V. Kumar, Current Diagnosis and Management of Immune Related Adverse Events (irAEs) Induced by Immune Checkpoint Inhibitor Therapy, Frontiers in Pharmacology, vol.11, p.49, 2017.
DOI : 10.1016/S1470-2045(09)70334-1

M. G. Roemer, Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome, Journal of Clinical Oncology, vol.34, issue.23, pp.2690-2697, 2016.
DOI : 10.1200/JCO.2016.66.4482

M. R. Green, Constitutive AP-1 Activity and EBV Infection Induce PD-L1 in Hodgkin Lymphomas and Posttransplant Lymphoproliferative Disorders: Implications for Targeted Therapy, Clinical Cancer Research, vol.18, issue.6, pp.1611-1619, 2012.
DOI : 10.1158/1078-0432.CCR-11-1942

A. Younes, Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial, The Lancet Oncology, vol.17, issue.9, pp.1283-94, 2016.
DOI : 10.1016/S1470-2045(16)30167-X

Y. Liu, The mutational landscape of Hodgkin lymphoma cell lines determined by whole-exome sequencing, Leukemia, vol.28, issue.11, pp.2248-2251, 2014.
DOI : 10.1038/ng.2469

S. Poppema and L. Visser, Absence of HLA class I expression by Reed-Sternberg cells, Am. J. Pathol, vol.145, pp.37-41, 1994.

J. J. Oudejans, Analysis of major histocompatibility complex class I expression on Reed- Sternberg cells in relation to the cytotoxic T-cell response in Epstein-Barr virus-positive and negative Hodgkin's disease, Blood, vol.87, pp.3844-51, 1996.

M. G. Roemer, Classical Hodgkin Lymphoma with Reduced ??2M/MHC Class I Expression Is Associated with Inferior Outcome Independent of 9p24.1 Status, Cancer Immunology Research, vol.4, issue.11, pp.910-916, 2016.
DOI : 10.1158/2326-6066.CIR-16-0201

S. M. Ansell, PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin's Lymphoma, New England Journal of Medicine, vol.372, issue.4, pp.311-319, 2015.
DOI : 10.1056/NEJMoa1411087

P. Armand, Programmed Death-1 Blockade With Pembrolizumab in Patients With Classical Hodgkin Lymphoma After Brentuximab Vedotin Failure, Journal of Clinical Oncology, vol.34, issue.31, pp.3733-3739, 2016.
DOI : 10.1200/JCO.2016.67.3467

A. Engert, Nivolumab for relapsed/refractory classical Hodgkin lymphoma after autologous transplant: full results after extended follow-up of the multicohort muticenter phase 2 CHECKMATE 205 trial, Proceedings of the 22th annual congress of the EHA. Absract S412. in, 2017.

R. Chen, Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma, Journal of Clinical Oncology, vol.35, issue.19, pp.2125-2132, 2017.
DOI : 10.1200/JCO.2016.72.1316

1. A. and E. , Checkmate 205: A phase 2 study of nivolumab in patients with classical hodgkin lymphoma following autologous stem cell transplantation and brentuximab vedotin, Haematologica, vol.101, p.319, 2016.

R. W. Merryman, Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma, Blood, vol.129, issue.10, pp.1380-1388, 2017.
DOI : 10.1182/blood-2016-09-738385

URL : https://hal.archives-ouvertes.fr/hal-01517054

H. Beköz, Nivolumab for relapsed or refractory Hodgkin lymphoma: real-life experience, Annals of Oncology, vol.129, issue.10
DOI : 10.1182/blood-2016-09-738385

, Ann. Oncol, vol.28, pp.2496-2502, 2017.

