J. M. Hartmann, C. Boulet, and D. Robert, Collisional effects on molecular spectra: Laboratory experiments and models, consequences for applications, 2008.

M. Petersen, J. Viallon, P. Moussay, and R. I. Wielgosz, Relative measurements of ozone absorption crosssections at three wavelengths in the Hartley band using a well-defined UV laser beam, J Geophys Res Atmos, vol.117, p.5301, 2012.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy, Rev Sci Instruments, vol.75, pp.849-63, 2004.

D. A. Long, A. Cygan, R. D. Van-zee, M. Okumura, C. E. Miller et al., Frequency-stabilized cavity ring-down spectroscopy, Chem Phys Lett, vol.536, pp.1-8, 2012.

J. Burkart, D. Romanini, and S. Kassi, Optical feedback frequency stabilized cavity ring-down spectroscopy, Opt Lett, vol.39, pp.4695-4703, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01109330

J. Burkart and S. Kassi, Absorption line metrology by optical feedback frequency-stabilized cavity ringdown spectroscopy, Appl Phys B, vol.119, pp.97-109, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252159

J. Domys?awska, S. Wójtewicz, D. Lisak, A. Cygan, F. Ozimek et al., Cavity ring-down spectroscopy of the oxygen B-band with absolute frequency reference to the optical frequency comb, J Chem Phys, vol.136, p.24201, 2012.

V. T. Sironneau and J. T. Hodges, Line shapes, positions and intensities of water transitions near 1.28 ?m, J Quant Spectrosc Radiat Transf, vol.152, pp.1-15, 2015.

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges et al., Precise methane absorption measurements in the 1.64 ?m spectral region for the MERLIN mission, J Geophys Res Atmos, vol.121, pp.7360-70, 2016.

Z. D. Reed and J. T. Hodges, Line shape parameters of helium-broadened 12 C 16 O in the 3 ? 0 overtone transition near 1.57 µm, J Quant Spectrosc Radiat Transf, vol.203, pp.300-308, 2017.

A. Cygan, D. Lisak, S. Wojtewicz, J. Domyslawska, J. T. Hodges et al., High signal to noise ratio laser technique for accurate measurements of spectral line parameters, Phys Rev A, vol.85, p.22508, 2012.

H. Lin, Z. D. Reed, V. T. Sironneau, and J. T. Hodges, Cavity ring-down spectrometer for high-fidelity molecular absorption measurements, J Quant Spectrosc Radiat Transf, vol.161, pp.11-20, 2015.

A. Cygan, P. Wcis?o, S. Wójtewicz, P. Mas?owski, J. T. Hodges et al., One-dimensional frequency-based spectroscopy, Opt Express, vol.23, pp.14472-86, 2015.

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska et al., Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser, Opt Lett, vol.39, pp.2688-90, 2014.

T. Gherman and D. Romanini, Mode-locked cavity-enhanced absorption spectroscopy, Opt. Express, vol.10, pp.1033-1075, 2002.
DOI : 10.1109/eqec.2003.1314105

URL : https://hal.archives-ouvertes.fr/hal-00330623

M. J. Thorpe, D. Balslev-clausen, M. S. Kirchner, and J. Ye, Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis, Opt. Express, vol.16, pp.2387-97, 2008.
DOI : 10.1364/oe.16.002387

URL : http://arxiv.org/pdf/0708.3205

. De-ghellinck-d'elseghem, X. Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos et al., Cavity enhanced FTIR spectroscopy using a femto OPO absorption source, Mol Phys, vol.109, pp.2173-2182, 2011.

R. Grilli, G. Méjean, A. Alrahman, C. Ventrillard, I. Kassi et al., Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise, Phys Rev A, vol.85, p.51804, 2012.
DOI : 10.1103/physreva.85.051804

URL : https://hal.archives-ouvertes.fr/hal-00976753

A. Foltynowicz, P. Mas?owski, A. J. Fleisher, B. J. Bjork, and J. Ye, Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide, Appl Phys B, vol.110, pp.163-75, 2013.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra, Phys Rev Lett, vol.99, p.263902, 2007.
DOI : 10.1103/physrevlett.99.263902

URL : http://arxiv.org/pdf/0706.1582

L. Rutkowski and J. Morville, Continuous Vernier filtering of an optical frequency comb for broadband cavity-enhanced molecular spectroscopy, J Quant Spectrosc Radiat Tranf, vol.187, pp.204-218, 2017.
DOI : 10.1016/j.jqsrt.2016.09.021

URL : http://arxiv.org/pdf/1603.03004

A. J. Fleisher and D. A. Long, Direct absorption spectroscopy with electro-optic frequency combs, Presentation P2643, 72 nd International Symposium on Molecular Spectroscopy, pp.19-23, 2017.
DOI : 10.15278/isms.2017.ri11

. Da-jackson, The spherical Fabry-Perot interferometer as an instrument of high resolving power for use with external or with internal atomic beams, Proc R Soc London A, vol.263, pp.289-308, 1961.

O. 'keefe, A. Deacon, and D. , Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources, Rev Sci Instrum, vol.59, pp.2544-51, 1988.

, Cavity-enhanced spectroscopy and sensing, 2014.

, Cavity ring-down spectroscopy: techniques and applications, 2009.

H. Kogelnik, On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation, Appl Opt, vol.4, pp.1562-1571, 1965.

A. Yariv, Quantum Electronics, 1989.

K. K. Lehmann, Dispersion and cavity-ringdown spectroscopy, Chap. 8 Cavity-Ringdown Spectroscopy, vol.720, 1999.
DOI : 10.1021/bk-1999-0720.ch008

D. Gatti, T. Sala, R. Gotti, L. Cocola, L. Poletto et al., Comb-locked cavity ring-down spectrometer, J Chem Phys, vol.142, p.74201, 2015.
DOI : 10.1063/1.4907939

J. Burkart, T. Sala, S. Kassi, D. Romanini, and M. Marangon, Optical phase cloning by an integrated dualparallel Mach-Zehnder modulator, Opt Lett, vol.40, pp.816-825, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252157

A. Hallal, S. Bouhier, and F. Bodu, Synthesis of a 30-Hz linewidth wave tunable over 500 GHz, IEEE Trans Microwave Theory and Techn, vol.65, pp.1367-71, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01427869

G. Galzerano, E. Fasci, A. Castrillo, N. Colluccelli, L. Gianfrani et al., Absolute frequency stabilization of an extended-cavity diode laser against Doppler-free H 2 17 O absorption lines at 1.384?m, Opt Lett, vol.34, pp.3107-3116, 2009.

