M. U. Ali, M. S. Rahman, J. Cao, and P. X. Yuan, Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario, 3 Biotech, vol.88, issue.2, 2017.
DOI : 10.1016/j.ajhg.2011.01.001

R. F. Arauz, B. D. Solomon, D. E. Pineda-alvarez, A. L. Gropman, J. A. Parsons et al., A Hypomorphic Allele in the <i>FGF8 </i>Gene Contributes to Holoprosencephaly and Is Allelic to Gonadotropin-Releasing Hormone Deficiency in Humans, Molecular Syndromology, vol.1, issue.2, pp.59-66, 2010.
DOI : 10.1159/000302285

G. Bae, S. Domené, E. Roessler, K. Schachter, J. Kang et al., , 2011.

C. Mutations-in, encoding a hedgehog receptor, result in holoprosencephaly and defective interactions with other hedgehog receptors, American Journal of Human Genetics, vol.89, issue.2, pp.231-240

M. Bakircioglu, O. P. Carvalho, M. Khurshid, J. J. Cox, B. Tuysuz et al., The Essential Role of Centrosomal NDE1 in Human Cerebral Cortex Neurogenesis, The American Journal of Human Genetics, vol.88, issue.5, pp.523-535, 2011.
DOI : 10.1016/j.ajhg.2011.03.019

M. J. Bamshad, S. B. Ng, A. W. Bigham, H. K. Tabor, M. J. Emond et al., Exome sequencing as a tool for Mendelian disease gene discovery, Nature Reviews Genetics, vol.43, issue.11, pp.12-745, 2011.
DOI : 10.1038/ng.806

M. Barr, J. W. Hanson, K. Currey, S. Sharp, H. Toriello et al., Holoprosencephaly in infants of diabetic mothers, The Journal of Pediatrics, vol.102, issue.4, pp.565-568, 1983.
DOI : 10.1016/S0022-3476(83)80185-1

K. A. Bear, B. D. Solomon, S. Antonini, I. J. Arnhold, M. M. França et al., cause a specific phenotype that is distinct from holoprosencephaly, Journal of Medical Genetics, vol.69, issue.6, pp.413-418, 2014.
DOI : 10.1111/j.1399-0004.2006.00601.x

C. Bendavid, C. Dubourg, I. Gicquel, L. Pasquier, P. Saugier-veber et al., Molecular evaluation of foetuses with holoprosencephaly shows high incidence of microdeletions in the HPE genes, Human Genetics, vol.22, issue.1-2, pp.1-8, 2006.
DOI : 10.1056/NEJM198510033131401

C. Bendavid, V. Dupé, L. Rochard, I. Gicquel, C. Dubourg et al., , 2010.

. Holoprosencephaly, An update on cytogenetic abnormalities, American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, vol.1541, pp.86-92

C. Bendavid, L. Rochard, C. Dubourg, J. Seguin, I. Gicquel et al., , 2009.

, Array-CGH analysis indicates a high prevalence of genomic rearrangements in holoprosencephaly: an updated map of candidate loci, Human Mutation, vol.30, issue.8, pp.1175-1182

J. T. Bennett, T. Y. Tan, D. Alcantara, M. Tétrault, A. E. Timms et al., Mosaic Activating Mutations in FGFR1 Cause Encephalocraniocutaneous Lipomatosis, 2016.

, American Journal of Human Genetics, vol.98, issue.3, pp.579-587

D. Braunholz, C. Obieglo, I. Parenti, J. Pozojevic, J. Eckhold et al., , 2015.

A. Bruel, B. Franco, Y. Duffourd, J. Thevenon, L. Jego et al., Fifteen years of research on oral???facial???digital syndromes: from 1 to 16 causal genes, Journal of Medical Genetics, vol.52, issue.6, pp.371-380, 2017.
DOI : 10.1136/jmedgenet-2016-104436

URL : https://hal.archives-ouvertes.fr/hal-01789377

R. D. Burnside, 22q11.21 Deletion Syndromes: A Review of Proximal, Central, and Distal Deletions and Their Associated Features, Cytogenetic and Genome Research, vol.146, issue.2, pp.89-99, 2015.
DOI : 10.1159/000438708

M. G. Butler, Clinical and genetic aspects of the 15q11.2 BP1-BP2 microdeletion disorder, Journal of Intellectual Disability Research, vol.51, issue.6, pp.568-579, 2017.
DOI : 10.1111/j.1365-2788.2006.00916.x

