral Contrast Imaging, Chem. Commun, vol.52, issue.91, pp.13349-13352, 2016.

W. Walton, J. Bourdolle, A. ;. Butler, S. Soulie, M. Delbianco et al., Very Bright Europium Complexes That Stain Cellular Mitochondria, Chem. Commun, issue.16, pp.1600-1602, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01245517

S. J. Butler, M. Delbianco, L. Lamarque, B. K. Mcmahon, E. R. Neil et al., EuroTracker (R) Dyes: Design, Synthesis, Structure and Photophysical Properties of Very Bright Europium Complexes and Their Use in Bioassays and Cellular Optical Imaging, Dalton Trans, vol.44, issue.11, pp.4791-4803, 2015.

M. Delbianco, V. Sadovnikova, E. Bourrier, G. Mathis, L. Lamarque et al., Highly Water-Soluble Triazacyclononane Europium Complexes To Detect Ligand Binding with Time-Resolved FRET Microscopy, Angew. Chem.-Int. Ed, vol.53, issue.40, pp.10718-10722, 2014.

A. T. Bui, A. Grichine, S. Brasselet, A. Duperray, C. Andraud et al., Unexpected Efficiency of a Luminescent Samarium(III) Complex for Combined Visible and NearInfrared Biphotonic Microscopy, Chem.-Eur. J, vol.21, issue.49, pp.17757-17761, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01230729

M. Elhabiri, S. Abada, M. Sy, A. Nonat, P. Choquet et al., Importance of Outer-Sphere and Aggregation Phenomena in the Relaxation Properties of Phosphonated Gadolinium Complexes with Potential Applications as MRI Contrast Agents, Chem.-Eur. J, vol.21, issue.17, pp.6535-6546, 2015.

S. Abada, A. Lecointre, M. Elhabiri, D. Esteban-gómez, C. Platas-iglesias et al., Highly Relaxing Gadolinium Based MRI Contrast Agents Responsive to Mg2+ Sensing, Chem. Commun. Camb. Engl, vol.48, issue.21, pp.7512-7515, 1997.

K. Mikkelsen and S. O. Nielsen, Acidity measurements with the glass electrode in H2O-D2O mixtures, J. Phys. Chem, vol.64, issue.5, pp.632-637, 1960.

M. Polá?ek, M. ?edinová, J. Kotek, L. Vander-elst, R. N. Muller et al., Pyridine-N-Oxide Analogues of DOTA and Their Gadolinium(III) Complexes Endowed with a Fast Water Exchange on the Square-Antiprismatic Isomer, Inorg. Chem, vol.48, issue.2, pp.455-465, 2009.

A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo et al., SIR97: A New Tool for Crystal Structure Determination and Refinement, J. Appl. Crystallogr, vol.32, pp.115-119, 1999.

G. M. Sheldrick and L. J. Farrugia, WinGX Suite for Small-Molecule Single-Crystal Crystallography, Acta Crystallogr. Sect. A, vol.64, issue.29, pp.837-839, 1999.

, Méthodes d'analyse Complexométriques Avec Les Titriplex

E. Merck, ;. B. Darmstadt, and M. N. Berberan-santos, 31) Molecular Fluorescence: Principles and Applications, 1990.

H. Ishida, S. Tobita, Y. Hasegawa, R. Katoh, and K. Nozaki, Recent Advances in Instrumentation for Absolute Emission Quantum Yield Measurements, Coord. Chem. Rev, issue.21, pp.2449-2458, 2010.

N. Weibel, L. J. Charbonnière, M. Guardigli, A. Roda, and R. Ziessel, Engineering of Highly Luminescent Lanthanide Tags Suitable for Protein Labeling and Time-Resolved Luminescence Imaging, J. Am. Chem. Soc, vol.126, issue.15, pp.4888-4896, 2004.

R. C. Benson and H. A. Kues, Fluorescence Properties of Indocyanine Green as Related to Angiography, Phys. Med. Biol, vol.23, issue.1, pp.159-163, 1978.

H. Gampp, M. Maeder, C. Meyer, and A. Zuberbuhler, Calculation of EquilibriumConstants from Multiwavelength Spectroscopic Data .1. Mathematical Considerations, Talanta, vol.32, issue.2, pp.95-101, 1985.

S. Lee, H. Kim, H. Yang, B. Yoo, and C. M. Yoon, Synthesis of Diethyl Pyridin-2Ylphosphonates and Quinolin-2-Ylphosphonates by Deoxygenative Phosphorylation of the Corresponding N-Oxides, Bull. Korean Chem. Soc, vol.35, issue.7, pp.2155-2158, 2014.

S. Comby, J. Bünzli, and L. G. Longsworth, Chapter 235 Lanthanide Near-Infrared Luminescence in Molecular Probes and Devices, Handb. Phys. Chem. Rare Earths, vol.37, issue.38, pp.1914-1917, 1960.