O. and K. , A Integrated cavity output analysis of ultra-weak absorption, Chem Phys Lett, vol.293, pp.331-337, 1998.

J. B. Paul, L. Lapson, and J. G. Anderson, Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment, Appl Opt, vol.40, pp.4904-4914, 2001.
DOI : 10.1364/ao.40.004904

R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford et al., Laser phase and frequency stabilization using an optical resonator, Appl Phys B, vol.31, pp.97-105, 1983.
DOI : 10.1007/bf00702605

D. A. Shaddock, M. B. Gray, and D. E. Mcclelland, Frequency locking a laser to an optical cavity by use of spatial mode interference, Opt Lett, vol.24, pp.1499-1501, 1999.

J. Ye, L. S. Ma, and J. L. Hall, Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy, J Opt Soc Am B, vol.15, pp.6-15, 1998.
DOI : 10.1364/josab.15.000006

URL : https://authors.library.caltech.edu/5475/1/YEJjosab98.pdf

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking, Appl Phys B, vol.80, pp.1027-1065, 2005.
DOI : 10.1007/s00340-005-1828-z

URL : https://hal.archives-ouvertes.fr/hal-01103503

S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard et al., Looking into the volcano with a Mid-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy, Opt Express, vol.14, pp.11442-52, 2006.
DOI : 10.1364/oe.14.011442

URL : https://hal.archives-ouvertes.fr/hal-00328196

I. Courtillot, J. Morville, V. Motto-ros, and D. Romanini, Sub-ppb NO 2 detection by optical feedback cavityenhanced absorption spectroscopy with a blue diode laser, Appl Phys B, vol.85, pp.407-419, 2006.
DOI : 10.1007/s00340-006-2354-3

G. Maisons, P. Gorrotxategi-carbajo, M. Carras, and D. Romanini, Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser, Opt Lett, vol.35, pp.3607-3616, 2010.
DOI : 10.1364/ol.35.003607

URL : https://hal.archives-ouvertes.fr/hal-00996431

L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel et al., Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO 2 trace analysis, Appl Phys B, vol.122, p.247, 2016.
DOI : 10.1007/s00340-016-6502-0

URL : https://hal.archives-ouvertes.fr/hal-01430406

J. Landsberg, D. Romanini, and E. Kerstel, Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses, Opt Lett, vol.39, pp.1795-1803, 2014.
DOI : 10.1364/ol.39.001795

URL : https://hal.archives-ouvertes.fr/hal-00996044

S. Kassi and A. Campargue, Cavity ring down spectroscopy with 5× 10-13 cm-1 sensitivity, J Chem Phys, vol.137, p.234201, 2012.
DOI : 10.1063/1.4769974

URL : https://hal.archives-ouvertes.fr/hal-01005662

D. Lisak, J. T. Hodges, and R. Ciury?o, Comparison of semiclassical line-shape models to rovibrational H 2 O spectra measured by frequency-stabilized cavity ring-down spectroscopy, Phys Rev A, vol.73, p.12507, 2006.
DOI : 10.1103/physreva.73.012507

R. Z. Martínez, M. Metsälä, O. Vaittinen, T. Lantta, and L. Halonen, Laser-locked, high-repetition-rate cavity ringdown spectrometer, J Opt Soc Am B, vol.23, pp.727-767, 2006.

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz et al., Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer, Rev Sci Instrum, vol.82, p.63107, 2011.
DOI : 10.1063/1.3595680

A. Cygan, D. Lisak, S. Wójtewicz, J. Domys?awska, R. S. Trawi?ski et al., Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy, Meas Sci Technol, vol.22, p.115303, 2011.

A. Cygan, S. Wójtewicz, J. Domys?awska, P. Mas?owski, K. Bielska et al., Spectral line-shapes investigation with Pound-Drever-Hall-locked frequency-stabilized cavity ring-down Spectroscopy, Eur Phys J-ST, vol.222, pp.2119-2142, 2013.
DOI : 10.1140/epjst/e2013-01990-0

G. W. Truong, K. O. Douglass, S. E. Maxwell, R. D. Van-zee, D. F. Plusquellic et al., Frequency-agile, rapid scanning spectroscopy, Nature Photonics, vol.7, pp.532-536, 2013.
DOI : 10.1038/nphoton.2013.98

URL : https://zenodo.org/record/1233473/files/article.pdf

J. Burkart, D. Romanini, and S. Kassi, Optical feedback stabilized laser tuned by single-sideband modulation, Opt Lett, vol.38, pp.2062-2066, 2013.
DOI : 10.1364/ol.38.002062

URL : https://hal.archives-ouvertes.fr/hal-00996540

J. Burkart, T. Sala, D. Romanini, M. Marangoni, A. Campargue et al., Communication: Saturated CO 2 absorption near 1.6 µm for kilohertz-accuracy transition frequencies, J Chem Phys, vol.142, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252166

T. Stoltmann, M. Casado, M. Daëron, A. Landais, and K. S. Direct, Precise measurements of Isotopologue Abundance Ratios in CO 2 Using Molecular Absorption Spectroscopy: Application to ? 17 O, Anal Chem, vol.89, pp.10129-10161, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01766029

P. Maddaloni, P. Malara, D. Tommasi, E. , D. Rosa et al., Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D 2 around 3 ?m, J Chem Phys, vol.133, p.154317, 2010.