L. Ciani, A. Patel, N. D. Allen, and C. Constant, Mice Lacking the Giant Protocadherin mFAT1 Exhibit Renal Slit Junction Abnormalities and a Partially Penetrant Cyclopia and Anophthalmia Phenotype, Molecular and Cellular Biology, vol.23, issue.10, pp.23-3575, 2003.
DOI : 10.1128/MCB.23.10.3575-3582.2003

M. M. Cohen, Holoprosencephaly: Clinical, anatomic, and molecular dimensions, Birth Defects Research Part A: Clinical and Molecular Teratology, vol.2, issue.9, pp.658-673, 2006.
DOI : 10.1001/archpedi.1972.02110140067008

A. David, F. Liu, A. Tibelius, J. Vulprecht, D. Wald et al., mouse embryos, Cell Cycle, vol.105, issue.18, pp.2859-2868, 2014.
DOI : 10.1073/pnas.1400568111

J. M. De-la-cruz, R. N. Bamford, R. D. Burdine, E. Roessler, A. J. Barkovich et al., A loss-of-function mutation in the CFC domain of TDGF1 is associated with human forebrain defects, Human Genetics, vol.110, issue.5, pp.422-428, 2002.
DOI : 10.1007/s00439-002-0709-3

F. Démurger, L. Pasquier, C. Dubourg, V. Dupé, I. Gicquel et al., Array-CGH Analysis Suggests Genetic Heterogeneity in Rhombencephalosynapsis, Molecular Syndromology, vol.4, issue.6, pp.267-272, 2013.
DOI : 10.1159/000353878

R. Dhamija, S. Kirmani, X. Wang, M. J. Ferber, E. D. Wieben et al., mutation in two siblings with Hartsfield syndrome: A case of gonadal mosaicism, American Journal of Medical Genetics Part A, vol.1, issue.9, pp.2356-2359, 2014.
DOI : 10.1097/00019605-199201000-00008

C. Dubourg, C. Bendavid, L. Pasquier, C. Henry, S. Odent et al., , 2007.

. Holoprosencephaly, Orphanet Journal of Rare Diseases, vol.2, issue.8

C. Dubourg, W. Carré, H. Hamdi-rozé, C. Mouden, and J. Roume,

, Mutational Spectrum in Holoprosencephaly Shows That FGF is a New Major Signaling Pathway, Human Mutation, vol.37, issue.12, pp.1329-1339

V. Dupé, L. Rochard, S. Mercier, Y. Le-pétillon, I. Gicquel et al., , 2011.

, NOTCH, a new signaling pathway implicated in holoprosencephaly, Human Molecular Genetics, vol.20, issue.6, pp.1122-1131

K. B. El-jaick, S. E. Powers, L. Bartholin, K. R. Myers, J. Hahn et al., Functional analysis of mutations in TGIF associated with holoprosencephaly, Molecular Genetics and Metabolism, vol.90, issue.1, pp.97-111, 2007.
DOI : 10.1016/j.ymgme.2006.07.011

B. A. Fernandez, W. Roberts, B. Chung, R. Weksberg, S. Meyn et al., Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder, Journal of Medical Genetics, vol.47, issue.3, pp.195-203069369, 2009.
DOI : 10.1136/jmg.2009.069369

X. Geng and G. Oliver, Pathogenesis of holoprosencephaly, Journal of Clinical Investigation, vol.119, issue.6, pp.1403-1413, 2009.
DOI : 10.1172/JCI38937

URL : http://www.jci.org/articles/view/38937/files/pdf

K. Grobe, Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function, Development, vol.132, issue.16, pp.3777-3786, 2005.
DOI : 10.1242/dev.01935

URL : http://dev.biologists.org/content/develop/132/16/3777.full.pdf

J. S. Hahn, P. D. Barnes, N. J. Clegg, and E. E. Stashinko, Septopreoptic Holoprosencephaly: A Mild Subtype Associated with Midline Craniofacial Anomalies, American Journal of Neuroradiology, vol.127, issue.9, pp.1596-1601, 2010.
DOI : 10.1002/ajmg.1320280226

URL : http://www.ajnr.org/content/ajnr/31/9/1596.full.pdf

M. Hong, K. Srivastava, S. Kim, B. L. Allen, D. J. Leahy et al., is a modifier gene in holoprosencephaly, Human Mutation, vol.10, issue.11, pp.1464-1470, 2017.
DOI : 10.1016/j.devcel.2006.04.005