C. Herbaux, Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin lymphoma, Blood, vol.129, issue.18, pp.2471-2478, 2017.
DOI : 10.1182/blood-2016-11-749556

URL : https://hal.archives-ouvertes.fr/hal-01529931

B. M. Haverkos, PD-1 blockade for relapsed lymphoma post???allogeneic hematopoietic cell transplant: high response rate but frequent GVHD, Blood, vol.130, issue.2, pp.221-228, 2017.
DOI : 10.1182/blood-2017-01-761346

H. Kantarjian, Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia, New England Journal of Medicine, vol.376, issue.9, pp.836-847, 2017.
DOI : 10.1056/NEJMoa1609783

M. Goebeler, Bispecific T-Cell Engager (BiTE) Antibody Construct Blinatumomab for the Treatment of Patients With Relapsed/Refractory Non-Hodgkin Lymphoma: Final Results From a Phase I Study, Journal of Clinical Oncology, vol.34, issue.10, pp.1104-1115, 2016.
DOI : 10.1200/JCO.2014.59.1586

A. Viardot, Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma, Blood, vol.127, issue.11, pp.1410-1417, 2016.
DOI : 10.1182/blood-2015-06-651380

R. Bannerji, Phase 1 study of REGN1979, an Anti-CD20 x Anti-CD3 bispecific monoclonal antibody, in patients with CD20+ B-cell malignancies previously treated with CD20-directed antibody therapy, Blood, vol.128, p.183, 2016.

F. R. Schuster, Immunotherapy with the trifunctional anti-CD20 x anti-CD3 antibody FBTA05 (Lymphomun) in paediatric high-risk patients with recurrent CD20-positive B cell malignancies, British Journal of Haematology, vol.83, issue.Suppl 1, pp.90-102, 2015.
DOI : 10.1182/blood-2004-03-0973

URL : http://onlinelibrary.wiley.com/doi/10.1111/bjh.13242/pdf

A. Rothe, A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma, Blood, vol.125, issue.26, pp.4024-4031, 2015.
DOI : 10.1182/blood-2014-12-614636

B. G. Till, Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells, Blood, vol.112, issue.6, pp.2261-2271, 2008.
DOI : 10.1182/blood-2007-12-128843

URL : http://www.bloodjournal.org/content/bloodjournal/112/6/2261.full.pdf

S. L. Maude, Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia, New England Journal of Medicine, vol.371, issue.16, pp.1507-1517, 2014.
DOI : 10.1056/NEJMoa1407222

URL : http://europepmc.org/articles/pmc4267531?pdf=render

R. A. Gardner, Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults, Blood, vol.129, pp.3322-3331, 2017.
DOI : 10.1182/blood-2017-02-769208

URL : http://www.bloodjournal.org/content/129/25/3322.full.pdf

F. S. Food, &. Drug-administration, and J. N. , Press Announcements -FDA approval brings first gene therapy to the United States at <https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm574058.htm> 46. FDA -U.S. Food & Drug Administration. FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma. (2017). at <https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm581216 Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor, J. Clin. Oncol, vol.33, pp.540-549, 2015.

J. N. Brudno, Allogeneic T Cells That Express an Anti-CD19 Chimeric Antigen Receptor Induce Remissions of B-Cell Malignancies That Progress After Allogeneic Hematopoietic Stem-Cell Transplantation Without Causing Graft-Versus-Host Disease, Journal of Clinical Oncology, vol.34, issue.10, pp.1112-1133, 2016.
DOI : 10.1200/JCO.2015.64.5929

URL : http://europepmc.org/articles/pmc4872017?pdf=render

J. N. Kochenderfer, Lymphoma Remissions Caused by Anti-CD19 Chimeric Antigen Receptor T Cells Are Associated With High Serum Interleukin-15 Levels, Journal of Clinical Oncology, vol.35, issue.16, pp.1803-1813, 2017.
DOI : 10.1200/JCO.2016.71.3024

M. Crump, Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study, Blood, vol.243, pp.2017-2020, 2017.
DOI : 10.1182/blood-2017-03-769620

URL : https://hal.archives-ouvertes.fr/hal-01829026

S. S. Neelapu, AXICABTAGENE CILOLEUCEL (AXI-CEL; KTE-C19) IN PATIENTS WITH REFRACTORY AGGRESSIVE NON-HODGKIN LYMPHOMAS (NHL): PRIMARY RESULTS OF THE PIVOTAL TRIAL ZUMA-1, Hematological Oncology, vol.35, pp.28-28, 2017.
DOI : 10.1002/hon.2437_7

S. S. Neelapu, Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma, New England Journal of Medicine, vol.377, issue.26, pp.2531-2544, 2017.
DOI : 10.1056/NEJMoa1707447

S. J. Schuster, GLOBAL PIVOTAL PHASE 2 TRIAL OF THE CD19-TARGETED THERAPY CTL019 IN ADULT PATIENTS WITH RELAPSED OR REFRACTORY (R/R) DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL)-AN INTERIM ANALYSIS, Hematological Oncology, vol.35, pp.27-27, 2017.
DOI : 10.1002/hon.2437_6

S. J. Schuster, Primary Analysis of Juliet: A Global, Pivotal, Phase 2 Trial of CTL019 in Adult Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma, Blood, vol.130, 2017.