G. W. Truong, D. A. Long, A. Cygan, D. Lisak, R. D. Van-zee et al., Comb-linked, cavity ring-down spectroscopy measurements of molecular transition frequencies at the kHz-level, J Chem Phys, vol.138, p.94201, 2013.

D. Mondelain, T. Sala, S. Kassi, D. Romanini, M. Marangoni et al., Broadband and highly sensitive comb-assisted cavity ring down spectroscopy of CO near 1.57 ?m with sub-MHz frequency accuracy, J Quant Spectrosc Radiat Transf, vol.154, pp.35-43, 2015.
DOI : 10.1016/j.jqsrt.2014.11.021

URL : https://hal.archives-ouvertes.fr/hal-01252150

D. Mondelain, S. N. Mikhailenko, E. V. Karlovets, S. Béguier, S. Kassi et al., Comb-Assisted Cavity Ring Down Spectroscopy of 17 O enriched water between 7443 and 7921 cm-1, J Quant Spectrosc Radiat Transf, vol.203, pp.206-218, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01765947

S. N. Mikhailenko, D. Mondelain, E. V. Karlovets, S. Kassi, and A. Campargue, Comb-Assisted Cavity Ring Down Spectroscopy of 17 O enriched water between 6667 and 7443 cm-1, J Quant Spectrosc Radiat Transf, vol.206, pp.163-71, 2018.
DOI : 10.1016/j.jqsrt.2017.10.023

URL : https://hal.archives-ouvertes.fr/hal-01765935

T. A. Odintsova, E. Fasci, L. Moretti, E. J. Zak, O. L. Polyansky et al., Highly accurate intensity factors of pure CO 2 lines near 2 ?m, J Chem Phys, vol.146, p.244309, 2017.
DOI : 10.1063/1.4989925

K. Yamada, A. Onae, F. Hong, H. Inaba, H. Matsumoto et al., High precision line profile measurements on 13 C acetylene using near infrared frequency comb spectrometer, J Mol Spectrosc, vol.249, pp.95-99, 2008.
DOI : 10.1016/j.jms.2008.03.002

K. Yamada, A. Onae, F. L. Hong, H. Inaba, and T. Shimizu, Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser, C R Physique, vol.10, pp.907-922, 2009.

T. Sala, S. Kassi, J. Burkart, M. Marangoni, and D. Romanini, Comb-assisted coherence transfer between laser fields

A. Cygan, D. Lisak, P. Morzy?ski, M. Bober, M. Zawada et al., Cavity mode-width spectroscopy with widely tunable ultra narrow laser, Opt Express, vol.21, pp.29744-54, 2013.
DOI : 10.1364/oe.21.029744

D. A. Long, G. W. Truong, R. D. Van-zee, D. F. Plusquellic, and J. T. Hodges, Frequency-agile, rapid scanning spectroscopy: Absorption sensitivity of 2×10-12 cm-1 Hz-1/2 with a tunable diode laser, Appl Phys B, vol.114, pp.489-95, 2014.

A. Cygan, P. Wcis?o, S. Wójtewicz, P. Mas?owski, R. S. Trawinski et al., Alternative approaches to cavity enhanced absorption spectroscopy, J Phys Conf Ser, vol.548, p.12024, 2014.
DOI : 10.1088/1742-6596/548/1/012024

URL : http://iopscience.iop.org/article/10.1088/1742-6596/548/1/012024/pdf

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcis?o et al., Absolute molecular transitions frequencies measured by three cavity-enhanced spectroscopy techniques, J Chem Phys, vol.144, p.214202, 2016.
DOI : 10.1063/1.4952651

A. Cygan, S. Wójtewicz, M. Zaborowski, P. Wcis?o, R. Guo et al., One-dimensional cavity mode-dispersion spectroscopy for validation of CRDS technique, Meas Sci Technol, vol.27, p.45501, 2016.
DOI : 10.1088/0957-0233/27/4/045501

S. Tan, P. Berceau, S. Saraf, and J. A. Lipa, Measuring finesse and gas absorption with Lorentzian recovery spectroscopy, Opt Express, vol.25, pp.7645-56, 2017.
DOI : 10.1364/oe.25.007645

L. Rutkowski, A. C. Johansson, G. Zhao, T. Hausmaninger, A. Khodabakhsh et al., Sensitive and broadband measurement of dispersion in a cavity using a Fourier transform spectrometer with kHz resolution, Opt Ecpress, vol.25, pp.21711-21719, 2017.

D. Charczun, G. Kowzan, A. Cygan, K. Kropid?owska, J. Zawitowska et al., Fourier transform spectrometry with kHz-level resolution for broadband cavity mode-width spectroscopy, 12th International User Meeting, 2017.

P. Mas?owski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan et al., Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs, Phys Rev A, vol.93, p.21802, 2016.

D. Lisak, A. Cygan, S. Wójtewicz, P. Wcis?o, M. Zaborowski et al., Spectral line-shape study by cavity-enhanced complex refractive index spectroscopy, J Phys Conf Ser, vol.810, p.12007, 2017.
DOI : 10.1088/1742-6596/810/1/012007

URL : http://iopscience.iop.org/article/10.1088/1742-6596/810/1/012007/pdf

A. Foltynowicz, P. Mas?owski, T. Ban, F. Adler, K. C. Cossel et al., Optical frequency comb spectroscopy, Faraday Discuss, vol.150, pp.23-31, 2011.
DOI : 10.1039/c1fd00005e

S. Schiller, Spectrometry with frequency combs, Opt Lett, vol.27, pp.766-774, 2002.

F. Keilmann, C. Gohle, and R. Holzwarth, Time-domain mid-infrared frequeny-comb spectrometer, Opt Lett, vol.29, pp.1542-1546, 2004.

A. Schliesser, M. Brehm, F. Keilmann, and D. W. Van-der-weide, Frequency-comb infrared spectrometer for rapid, remote chemical sensing, Opt Express, vol.13, pp.9029-9067, 2005.

M. Brehm, A. Schliesser, and F. Keilmann, Spectroscopic near-field microscopy using frequency combs in the mid-infrared, Opt Express, vol.14, pp.11222-11255, 2006.

