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High throughput sequencing reveals similar molecular signatures for class switch 1 

recombination junctions for the  and  isotypes. 2 
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After encountering antigen, B-cells undergo class switch recombination (CSR) that substitutes 23 

the C gene with C, C or C, thereby generating IgG, IgE and IgA antibodies with same 24 

antigenic specificity but new effector functions (1). The DNA-editing enzyme activation-25 

induced deaminase (AID) is essential for CSR by targeting switch (S) regions preceding C 26 

(namely the S donor region) and C, C and C genes (namely the S,, acceptor regions) (1). 27 

Cis-and trans-controlled DNA double strand beaks are generated during this process (2-6). 28 

The recruitment of DNA repair factors that facilitate the end-joining process is a crucial step 29 

of class switch recombination. Two pathways are implicated in this end joining. The classical 30 

non-homogenous end joining (c-NHEJ) pathway ligates DNA ends with no or little 31 

homology. In contrast, the alternative end joining (A-EJ) pathways is used to ligate DNA ends 32 

with microhomology (3-6). Previous reports have suggested that IgG and IgA CSR might be 33 

differently regulated with a preferential use of c-NHEJ for  CSR and A-EJ for  CSR (7, 8). 34 

We recently reported a computational tool (CSReport) for automatic analysis of CSR 35 

junctions sequenced by high-throughput sequencing (9) and used it to analyze the rare S- 36 

junctions form during IgD CSR (10, 11). We thus used CSReport and high-throughput 37 

sequencing to analyze the molecular signature of S-S3S-S1and S-S junctions in wt mice 38 

more in depth. 39 

Our research has been approved by our local ethics committee review board (Comité Régional 40 

d'Ethique sur l'Expérimentation Animale du Limousin, Limoges, France) and carried 41 

according the European guidelines for animal experimentation. Single-cell suspensions of 42 

spleen cells from wild-type (wt) 129 mice were cultured 4 days at 1x10
6
 cells/ml in RPMI 43 

1640 with 10% fetal calf serum (FCS) and 5 g/ml LPS, with or without addition of 20 ng/ml 44 

IL-4 or 2 ng/ml TGF (PeproTech, Rocky Hill, NJ). Splenocyte DNA was then extracted for 45 

investigation of S-S3S-S1and S-S junctions. As previously described in detail (9), 46 

junctions were PCR amplified. Libraries of 200bp were prepared from the 1-2kb PCR 47 
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products of S-S1, S-S3 and S-S amplification for Ion Proton sequencing (“GénoLim 48 

platform” of the Limoges University, France). Sequenced reads were then mapped to S and 49 

acceptor S1, S3 and S regions using BLAST algorithm. The computational tool developed 50 

for experiments performs junction assembly, identifies breakpoints in S, S1, S3 S, identifies 51 

junction structure (blunt, micro-homology or junction with insertions) and outputs a statistical 52 

summarization of identified junctions. 53 

LPS, LPS+IL4 and LPS+TGF stimulated B-cell CSR to IgG3, IgG1 and IgA, respectively 54 

(2, 5, 12). We detected 4140, 3798 and 1955 S-S1, S-S3 and S-S junctions, respectively. 55 

The structural profiles of all these junctions (blunt, micro-homology or junction with 56 

insertions) are reported in Fig. 1A. The positions of IgG1, IgG3 and IgA junctions in terms of 57 

distance from the forward PCR primer in S are reported in Fig. 1B. Localizations of S 58 

breakpoints within AID hotspots (AGCT, WRCY, RGYW) and other motifs are shown in Fig. 59 

1C (both displayed along S region and expressed in % of junctions). Analysis of 5000 60 

synthetic junctions simulated from the random association of 100-bp S segments with 100-bp 61 

segments of S1, S3 or S revealed a similar pattern of blunt and micro-homology junctions 62 

(junction with insertions are not produced with this numerical approach) (Fig. 1D) compared 63 

with true junctions (Fig. 1A). As shown in Fig1E, the frequency of S-S1, S-S3 and S-S 64 

junctions with large (>5 bp) micro-homology is found higher in S-S compared to S-S1 and 65 

S-S3, both for sequenced junctions and for randomly simulated junctions. Fig. 1F shows 66 

dotplots for S vs S1, S vs S3 and S vs S sequence comparisons. 67 

Confirming the validity of our technical approach, the structural profile of our S-S1 68 

junctions was similar to that reported few weeks ago using a high-throughput translocation 69 

sequencing method (5). We also confirm the previously reported slight increase of small 70 

insertions for S-S compared to S-S (8). Finally we demonstrated that the slight increase of 71 
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S-S junctions with large micro-homology can be numerically reproduced using randomly 72 

generated synthetic junctions. As this simulation mimics a pure NHEJ process (linking two 73 

free DNA ends without any resection), it evidences that it is not necessary to invoke another 74 

molecular mechanism (such A-EJ) to explain the observed structure alteration of S-S 75 

junctions. Those micro-homologies arise solely by chance and are favored by the repetitive 76 

structure of the S region and its high degree of similarity to S region. In conclusion the 77 

structural profiles of S-S1, S-S3 and S-S junctions are similar indicating same CSR 78 

process and partners whatever cytokine stimulations, length of the S acceptor region and its 79 

distance with the S donor region. Analysis of the molecular signature of CSR junctions does 80 

not argue in favour of a preferential use of c-NHEJ and A-EJ for  CSR and  CSR, 81 

respectively. 82 

 83 
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 120 

Legend to Figure 1. 121 

CSR in wt mice. 122 

A: Structure profiles of S-S1, S-S3 and S-S junctions. Junctions are classified in terms of 123 

junction types (junction with insertions, blunt junction or junction with micro-homology). B: 124 

Breakpoint localizations in S for S-S1, S-S3 and S-S junctions. C: (top) Location of 125 

breakpoints in respect of AID hotspots AGCT, WRCY, RGYW and other motifs along the 126 

first 1kb in S. Identified breaks are shown as a black line, colocation with a sequence motif is 127 

indicated with a colored asterisk. (bottom) Frequency of hotspot/break colocation events. D: 128 

Structure profiles of synthetic S-S1, S-S3 and S-S junctions. Three sets of 5000 synthetic 129 

junctions were simulated from the random association of 100-bp S segments with 100-bp 130 

segments of S1, S3 or S and analyzed with the same computational tool (CSReport) as 131 

sequencing reads. E: Frequency of junctions with long micro-homology (>5bp) for S-S1, S-132 

S3 and S-S junctions. Simulated datasets are compared to the junctions identified from 133 

high-throughput sequencing. F: Sequence similarity dotplots of Svs S1, S vs S3 and S vs 134 

S. Similarity was evaluated with a 20-bp window and reported when greater than 60%. 135 
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