S. Hong, P. Hu, J. Marino, S. B. Hufnagel, R. J. Hopkin et al., , 2016.

, Dominant-negative kinase domain mutations in FGFR1 can explain the clinical severity of Hartsfield syndrome, Human Molecular Genetics, vol.25, issue.10, pp.1912-1922

S. Hong, P. Hu, E. Roessler, T. Hu, and M. Muenke, Loss-of-function mutations in FGF8 can be independent risk factors for holoprosencephaly, Human Molecular Genetics, vol.95, issue.11, 2018.
DOI : 10.1093/hmg/ddy106

D. Jean, G. Bernier, and P. Gruss, Six6 (Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk, Mechanisms of Development, vol.84, issue.1-2, pp.31-40, 1999.
DOI : 10.1016/S0925-4773(99)00068-4

O. Jin, K. Harpal, S. L. Ang, and J. Rossant, Otx2 and HNF3beta genetically interact in anterior patterning, The International Journal of Developmental Biology, vol.45, issue.1, pp.357-365, 2001.

N. Kakar, J. Ahmad, D. J. Morris-rosendahl, J. Altmüller, K. Friedrich et al., STIL mutation causes autosomal recessive microcephalic lobar holoprosencephaly, Human Genetics, vol.289, issue.1, pp.45-51, 2015.
DOI : 10.1074/jbc.M113.506295

J. D. Karkera, S. Izraeli, E. Roessler, A. Dutra, I. Kirsch et al., The genomic structure, chromosomal localization, and analysis of SIL as a candidate gene for holoprosencephaly, Cytogenetic and Genome Research, vol.97, issue.1-2, pp.62-67, 2002.
DOI : 10.1159/000064057

R. S. Krauss, Holoprosencephaly: new models, new insights, Expert Reviews in Molecular Medicine, vol.124, issue.26, pp.1-17, 2007.
DOI : 10.1101/SQB.1997.062.01.015

P. Kruszka, R. A. Hart, D. W. Hadley, M. Muenke, and M. B. Habal, Expanding the Phenotypic Expression of Sonic Hedgehog Mutations Beyond Holoprosencephaly, The Journal of Craniofacial Surgery, vol.26, issue.1, pp.3-5, 2015.
DOI : 10.1097/SCS.0000000000001377

F. Lacbawan, B. D. Solomon, E. Roessler, K. El-jaick, S. Domené et al., Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function, Journal of Medical Genetics, vol.46, issue.6, pp.389-398063818, 2008.
DOI : 10.1136/jmg.2008.063818

H. Lenglet, C. Schmitt, T. Grange, H. Manceau, N. Karboul et al., From a dominant to an oligogenic model of inheritance with environmental modifiers in acute intermittent porphyria, Human Molecular Genetics, vol.32, issue.2, pp.1164-1173, 2018.
DOI : 10.1136/jmg.32.12.979

L. Maione, A. A. Dwyer, B. Francou, A. Guiochon-mantel, N. Binart et al., GENETICS IN ENDOCRINOLOGY: Genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing, European Journal of Endocrinology, vol.19, issue.255, pp.55-80, 2018.
DOI : 10.1038/gim.2016.198

M. J. Mccabe, C. Gaston-massuet, V. Tziaferi, L. C. Gregory, K. S. Alatzoglou et al., Mutations Associated with Recessive Holoprosencephaly, Craniofacial Defects, and Hypothalamo-Pituitary Dysfunction, The Journal of Clinical Endocrinology & Metabolism, vol.96, issue.10, pp.1709-17182011, 2011.
DOI : 10.1210/jc.2011-0454

M. A. Mencarelli, L. Heidet, H. Storey, M. Van-geel, B. Knebelmann et al., Evidence of digenic inheritance in Alport syndrome, Journal of Medical Genetics, vol.5, issue.3, pp.163-174, 2015.
DOI : 10.2215/CJN.01030209

S. Mercier, C. Dubourg, N. Garcelon, B. Campillo-gimenez, I. Gicquel et al., New findings for phenotype-genotype correlations in a large European series of holoprosencephaly cases, Journal of Medical Genetics, vol.48, issue.11, pp.752-760, 2011.
DOI : 10.1136/jmedgenet-2011-100339

URL : https://hal.archives-ouvertes.fr/inserm-00626407

M. 'hamdi, O. Redin, C. Stoetzel, C. Ouertani, I. Chaabouni et al., Clinical and genetic characterization of Bardet-Biedl syndrome in Tunisia: defining a strategy for molecular diagnosis, Clinical Genetics, vol.42, issue.8, pp.172-177, 2014.
DOI : 10.1002/humu.21040