I. Coddington, W. C. Swann, N. R. Newbury, and . Newbury, Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs, Phys Rev Lett, vol.100, p.13902, 2008.

J. Chamberlain, The Principles of Interferometric Spectroscopy, 1979.

I. Coddington, W. C. Swann, and N. R. Newbury, Coherent multiheterodyne spectroscopy using stabilized optical frequency combs, Phys Rev Lett, vol.100, p.13902, 2008.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot et al., Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths, Optica, vol.1, pp.290-298, 2014.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington et al., Spectroscopy of the methane ? 3 band with an accurate midinfrared coherent dual-comb spectrometer, Phys Rev A, vol.84, p.62513, 2011.

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, Coherent cavity-enhanced dual-comb spectroscopy, Opt Express, vol.24, pp.10424-10458, 2016.

L. Rutkowski, P. Mas?owski, A. C. Johansson, A. Khodabakhsh, and A. Foltynowicz, Optical frequency comb Fourier transform spectroscopy with sub-nominal resolution, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01936240

G. Kowzan, K. F. Lee, M. Paradowska, M. Borkowski, P. Ablewski et al., Self-referenced, accurate and sensitive optical frequency comb spectroscopy with VIPA spectrometer, Opt Lett, vol.41, pp.974-981, 2016.

A. Foltynowicz, T. Ban, P. Mas?owski, F. Adler, and J. Ye, Quantum noise-limited optical frequency comb spectroscopy, Phys Rev Lett, vol.107, p.233002, 2011.

S. A. Diddams, L. Hollberg, and V. Mbele, Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb, Nature, vol.445, pp.627-657, 2007.

S. K. Scholten, J. D. Anstie, N. B. Hébert, R. T. White, J. Genest et al., Complex direct comb spectroscopy with a virtually imaged phased array, Opt Lett, vol.41, pp.1277-80, 2016.

G. Kowzan, D. Charczun, A. Cygan, R. S. Trawi?ski, D. Lisak et al., Broadband VIPA spectrometer with sub-kHz resolution for cavity mode-width spectroscopy, Quantum Optics IX, 2017.

A. Castrillo, E. Fasci, G. Galzerano, G. Casa, P. Laporta et al., Offset frequency locking of extended-cavity diode lasers for precision spectroscopy of water at 1.38 ?m, Opt Express, vol.18, pp.21851-60, 2010.

G. Gagliardi, G. Rusciano, and G. L. , Narrow H 2 18 O lines and new absolute frequency references in the near-IR, J Opt A, vol.2, pp.310-313, 2000.

D. Vizia, M. D. Rohart, F. Castillo, A. Fasci, E. Moretti et al., Speed-dependent effects in the near-infrared spectrum of self-colliding H 2 18 O molecules, Phys Rev A, vol.83, p.52506, 2011.

D. Vizia, M. D. Castrillo, A. Fasci, E. Moretti, L. Rohart et al., Speed dependence of collision parameters in the H 2 18 O near-IR spectrum: Experimental test of the quadratic approximation, Phys Rev A, vol.85, p.62512, 2012.

H. Dinesan, E. Fasci, C. A. Gianfrani, and L. , Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity enhanced optical heterodyne molecular spectroscopy, Opt Lett, vol.39, pp.2198-201, 2014.

E. Fasci, T. A. Odintsova, A. Castrillo, D. Vizia, M. D. Merlone et al., Dual-laser absorption spectroscopy of C 2 H 2 at 1.4 ?m, Phys Rev A, vol.93, p.42513, 2016.

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thévenaz et al., Diode laser frequency stabilisation for water-vapour differential absorption sensing, Appl Phys B, vol.85, pp.477-85, 2006.

S. Schilt, R. Matthey, D. Kauffman-werner, C. Affolderbach, G. Mileti et al., Laser offsetfrequency locking up to 20 GHz using a low-frequency electrical filter technique, Appl Opt, vol.47, pp.4336-4380, 2008.

D. C. Benner, C. P. Rinsland, V. M. Devi, M. Smith, and D. Atkins, A multispectrum nonlinear least squares fitting technique, J Quant Spectrosc Radiat Transf, vol.53, pp.705-726, 1995.

B. J. Drouin, D. C. Benner, L. R. Brown, M. J. Cich, T. J. Crawford et al., Multispectrum analysis of the oxygen A-band, J Quant Spectrosc Radiat Transf, vol.186, pp.118-156, 2017.

A. W. Mantz, K. Sung, L. R. Brown, T. J. Crawford, M. Smith et al., A cryogenic Herriott cell vacuum-coupled to a Bruker IFS-125HR, J Mol Spectrosc, vol.304, pp.12-24, 2014.

V. M. Devi, D. C. Benner, K. Sung, T. J. Crawford, S. Yu et al., Self-and air-broadened line shapes in the 2? 3 P and R branches of 12 CH 4, J Mol Spectros, vol.315, pp.114-150, 2015.

J. S. Wilzewski, M. Birk, J. Loos, and G. Wagner, Temperature-dependence laws of absorption line shape parameters of the CO 2 ? 3 band, JQSRT, vol.206, pp.296-305, 2018.

H. W. Hubers, M. F. Kimmitt, N. Hiromoto, and E. Brundermann, Terahertz spectroscopy: System and sensitivity considerations, IEEE Trans Terahertz Sci Tech, vol.1, pp.321-352, 2001.

H. W. Hubers, S. G. Pavlov, H. Richter, and A. D. Semenov, High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser, Appl Phys Lett, vol.89, p.61115, 2006.

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci et al., Quantumlimited frequency fluctuations in a terahertz laser, Nature Photonics, vol.6, pp.525-533, 2012.

H. W. Hubers, R. Eichholz, S. G. Pavlov, and H. Richter, High resolution terahertz spectroscopy with quantum cascade lasers, J Infrar Milli Terahz Waves, vol.34, pp.325-366, 2013.