J. Abramson, Refractory (R/R) aggressive B-NHL treated with the CD19-directed CAR T CELL product JCAR017 (TRANSCEND NHL 001), High CR rates in Relapsed Hematol. Oncol, vol.35, pp.138-138, 2017.
DOI : 10.1002/hon.2437_127

URL : http://onlinelibrary.wiley.com/doi/10.1002/hon.2437_127/pdf

J. S. Abramson, High Durable CR Rates in Relapsed/Refractory (R/R) Aggressive B- NHL Treated with the CD19-Directed CAR T Cell Product JCAR017 (TRANSCEND NHL 001): Defined Composition Allows for Dose-Finding and Definition of Pivotal Cohort, Blood, vol.130, 2017.

E. A. Chong, PD-1 blockade modulates chimeric antigen receptor (CAR)???modified T cells: refueling the CAR, Blood, vol.129, issue.8, pp.1039-1041, 2017.
DOI : 10.1182/blood-2016-09-738245

URL : http://www.bloodjournal.org/content/bloodjournal/129/8/1039.full.pdf

D. N. Khalil, E. L. Smith, R. J. Brentjens, and J. D. Wolchok, The future of cancer treatment: immunomodulation, CARs and combination immunotherapy, Nature Reviews Clinical Oncology, vol.90, issue.5, pp.273-290, 2016.
DOI : 10.1038/nature12477

URL : http://europepmc.org/articles/pmc5551685?pdf=render

J. S. Abramson, Anti-CD19 CAR T Cells in CNS Diffuse Large-B-Cell Lymphoma, New England Journal of Medicine, vol.377, issue.8, pp.783-784, 2017.
DOI : 10.1056/NEJMc1704610

C. Wang, Autologous T Cells Expressing CD30 Chimeric Antigen Receptors for Relapsed or Refractory Hodgkin Lymphoma: An Open-Label Phase I Trial, Clinical Cancer Research, vol.23, issue.5, pp.1156-1166, 2017.
DOI : 10.1158/1078-0432.CCR-16-1365

URL : http://clincancerres.aacrjournals.org/content/clincanres/23/5/1156.full.pdf

N. Jain, Nivolumab Combined with Ibrutinib for CLL and Richter Transformation: A Phase II Trial, Blood, vol.128, 2016.

S. J. Schuster, Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas, New England Journal of Medicine, vol.377, issue.26, pp.2545-2554, 2017.
DOI : 10.1056/NEJMoa1708566

C. J. Turtle, CD19-specific chimeric antigen receptor???modified T cells, Science Translational Medicine, vol.34, issue.355, pp.355-116, 2016.
DOI : 10.1182/blood-2014-05-552729

X. Wang, Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL, Blood, vol.127, issue.24, pp.2980-2990, 2016.
DOI : 10.1182/blood-2015-12-686725

F. L. Locke, Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma, Molecular Therapy, vol.25, issue.1, pp.285-295, 2017.
DOI : 10.1016/j.ymthe.2016.10.020

C. A. Ramos, Clinical and immunological responses after CD30-specific chimeric antigen receptor???redirected lymphocytes, Journal of Clinical Investigation, vol.127, issue.9, pp.3462-3471, 2017.
DOI : 10.1172/JCI94306DS1

URL : http://www.jci.org/articles/view/94306/files/pdf

B. Frey, Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases, Immunological Reviews, vol.6, issue.721-732, pp.231-248, 2017.
DOI : 10.1371/journal.pmed.1000010

E. A. Reits, Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy, The Journal of Experimental Medicine, vol.123, issue.5, pp.1259-71, 2006.
DOI : 10.1126/science.274.5284.94