J. E. Ming, M. E. Kaupas, E. Roessler, H. G. Brunner, M. Golabi et al., Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly, Human Genetics, vol.110, issue.4, pp.297-301, 2002.
DOI : 10.1007/s00439-002-0695-5

J. E. Ming and M. Muenke, Multiple Hits during Early Embryonic Development: Digenic Diseases and Holoprosencephaly, The American Journal of Human Genetics, vol.71, issue.5, pp.1017-1032, 2002.
DOI : 10.1086/344412

C. Mouden, C. Dubourg, W. Carré, S. Rose, C. Quelin et al., Complex mode of inheritance in holoprosencephaly revealed by whole exome sequencing, Clinical Genetics, vol.51, issue.6, pp.659-668, 2016.
DOI : 10.1016/j.pediatrneurol.2014.05.023

URL : https://hal.archives-ouvertes.fr/hal-01259228

C. Mouden, M. Tayrac, . De, C. Dubourg, S. Rose et al., Homozygous STIL Mutation Causes Holoprosencephaly and Microcephaly in Two Siblings, PLOS ONE, vol.68, issue.2, 2015.
DOI : 10.1371/journal.pone.0117418.s001

URL : https://hal.archives-ouvertes.fr/hal-01116427

M. Muenke and P. A. Beachy, Genetics of ventral forebrain development and holoprosencephaly, Current Opinion in Genetics & Development, vol.10, issue.3, pp.262-269, 2000.
DOI : 10.1016/S0959-437X(00)00084-8

L. Nanni, J. E. Ming, M. Bocian, K. Steinhaus, and D. W. Bianchi,

, The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly, Human Molecular Genetics, vol.8, issue.13, pp.2479-2488

H. P. Nguyen, C. Van-broeckhoven, and J. Van-der-zee, ALS Genes in the Genomic Era and their Implications for FTD. Trends in Genetics: TIG. https, 2018.

S. Odent, L. Marec, B. Munnich, A. , L. Merrer et al., Segregation analysis in nonsyndromic holoprosencephaly, American Journal of Medical Genetics, vol.33, issue.2, pp.139-143, 1998.
DOI : 10.1002/(SICI)1096-8628(19980501)77:2<139::AID-AJMG6>3.0.CO;2-N

D. E. Pineda-alvarez, E. Roessler, P. Hu, K. Srivastava, B. D. Solomon et al., Missense substitutions in the GAS1 protein present in holoprosencephaly patients reduce the affinity for its ligand, SHH, Human Genetics, vol.24, issue.1, pp.301-310, 2012.
DOI : 10.1101/gad.1870310

L. Ratié, M. Ware, F. Barloy-hubler, H. Romé, and I. Gicquel, , 2013.

, Novel genes upregulated when NOTCH signalling is disrupted during hypothalamic development, Neural Development, vol.8, p.25

J. F. Reiter and M. R. Leroux, Genes and molecular pathways underpinning ciliopathies, Nature Reviews Molecular Cell Biology, vol.40, issue.9, pp.533-547, 2017.
DOI : 10.1136/jmg.40.8.616

E. Roessler, E. Belloni, K. Gaudenz, P. Jay, P. Berta et al., , 1996.

, Mutations in the human Sonic Hedgehog gene cause holoprosencephaly, Nature Genetics, vol.14, issue.3, pp.357-360

E. Roessler, Y. Du, J. L. Mullor, E. Casas, W. P. Allen et al., Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features, Proceedings of the National Academy of Sciences, vol.128, issue.3, pp.13424-13429, 2003.
DOI : 10.1002/(SICI)1096-8628(19991126)87:3<207::AID-AJMG3>3.0.CO;2-5

E. Roessler, K. B. El-jaick, C. Dubourg, J. I. Vélez, B. D. Solomon et al., gene in humans predicts loss-of-function through either key structural alterations of the ligand or its altered synthesis, Human Mutation, vol.30, issue.10, pp.921-935, 2009.
DOI : 10.1002/humu.21090

URL : https://hal.archives-ouvertes.fr/inserm-00406224

E. Roessler, F. Lacbawan, C. Dubourg, A. Paulussen, J. Herbergs et al., gene in humans predicts loss-of-function as the predominant disease mechanism, Human Mutation, vol.30, issue.4, pp.541-554, 2009.
DOI : 10.1002/humu.20982