S. Bartalini, L. Consolino, P. Cancio, D. Natale, P. Bartolini et al., Frequency-comb-assisted terahertz quantum cascade laser spectroscopy, Phys Rev X, vol.4, p.21006, 2014.

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, THz laser study of self-pressure and temperature broadening and shifts of water vapor lines for pressures up to 1.4 kPa, J Quant Spectrosc Radiat Transf, vol.87, pp.377-85, 2004.

G. Cazzoli, L. Dore, C. Puzzarini, B. Bakri, J. M. Colmont et al., Experimental determination of air-broadening parameters of pure rotational transitions of HNO 3 : intercomparison of measurements by using different techniques, J Mol Spectrosc, vol.229, pp.158-69, 2005.

G. Cazzoli, C. Puzzarini, G. Buffa, and O. Tarrini, Pressure-broadening in the THz frequency region: The 1.113 THz line of water, J Quant Spectrosc Radiat Transf, vol.109, pp.1563-74, 2008.

G. Cazzoli, C. Puzzarini, G. Buffa, and O. Tarrini, Pressure-broadening of water lines in the THz frequency region: Improvements and confirmations for spectroscopic databases. Part II, J Quant Spectrosc Radiat Transf, vol.110, pp.609-627, 2009.

D. M. Slocum, R. H. Giles, and T. M. Goyette, High-resolution water vapor spectrum and line shape analysis in the Terahertz region, J Quant Spectrosc Radiat Transf, vol.159, pp.69-79, 2015.

N. Gopalsami, A. C. Raptis, and J. Meier, Millimeter-wave cavity ringdown spectroscopy, Rev Sci Instrum, vol.73, pp.259-62, 2002.

A. I. Meshkov, D. Lucia, and F. C. , Broadband absolute absorption measurements of atmospheric continua with millimeter wave cavity ringdown spectroscopy, Rev Sci Instrum, vol.76, p.83103, 2005.
DOI : 10.1063/1.1988027

B. J. Drouin, A. Tang, E. Schlecht, E. Brageot, O. J. Gu et al., A CMOS millimeter-wave transceiver embedded in a semi-confocal Fabry-Perot cavity for molecular spectroscopy, J Chem Phys, vol.145, p.74201, 2016.
DOI : 10.1063/1.4961020

J. M. Hartmann, H. Tran, N. H. Ngo, X. Landsheere, P. Chelin et al., Ab initio calculations of the spectral shapes of CO 2 isolated lines including non-Voigt effects and comparisons with experiments, Phys Rev A, vol.87, p.13403, 2013.

G. Larcher, H. Tran, M. Schwell, P. Chelin, X. Landsheere et al., CO 2 isolated line shapes by classical molecular dynamics simulations: Influence of the intermolecular potential and comparison with new measurements, J Chem Phys, vol.140, p.84308, 2014.

J. M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges et al., Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O 2 gas, Phys Rev A, vol.87, p.32510, 2013.
DOI : 10.1103/physreva.87.032510

J. Lamouroux, V. Sironneau, J. Hodges, and J. M. Hartmann, Isolated line shapes of molecular oxygen: Classical molecular dynamics versus measurements, Phys Rev A, vol.89, p.42504, 2014.
DOI : 10.1103/physreva.89.042504

H. Tran and J. L. Domenech, Spectral shapes of Ar-broadened HCl lines in the fundamental band by classical molecular dynamics simulations and comparison with experiments, J Chem Phys, vol.141, p.64313, 2014.

T. Le, J. L. Domenech, M. Lepère, and H. Tran, Molecular dynamic simulations of N 2-broadened methane line shapes and comparison with experiments, J Chem Phys, vol.146, p.94305, 2017.
DOI : 10.1063/1.4976978

URL : https://digital.csic.es/bitstream/10261/161686/1/Molecular%20dynamic.pdf

J. Lamouroux, J. M. Hartmann, H. Tran, B. Lavorel, M. Snels et al., Molecular dynamics simulations for CO 2 spectra. IV. Collisional line-mixing in infrared and Raman bands, J Chem Phys, vol.138, p.244310, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00840845

H. Tran, G. Li, V. Ebert, and J. M. Hartmann, Super-and sub-Lorentzian effects in the Ar-broadened line wings of HCl gas, J Chem Phys, vol.146, p.194305, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01528805

N. H. Ngo and J. M. Hartmann, A strategy to complete databases with parameters of refined line shapes and its test for CO in He, Ar and Kr, J Quant Spectrosc Radiat Transf, vol.203, pp.334-374, 2017.

S. G. Rautian, . Sobel'man, and . Ii, The effect of collisions on the Doppler broadening of spectral lines, Soviet Physics Uspekhi, vol.9, pp.701-717, 1967.

E. W. Smith, J. Cooper, W. R. Chappell, and T. Dillon, An impact theory for Doppler and pressure broadening-I General theory, J Quant Spectrosc Radiat Transf, vol.11, pp.1547-65, 1971.
DOI : 10.1016/0022-4073(71)90113-0

E. W. Smith, J. Cooper, W. R. Chappell, and T. Dillon, An impact theory for Doppler and pressure broadeningII Atomic and molecular systems, J Quant Spectrosc Radiat Transf, vol.11, pp.1567-76, 1971.
DOI : 10.1016/0022-4073(71)90114-2

R. Ciury?o and A. S. Pine, Speed-dependent line mixing profiles, J Quant Spectrosc Radiat Transf, vol.67, pp.375-93, 2000.

A. D. May, W. K. Liu, F. Mccourt, R. Ciury?o, . Sanchez-fortun et al., The impact theory of spectral line shapes: a paradigm shift, Can J Phys, vol.91, pp.879-95, 2013.

P. Wcis?o and R. Ciury?o, Influence of the interaction potential shape on the Dicke narrowed spectral line profiles affected by speed-dependent collisional broadening and shifting, J Quant Spectrosc Radiat Transfer, vol.120, pp.36-43, 2013.