URL : http://jem.rupress.org/content/jem/203/5/1259.full.pdf

R. Vereecque, gamma-Ray irradiation induces B7.1 expression in myeloid leukaemic cells, British Journal of Haematology, vol.58, issue.4, pp.825-856, 2000.
DOI : 10.1089/jir.1989.9.195

R. Spisek, Bortezomib enhances dendritic cell (DC) mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications, Blood, vol.109, issue.11, pp.4839-4884, 2007.
DOI : 10.1182/blood-2006-10-054221

N. Casares, Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death, The Journal of Experimental Medicine, vol.157, issue.12, pp.1691-701, 2005.
DOI : 10.1073/pnas.93.18.9730

URL : http://jem.rupress.org/content/jem/202/12/1691.full.pdf

F. Ghiringhelli, Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients, Cancer Immunology, Immunotherapy, vol.95, issue.5, pp.641-649, 2007.
DOI : 10.4049/jimmunol.176.5.2722

A. Soeda, Regular Dose of Gemcitabine Induces an Increase in CD14+ Monocytes and CD11c+ Dendritic Cells in Patients with Advanced Pancreatic Cancer, Japanese Journal of Clinical Oncology, vol.95, issue.12, pp.797-806, 2009.
DOI : 10.1111/j.1349-7006.2004.tb02490.x

A. R. De-biasi, J. Villena-vargas, and P. S. Adusumilli, Cisplatin-Induced Antitumor Immunomodulation: A Review of Preclinical and Clinical Evidence, Clinical Cancer Research, vol.20, issue.21, pp.5384-91, 2014.
DOI : 10.1158/1078-0432.CCR-14-1298

D. G. Denardo, Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy, Cancer Discovery, vol.1, issue.1, pp.54-67, 2011.
DOI : 10.1158/2159-8274.CD-10-0028

S. H. Lim, Effect of neoadjuvant chemoradiation on tumor-infiltrating/associated lymphocytes in locally advanced rectal cancers, Anticancer Res, vol.34, pp.6505-6518, 2014.

M. Lefebvre, S. W. Krause, M. Salcedo, and A. Nardin, Ex Vivo-activated Human Macrophages Kill Chronic Lymphocytic Leukemia Cells in the Presence of Rituximab: Mechanism of Antibody-dependent Cellular Cytotoxicity and Impact of Human Serum, Journal of Immunotherapy, vol.29, issue.4, pp.388-97, 2006.
DOI : 10.1097/01.cji.0000203081.43235.d7

X. Zhou, W. Hu, and X. Qin, The Role of Complement in the Mechanism of Action of Rituximab for B-Cell Lymphoma: Implications for Therapy, The Oncologist, vol.13, issue.9, pp.954-66, 2008.
DOI : 10.1634/theoncologist.2008-0089

P. Müller, Microtubule-Depolymerizing Agents Used in Antibody-Drug Conjugates Induce Antitumor Immunity by Stimulation of Dendritic Cells, Cancer Immunology Research, vol.2, issue.8, pp.741-55, 2014.
DOI : 10.1158/2326-6066.CIR-13-0198

E. I. Buchbinder and A. Desai, CTLA-4 and PD-1 Pathways, American Journal of Clinical Oncology, vol.39, issue.1, pp.98-106, 2016.
DOI : 10.1097/COC.0000000000000239

R. Houot, Therapeutic effect of CD137 immunomodulation in lymphoma and its enhancement by Treg depletion, Blood, vol.114, issue.16, pp.3431-3439, 2009.
DOI : 10.1182/blood-2009-05-223958

G. Nocentini, S. Ronchetti, M. G. Petrillo, and C. Riccardi, Pharmacological modulation of GITRL/GITR system: therapeutic perspectives, British Journal of Pharmacology, vol.105, issue.7, pp.2089-99, 2012.
DOI : 10.1073/pnas.0711206105

L. T. Nguyen and P. S. Ohashi, Clinical blockade of PD1 and LAG3 ??? potential mechanisms of action, Nature Reviews Immunology, vol.65, issue.1, pp.45-56, 2015.
DOI : 10.1038/nature13954

P. Ellmark, S. M. Mangsbo, C. Furebring, T. H. Tötterman, and P. Norlén, Kick-starting the cancer-immunity cycle by targeting CD40, OncoImmunology, vol.4, issue.7, p.1011484, 2015.
DOI : 10.1016/j.it.2014.05.002