A. T. Bui, M. Beyler, A. Grichine, A. Duperray, J. Mulatier et al., Near Infrared Two Photon Imaging Using a Bright Cationic Yb(III) Bioprobe Spontaneously Internalized into Live Cells, Chem. Commun, vol.2017, issue.44, pp.6005-6008
URL : https://hal.archives-ouvertes.fr/hal-01526221

D. 'aléo, A. Bourdolle, A. Brustlein, S. Fauquier, T. Grichine et al., Ytterbium-Based Bioprobes for Near-Infrared Two-Photon Scanning Laser Microscopy Imaging, Angew. Chem. Int. Ed, vol.2012, issue.27, pp.6622-6625

E. G. Moore, J. Xu, S. C. Dodani, C. J. Jocher, A. ;-d'aléo et al., 1-Methyl-3-Hydroxy-Pyridin-2-One Complexes of Near Infra

, Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution, Inorg. Chem, issue.9, pp.4156-4166, 2010.

S. Comby, D. Imbert, C. Vandevyver, and J. G. Bünzli, A Novel Strategy for the Design of 8-Hydroxyquinolinate-Based Lanthanide Bioprobes That Emit in the Near Infrared Range, Chem.-Eur. J, vol.13, issue.3, pp.936-944, 2007.

M. H. Werts, R. H. Woudenberg, P. G. Emmerink, R. Van-gassel, J. W. Hofstraat et al., A Near-Infrared Luminescent Label Based on YbIII Ions and Its Application in a Fluoroimmunoassay, Angew. Chem. Int. Ed, vol.39, issue.24, pp.4542-4544, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01207665

T. Zhang, X. Zhu, C. C. Cheng, W. Kwok, H. Tam et al., Water-Soluble Mitochondria-Specific Ytterbium Complex with Impressive NIR Emission, J. Am. Chem. Soc, vol.133, issue.50, pp.20120-20122, 2011.

J. Hu, Y. Ning, Y. Meng, J. Zhang, Z. Wu et al., Highly Near-IR Emissive Ytterbium(III) Complexes with Unprecedented Quantum Yields, Chem. Sci, vol.2017, issue.4, pp.2702-2709

C. Doffek and M. Seitz, The Radiative Lifetime in Near-IR-Luminescent Ytterbium Cryptates: The Key to Extremely High Quantum Yields, Angew. Chem. Int. Ed Engl, vol.54, issue.33, pp.9719-9721, 2015.

Y. Ning, Y. Liu, Y. Meng, and J. Zhang, Design of Near-Infrared Luminescent Lanthanide Complexes Sensitive to Environmental Stimulus through Rationally Tuning the Secondary Coordination Sphere, Inorg. Chem, vol.57, issue.3, pp.1332-1341, 2018.

A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker et al., Non-Radiative Deactivation of the Excited States of Europium, Terbium and Ytterbium Complexes by Proximate Energy-Matched OH, NH and CH Oscillators: An Improved Luminescence Method for Establishing Solution Hydration States, J. Chem. soc, pp.493-504

M. Regueiro-figueroa, B. Bensenane, E. Ruscsák, D. Esteban-gómez, L. J. Charbonnière et al., Platas-Iglesias, C. Lanthanide Dota-like Complexes Containing a Picolinate Pendant: Structural Entry for the Design of Ln(III)-Based Luminescent Probes, Inorg. Chem, vol.50, issue.9, pp.4125-4141, 2011.

C. Guanci, G. Giovenzana, L. Lattuada, C. Platas-iglesias, and L. J. Charbonnière, AMPED: A New Platform for Picolinate Based Luminescent Lanthanide Chelates, Dalton Trans, vol.44, issue.16, pp.7654-7661, 2015.

J. W. Walton, R. Carr, N. H. Evans, A. M. Funk, A. M. Kenwright et al., Isostructural Series of Nine-Coordinate Chiral Lanthanide Complexes Based on Triazacyclononane, Inorg. Chem, vol.2012, issue.15, pp.8042-8056

C. F. Geraldes, M. C. Alpoim, M. P. Marques, A. D. Sherry, and M. Singh, Nuclear Magnetic Resonance and Potentiometric Studies of the Protonation Scheme of a Triaza Triacetic Macrocycle and Its Complexes with Lanthanum and Lutetium, Inorg. Chem, issue.23, pp.3876-3881, 1985.

A. Nonat, C. Gateau, P. H. Fries, and M. Mazzanti, Lanthanide Complexes of a Picolinate Ligand Derived from 1,4,7-Triazacyclononane with Potential Application in Magnetic Resonance Imaging and Time-Resolved Luminescence Imaging, Chem.-Eur. J, vol.12, issue.27, pp.7133-7150, 2006.

N. H. Evans, R. Carr, M. Delbianco, R. Pal, D. S. Yufit et al., Complete Stereocontrol in the Synthesis of Macrocyclic Lanthanide Complexes: Direct Formation of Enantiopure Systems for Circularly Polarised Luminescence Applications, Dalton Trans, vol.42, issue.44, p.15610, 2013.