J. Keilson and J. E. Storer, On Brownian motion, Boltzmann's equation, and the Fokker-Planck equation, Quart Appl Math, vol.10, pp.243-53, 1952.
DOI : 10.1090/qam/50216

URL : http://www.ams.org/qam/1952-10-03/S0033-569X-1952-50216-0/S0033-569X-1952-50216-0.pdf

D. Robert and L. Bonamy, Memory effects in speed-changing collisions and their consequences for spectral lineshape: I. Collision regime, Eur Phys J D, vol.2, pp.245-52, 1998.

M. Nelkin and A. Ghatak, Simple binary collision model for Van Hove's G s (r,t), Phys Rev, vol.135, pp.4-9, 1964.
DOI : 10.1103/physrev.135.a4

L. Galatry, Simultaneous effect of Doppler and foreign gas broadening on spectral lines, Phys Rev, vol.122, pp.1218-1241, 1961.

L. Bonamy, H. Tran, P. Joubert, and D. Robert, Memory effects in speed-changing collisions and their consequences for spectral line shape, Eur Phys J D, vol.31, pp.459-67, 2004.

P. Joubert, P. Hoang, L. Bonamy, and D. Robert, Speed-dependent line-shape model analysis from molecular-dynamics simulations: The collisional confinement narrowing regime, Phys Rev A, vol.66, p.42508, 2002.

H. Tran, P. Joubert, L. Bonamy, B. Lavorel, R. V. Chaussard et al., Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: Experiment and modelization of speed memory effects on H 2-N 2 mixtures in the collision regime, J Chem Phys, vol.122, p.194317, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00400398

H. Tran, F. Chaussard, L. Cong, N. Lavorel, B. Faucher et al., Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H 2-N 2 mixtures in the Dicke regime: Experiments and modeling of velocity effects, J Chem Phys, vol.131, p.174310, 2009.

N. H. Ngo, H. Tran, and R. R. Gamache, A pure H 2 O isolated line-shape model based on classical molecular dynamics simulations of velocity changes and semi-classical calculations of speed-dependent collisional parameters, J Chem Phys, vol.136, p.154310, 2012.

N. H. Ngo, H. Tran, R. R. Gamache, D. Bermejo, and J. L. Domenech, Influence of velocity effects on the shape of N 2 (and air) broadened H 2 O lines revisited with classical molecular dynamics simulations, J Chem Phys, vol.137, p.64302, 2012.

H. Tran, N. H. Ngo, J. M. Hartmann, R. R. Gamache, D. Mondelain et al., Velocity effects on the shape of pure H 2 O isolated lines: Complementary tests of the partially correlated speed-dependent Keilson-Storer model, J Chem Phys, vol.138, p.34302, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00997545

N. H. Ngo and H. Tran, Precise predictions of H 2 O line shapes over a wide pressure range using simulations corrected by a single measurement, J Quant Spectrosc Radiat Transf, vol.207, pp.16-22, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01730803

T. Ha, J. M. Hartmann, F. Chaussard, and M. Gupta, An isolated line-shape model based on the KeilsonStorer function for velocity changes. II. Molecular Dynamics Simulations and the Q(1) lines for pure H 2, J Chem Phys, vol.131, p.154303, 2009.

T. Ha and J. M. Hartmann, An isolated line-shape model based on the Keilson and Storer function for velocity changes. I. Theoretical approaches, J Chem Phys, vol.130, p.94301, 2009.

M. J. Lindenfeld and B. Shizgal, Matrix elements of the Boltzmann collision operator for gas mixtures, Chem Phys, vol.41, pp.81-95, 1979.

M. J. Lindenfeld, Self-structure factor of hard-sphere gases for arbitrary ratio of bath to test particle masses, J Chem, vol.73, pp.5817-5846, 1980.

P. F. Liao, J. E. Bjorkholm, and P. R. Berman, Effects of velocity-changing collisions on two-photon and stepwise-absorbtion spectroscopic line shapes, Phys Rev A, vol.21, pp.1927-1965, 1980.

P. Wcis?o, A. Cygan, D. Lisak, and R. Ciury?o, Iterative approach to line-shape calculations based on the transport-relaxation equation, Phys Rev A, vol.88, p.12517, 2013.

R. Ciury?o, D. A. Shapiro, J. R. Drummond, and A. D. May, Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. II. Application, Phys Rev A, vol.65, pp.12502-12510, 2002.

P. Wcis?o, D. Lisak, R. Ciury?o, and A. S. Pine, Multispectrum-fitting of phenomenological collisional lineshape models to a speed-dependent Blackmore profile for spectroscopic analysis and databases, J Phys Conf Ser, vol.810, p.12061, 2017.

P. Wcis?o, I. E. Gordon, C. F. Cheng, S. M. Hu, and R. Ciury?o, Collision-induced line-shape effects limiting the accuracy in Doppler-limited spectroscopy of H 2, Phys Rev A, vol.93, p.22501, 2016.

P. Wcis?o, I. E. Gordon, H. Tran, Y. Tan, S. M. Hu et al., The implementation of non-Voigt line profiles in the HITRAN database: H 2 case study, J Quant Spectrosc Radiat Transf, vol.177, pp.75-91, 2016.

H. Tran, F. Thibault, and J. M. Hartmann, Collision-induced velocity changes from molecular dynamic simulations in H 2-Ar: A test of the Keilson-Storer model and of line-broadening/shifting calculations for the Q(1) Raman line, J Quant Spectrosc Radiat Transf, vol.112, pp.1035-1077, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00700672

P. Wcis?o, F. Thibault, H. Cybulski, and R. Ciury?o, Strong competition between velocity-changing and phaseot state-changing collisions in H 2 spectra perturbed by Ar, Phys Rev A, vol.91, p.52505, 2015.

F. Thibault, P. Wcislo, and R. Ciurylo, A test of H 2-He potential energy surface, Eur Phys J D, vol.70, p.236, 2016.
DOI : 10.1016/j.jqsrt.2017.08.014

J. P. Berger, R. Saint-loup, H. Berger, J. Bonamy, and D. Robert, Measurement of vibrational line profiles in H 2-rare-gas mixtures: Determination of the speed dependence of the line shift, Phys Rev A, vol.49, pp.3396-406, 1994.