L. He, Agonist Anti-Human CD27 Monoclonal Antibody Induces T Cell Activation and Tumor Immunity in Human CD27-Transgenic Mice, The Journal of Immunology, vol.191, issue.8, pp.4174-4183, 2013.
DOI : 10.4049/jimmunol.1300409

D. J. Roberts, Control of Established Melanoma by CD27 Stimulation Is Associated With Enhanced Effector Function and Persistence, and Reduced PD-1 Expression of Tumor Infiltrating CD8+ T Cells, Journal of Immunotherapy, vol.33, issue.8, pp.769-779, 2010.
DOI : 10.1097/CJI.0b013e3181ee238f

A. Thielens, E. Vivier, and F. Romagné, NK cell MHC class I specific receptors (KIR): from biology to clinical intervention, Current Opinion in Immunology, vol.24, issue.2, pp.239-245, 2012.
DOI : 10.1016/j.coi.2012.01.001

URL : https://hal.archives-ouvertes.fr/hal-00685898

M. P. Chao, Anti-CD47 Antibody Synergizes with Rituximab to Promote Phagocytosis and Eradicate Non-Hodgkin Lymphoma, Cell, vol.142, issue.5, pp.699-713, 2010.
DOI : 10.1016/j.cell.2010.07.044

X. Liu, CD47 blockade triggers T cell???mediated destruction of immunogenic tumors, Nature Medicine, vol.76, issue.10, pp.1209-1215, 2015.
DOI : 10.1084/jem.193.7.855

J. B. Bartlett, K. Dredge, and A. G. Dalgleish, The evolution of thalidomide and its IMiD derivatives as anticancer agents, Nature Reviews Cancer, vol.18, issue.4, pp.314-322, 2004.
DOI : 10.1016/S0167-5699(97)01118-3

C. Galustian, The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells, Cancer Immunology, Immunotherapy, vol.6, issue.1, pp.1033-1078, 2009.
DOI : 10.4049/jimmunol.172.6.3580

D. H. Munn and A. L. Mellor, Indoleamine 2,3-dioxygenase and tumor-induced tolerance, Journal of Clinical Investigation, vol.117, issue.5, pp.1147-54, 2007.
DOI : 10.1172/JCI31178

I. Sagiv-barfi, H. E. Kohrt, L. Burckhardt, D. K. Czerwinski, and R. Levy, Ibrutinib enhances the antitumor immune response induced by intratumoral injection of a TLR9 ligand in mouse lymphoma, Blood, vol.125, issue.13, pp.2079-86, 2015.
DOI : 10.1182/blood-2014-08-593137

J. A. Dubovsky, Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes, Blood, vol.122, issue.15, pp.2539-2588, 2013.
DOI : 10.1182/blood-2013-06-507947

O. Donnell, J. S. Massi, D. Teng, M. W. Mandala, and M. , PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin, Cancer Biol, 2017.

K. B. Chiappinelli, Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses, Cell, vol.162, issue.5, pp.974-86, 2015.
DOI : 10.1016/j.cell.2015.07.011

K. Cao, Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity, Oncogene, vol.161, issue.49, pp.5960-5970, 2015.
DOI : 10.1084/jem.182.2.459

A. C. West, An Intact Immune System Is Required for the Anticancer Activities of Histone Deacetylase Inhibitors, Cancer Research, vol.73, issue.24, pp.7265-76, 2013.
DOI : 10.1158/0008-5472.CAN-13-0890

D. Peng, Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy, Nature, vol.80, issue.7577, pp.249-253, 2015.
DOI : 10.1093/biomet/80.3.557

D. Zingg, The Histone Methyltransferase Ezh2 Controls Mechanisms of Adaptive Resistance to Tumor Immunotherapy, Cell Reports, vol.20, issue.4, pp.854-867, 2017.
DOI : 10.1016/j.celrep.2017.07.007

H. Yang, STAT3 Inhibition Enhances the Therapeutic Efficacy of Immunogenic Chemotherapy by Stimulating Type 1 Interferon Production by Cancer Cells, Cancer Research, vol.75, issue.18, pp.3812-3822, 2015.
DOI : 10.1158/0008-5472.CAN-15-1122