URL : https://hal.archives-ouvertes.fr/inserm-00365990

E. Roessler, Y. Ma, M. V. Ouspenskaia, F. Lacbawan, C. Bendavid et al., Truncating loss-of-function mutations of DISP1 contribute to holoprosencephaly-like microform features in humans, Human Genetics, vol.279, issue.26, pp.393-400, 2009.
DOI : 10.1017/S1462399407000440

URL : https://hal.archives-ouvertes.fr/inserm-00366120

E. Roessler, M. V. Ouspenskaia, J. D. Karkera, J. I. Vélez, A. Kantipong et al., Reduced NODAL Signaling Strength via Mutation of Several Pathway Members Including FOXH1 Is Linked to Human Heart Defects and Holoprosencephaly, The American Journal of Human Genetics, vol.83, issue.1, pp.18-29, 2008.
DOI : 10.1016/j.ajhg.2008.05.012

E. Roessler, W. Pei, M. V. Ouspenskaia, J. D. Karkera, J. I. Veléz et al., Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly, Molecular Genetics and Metabolism, vol.98, issue.1-2, pp.225-234, 2009.
DOI : 10.1016/j.ymgme.2009.05.005

E. Roessler, J. I. Vélez, N. Zhou, and M. Muenke, Utilizing prospective sequence analysis of SHH, ZIC2, SIX3 and TGIF in holoprosencephaly probands to describe the parameters limiting the observed frequency of mutant gene??gene interactions, Molecular Genetics and Metabolism, vol.105, issue.4, pp.658-664, 2012.
DOI : 10.1016/j.ymgme.2012.01.005

J. A. Rosenfeld, B. C. Ballif, D. M. Martin, A. S. Aylsworth, B. A. Bejjani et al., Clinical characterization of individuals with deletions of genes in holoprosencephaly pathways by aCGH refines the phenotypic spectrum of HPE, Human Genetics, vol.10, issue.4, pp.421-440, 2010.
DOI : 10.1001/archpedi.1979.02130100030005

A. Ruiz-i-altaba, V. Palma, and N. Dahmane, Hedgehog???GLI signaling and the growth of the brain, Nature Reviews Neuroscience, vol.277, issue.1, pp.24-33, 2002.
DOI : 10.1126/science.277.5329.1109

K. A. Schachter and R. S. Krauss, Chapter 3 Murine Models of Holoprosencephaly, Current Topics in Developmental Biology, vol.84, issue.08, pp.139-170, 2008.
DOI : 10.1016/S0070-2153(08)00603-0

N. Simonis, I. Migeotte, N. Lambert, C. Perazzolo, D. C. De-silva et al., mutations cause Hartsfield syndrome, the unique association of holoprosencephaly and ectrodactyly, Journal of Medical Genetics, vol.138, issue.255, pp.585-592, 2013.
DOI : 10.1016/j.cell.2009.05.028

B. D. Solomon, K. A. Bear, A. Wyllie, A. A. Keaton, and C. Dubourg,

, Genotypic and phenotypic analysis of 396 individuals with mutations in Sonic Hedgehog, Journal of Medical Genetics, vol.49, issue.7, pp.473-479

B. D. Solomon, S. Mercier, J. I. Vélez, D. E. Pineda-alvarez, A. Wyllie et al., Analysis of genotype-phenotype correlations in human holoprosencephaly, American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol.22, issue.1, pp.133-141, 2010.
DOI : 10.1212/WNL.59.7.1058

URL : https://hal.archives-ouvertes.fr/inserm-00461997

B. Stokes, S. I. Berger, B. A. Hall, K. Weiss, A. F. Martinez et al., deletions and incomplete penetrance in families affected by holoprosencephaly, Congenital Anomalies, vol.28, issue.1, pp.29-32, 2018.
DOI : 10.1093/bioinformatics/btr711

E. E. Storm, S. Garel, U. Borello, J. M. Hebert, S. Martinez et al.,

R. , Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers, Development, vol.133, issue.9, pp.1831-1844, 2006.

L. Sun, A. L. Carr, P. Li, J. Lee, M. Mcgregor et al., Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons, Biochemical and Biophysical Research Communications, vol.449, issue.4, pp.444-448, 2014.
DOI : 10.1016/j.bbrc.2014.05.048

X. Sun, E. N. Meyers, M. Lewandoski, and G. R. Martin, Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo, Genes & Development, vol.13, issue.14, pp.13-1834, 1999.
DOI : 10.1101/gad.13.14.1834

F. O-r-p-e-e-r-r-e-v-i-e-w and !. ,

!. and .. ,

!. &. , ;* $2$4'*7<9:;* !, pp.26-26