F. Chaussard, X. Michaut, R. Saint-loup, H. Berger, P. Joubert et al., Collisional effects on spectral line shape from the Doppler to the collisional regime: A rigorous test of a unified model, J Chem Phys, vol.112, pp.158-66, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00400753

P. Wcis?o, H. Tran, S. Kassi, A. Campargue, F. Thibault et al., Velocity-changing collisions in pure H 2 and H 2-Ar mixture, J Chem Phys, vol.141, p.74301, 2014.

Y. S. Huang, J. H. Chiue, Y. C. Huang, and T. C. Hsiung, Relativistic formulation for the Doppler-broadened line profile, Phys Rev A, vol.82, p.10102, 2010.
DOI : 10.1103/physreva.82.010102

P. Wcis?o, P. Amodio, R. Ciury?o, and L. Gianfrani, Relativistic formulation of the Voigt profile, Phys Rev A, vol.91, p.22508, 2015.

L. Gianfrani, Linking the thermodynamic temperature to an optical frequency: recent advances in Doppler broadening thermometry, Phil Trans R Soc A, vol.374, 2016.

S. Wójtewicz, P. Wcis?o, D. Lisak, and R. Ciury?o, Dispersion corrections to the Gaussian profile describing the Doppler broadening of spectral lines, Phys Rev A, vol.93, p.42512, 2016.

F. Rohart, H. Mäder, and H. W. Nicolaisen, Speed dependence of rotational relaxation induced by foreign gas collisions: Studies on CH 3 F by millimeter wave coherent trasients, J Chem Phys, vol.101, pp.6475-86, 1994.

D. Rofart, A. Ellendt, F. Kaghat, and H. Mäder, Self and polar foreign gas line broadening and frequency shifting of CH 3 F: Effect of the speed dependence observed by millimeter-wave coherent transients, J Mol Spectrosc, vol.185, pp.222-255, 1997.

P. R. Berman, Speed-dependent collisional width and shift parameters in spectral profiles, J Quant Spectrosc Radiat Transf, vol.12, pp.1331-1373, 1972.
DOI : 10.1016/0022-4073(72)90189-6

H. M. Pickett, Effects of velocity averaging of the shapes of absorption lines, J Chem Phys, vol.73, pp.6090-6094, 1980.

N. H. Ngo, H. Lin, J. T. Hodges, and H. Tran, Spectral shapes of rovibrational lines of CO broadened by He, Ar, Kr and SF 6, J Quant Spectrosc Radiat Transf, vol.203, pp.325-358, 2017.
DOI : 10.1016/j.jqsrt.2017.03.001

URL : https://hal.archives-ouvertes.fr/hal-01484556

N. H. Ngo, D. Lisak, H. Tran, and J. M. Hartmann, An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes, Associated Erratum: J Quant Spectrosc Radiat Transf, vol.129, p.105, 2013.
DOI : 10.1016/j.jqsrt.2013.05.034

URL : https://hal.archives-ouvertes.fr/hal-01103922

A. Cygan and D. Lisak, Multi-spectrum fitting software for advanced spectral line shapes analysis, J Phys Conf Ser, vol.810, p.12025, 2017.
DOI : 10.1088/1742-6596/810/1/012025

URL : http://iopscience.iop.org/article/10.1088/1742-6596/810/1/012025/pdf

A. S. Pine, Asymetries and correlations in speed-dependent Dicke-narrowed line shapes of argonbroadened HF, J Quant Spectrosc Radiat Tranf, vol.62, pp.397-423, 1999.
DOI : 10.1016/s0022-4073(98)00112-5

J. Humlicek, Optimized computation of the Voigt and complex probability functions, J Quant Spectrosc Radiat Transf, vol.27, pp.437-481, 1982.

M. Kuntz, A new implementation of the Humlicek algorithm for the calculation of the Voigt profile function, J Quant Spectrosc Radiat Transf, vol.57, pp.819-843, 1997.

R. J. Wells, Rapid approximation to the Voigt/Faddeeva function and its derivatives, J Quant Spectrosc Radiat Transf, vol.62, pp.29-48, 1999.
DOI : 10.1016/s0022-4073(97)00231-8

K. L. Letchworth and D. C. Benner, Rapid and accurate calculation of the Voigt function, J Quant Spectrosc Radiat Tranfer, vol.107, pp.173-92, 2007.

F. Schreider, Optimized implementations of rational approximations for the Voigt and complex error function, J Quant Spectrosc Radiat Transf, vol.112, pp.1010-1035, 2011.

C. D. Boone, K. A. Walker, and P. F. Bernath, An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications, J Quant Spectrosc Radiat Transf, vol.112, pp.980-989, 2011.

H. Tran, N. H. Ngo, and J. M. Hartmann, Efficient computation of some speed-dependent isolated line profiles, Associated Erratum: J Quant Spectrosc Radiat Transf, vol.129, p.104, 2013.

J. Tennyson, P. F. Bernath, A. Campargue, A. G. Csaszar, L. Daumont et al., Recommended isolated-line profile for representing high-resolution spectroscopic transitions, Pure Appl Chem, vol.86, pp.1931-1974, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01143155

D. Lisak, A. Cygan, P. Wcis?o, and R. Ciury?o, Quadratic speed dependence of collisional broadening and shifting for atmospheric applications, J Quant Spectrosc Radiat Transf, vol.151, pp.43-51, 2015.

M. Ghysels, Q. Liu, A. J. Fleisher, and J. T. Hodges, A variable-temperature cavity ring-down spectrometer with application to line shape analysis of CO 2 spectra in the 1600 nm region, Appl Phys B, vol.123, p.124, 2017.

C. S. Goldenstein and R. K. Hanson, Diode-laser measurements of line strength and temperature-dependent line shape parameters for H 2 O transitions near 1.4 ?m using Voigt, Rautian, Galatry, and speeddependent Voigt profiles, J Quant Spectrosc Radiat Transf, vol.152, pp.127-166, 2015.