S. Goel, CDK4/6 inhibition triggers anti-tumour immunity, Nature, vol.16, issue.7668, pp.471-475, 2017.
DOI : 10.1093/dnares/dsp011

URL : http://europepmc.org/articles/pmc5570667?pdf=render

J. S. Brown, R. Sundar, and J. Lopez, Combining DNA damaging therapeutics with immunotherapy: more haste, less speed, British Journal of Cancer, vol.107, issue.3, 2017.
DOI : 10.1111/cas.13072

URL : https://www.nature.com/articles/bjc2017376.pdf

S. Kaczanowska, A. M. Joseph, and E. Davila, in cancer immunotherapy, Journal of Leukocyte Biology, vol.11, issue.6, pp.847-63, 2013.
DOI : 10.1038/nrd3775

R. Vargas, T. Benoit-lizon, I. Apetoh, and L. , Rationale for stimulator of interferon genes???targeted cancer immunotherapy, European Journal of Cancer, vol.75, pp.86-97, 2017.
DOI : 10.1016/j.ejca.2016.12.028

X. Zhou and Z. Jiang, STING-mediated DNA sensing in cancer immunotherapy, Science China Life Sciences, vol.72, issue.6, pp.563-574, 2017.
DOI : 10.1158/0008-5472.CAN-11-4216

S. T. Workenhe and K. L. Mossman, Oncolytic Virotherapy and Immunogenic Cancer Cell Death: Sharpening the Sword for Improved Cancer Treatment Strategies, Molecular Therapy, vol.22, issue.2, pp.251-256, 2014.
DOI : 10.1038/mt.2013.220

URL : https://doi.org/10.1038/mt.2013.220

H. Zhou, The oncolytic peptide LTX-315 triggers immunogenic cell death, Cell Death & Disease, vol.6, issue.3, pp.2134-2134, 2016.
DOI : 10.1038/cdd.2014.137

URL : https://hal.archives-ouvertes.fr/hal-01310342

B. Sveinbjørnsson, K. A. Camilio, B. E. Haug, and Ø. Rekdal, LTX-315: a first-in-class oncolytic peptide that reprograms the tumor microenvironment, Future Medicinal Chemistry, vol.6, issue.23, pp.1339-1344, 2017.
DOI : 10.1126/science.aaa8172

J. Wu, J. Fu, M. Zhang, and D. Liu, AFM13: a first-in-class tetravalent bispecific anti-CD30/CD16A antibody for NK cell-mediated immunotherapy, Journal of Hematology & Oncology, vol.6, issue.5, p.96, 2015.
DOI : 10.4161/mabs.29445

URL : https://jhoonline.biomedcentral.com/track/pdf/10.1186/s13045-015-0188-3?site=jhoonline.biomedcentral.com

E. J. Smith, A novel, native-format bispecific antibody triggering T-cell killing of B-cells is robustly active in mouse tumor models and cynomolgus monkeys, Scientific Reports, vol.53, issue.1, p.17943, 2015.
DOI : 10.1002/anie.201405353

L. Cherkassky, Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition, Journal of Clinical Investigation, vol.126, issue.8, pp.3130-3174, 2016.
DOI : 10.1172/JCI83092DS1

URL : http://europepmc.org/articles/pmc4966328?pdf=render

I. Melero, R. Vile, and M. Colombo, Feeding dendritic cells with tumor antigens: self-service buffet or ?? la carte?, Gene Therapy, vol.5, issue.14, pp.1167-1170, 2000.
DOI : 10.1038/7403

URL : http://www.nature.com/gt/journal/v7/n14/pdf/3301234a.pdf

C. J. Melief, T. Van-hall, R. Arens, F. Ossendorp, and S. H. Van-der-burg, Therapeutic cancer vaccines, Journal of Clinical Investigation, vol.125, issue.9, pp.3401-3412, 2015.
DOI : 10.1172/JCI80009

B. S. Parker, J. Rautela, and P. J. Hertzog, Antitumour actions of interferons: implications for cancer therapy, Nature Reviews Cancer, vol.10, issue.3, pp.131-144, 2016.
DOI : 10.1200/JCO.1992.10.10.1540