M. J. Cich, D. Forthomme, C. P. Mcraven, G. V. Lopez, G. E. Hall et al., Temperaturedependent, nitrogen-perturbed line shape measurements in the ? 1 +? 3 band of acetylene using a diode laser referenced to a frequency comb, J Phys Chem A, vol.117, pp.13908-13926, 2013.

D. Forthomme, M. J. Cich, S. Twagirayezu, G. E. Hall, and T. J. Sears, Application of the Hartmann-Tran profile to precise experimental data sets of 12 C 2 H 2, J Quant Spectrosc Radiat Transf, vol.165, pp.28-37, 2015.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H 2 O transitions at 1391.7 and 1397.8 nm, J Quant Spectrosc Radiat Transf, vol.109, pp.132-175, 2008.

C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, Diode laser measurements of linestrength and temperaturedependent lineshape parameters of H 2 O-, CO 2-, and N 2-perturbed H 2 O transitions near 2474 and 2482 nm, J Quant Spectrosc Radiat Transf, vol.130, pp.100-111, 2013.

J. Domys?awska, S. Wójtewicz, A. Cygan, K. Bielska, D. Lisak et al., Low-pressure line-shape study in molecular oxygen with absolute frequency reference, J Chem Phys, vol.139, 2013.

D. Lisak, . Cygana, D. Bermejo, J. L. Domenech, J. T. Hodges et al., Application of the Hartmann-Tran profile to analysis of H 2 O spectra, J Quant Spectrosc Radiat Transf, vol.164, pp.221-251, 2015.

D. Vizia, M. D. Castrillo, A. Fasci, E. Amodio, P. Moretti et al., Experimental test of the quadratic approximation in the partially correlated speed-dependent hard-collision profile, Phys Rev A, vol.90, p.22503, 2014.

V. P. Kochanov, Speed-dependent spectral line profile including line narrowing and mixing, J Quant Spectrosc Radiat Transf, vol.177, pp.261-269, 2016.

J. M. Hutson and S. Green, MOLSCAT computer code, version 14 (1994) distributed by Collaborative Computational Project No. 6 of the Engineering and Physical Sciences Research Council (UK)

V. P. Kochanov, Combined effect of small-and large-angle scattering collisions on a spectral line shape, J Quant Spectrosc Radiat Transf, vol.159, pp.32-40, 2015.

F. Thibault, S. V. Ivanov, O. G. Buzykin, L. Gomez, M. Dhyne et al., Comparison of classical, semiclassical and quantum methods in hydrogen broadening of acetylene lines, J Quant Spectrosc Radiat Transf, vol.112, pp.1429-1466, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01132203

L. Gomez, S. V. Ivanov, O. G. Buzykin, and F. Thibault, Comparison of quantum, semiclassical and classical methods in hydrogen broadening of nitrogen lines, J Quant Spectrosc Radiat Transf, vol.112, pp.1942-1951, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00700365

F. Thibault, L. Gomez, S. V. Ivanov, O. G. Buzykin, and C. Boulet, Comparison of quantum, semi-classical and classical methods in the calculation of nitrogen self-broadened widths, J Quant Spectrosc Radiat Transf, vol.113, pp.1887-97, 2012.

S. V. Ivanov and O. G. Buzykin, Pressure broadening of the electric dipole and Raman lines of CO 2 by Argon: Stringent test of the classical theory at different temperatures on a benchmark system, J Quant Spectrosc Radiat Transf, vol.185, pp.48-57, 2016.

R. B. Bernstein, Atom-molecule theory: A Guide for the Experimentalist, 1979.

D. R. Flower, G. Bourhis, and J. M. Launay, Molcol: A program for solving atomic and molecular collision problems, Comput Phys Comm, vol.131, pp.187-201, 2000.
DOI : 10.1016/s0010-4655(00)00118-1

URL : https://hal.archives-ouvertes.fr/hal-01700267

M. L. Dubernet and P. A. Tuckey, Raman Q and S line broadening and shifting coefficients: some commonly used assumptions revisited, Chem Phys Lett, vol.300, pp.275-80, 1999.
DOI : 10.1016/s0009-2614(98)01334-7

D. Grimminck, F. R. Spiering, L. Janssen, A. Van-der-avoird, W. J. Van-der-zande et al., A theoretical and experimental study of pressure broadening of the oxygen A-band by Helium, J Chem Phys, vol.140, p.204314, 2014.

P. J. Dagdigian, Pressure broadening calculations for OH in collisions with argon: Rotational, vibrational, and electronic transitions, J Quant Spectrosc Radiat Transf, vol.189, pp.105-116, 2017.
DOI : 10.1016/j.jqsrt.2016.11.013

L. Wiesenfeld and A. Faure, Ab initio computation of the broadening of water rotational lines by molecular hydrogen, Phys Rev A, vol.82, p.40702, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00631984

B. Drouin and L. Wiesenfeld, Low-temperature water-hydrogen-molecule collisions probed by pressure broadening and line shift, Phys Rev A, vol.86, p.22705, 2012.
DOI : 10.1103/physreva.86.022705

A. Faure, L. Wiesenfeld, B. J. Drouin, and J. Tennyson, Pressure broadening of water and carbon monoxide transitions by molecular hydrogen at high temperatures, J Quant Spectrosc Radiat Transf, vol.116, pp.79-86, 2013.
DOI : 10.1016/j.jqsrt.2012.09.015

L. Wiesenfeld and A. Faure, Rotational quenching of H 2 CO by molecular hydrogen: Cross-sections, rates and pressure broadening, MNRAS, vol.432, pp.2573-2581, 2013.
DOI : 10.1093/mnras/stt616

URL : https://academic.oup.com/mnras/article-pdf/432/3/2573/12629354/stt616.pdf

F. Thibault, K. Patkowski, P. Zuchowski, H. Jozwiak, R. Ciurylo et al., Rovibrational line-shape parameters for H 2 in He from and new H 2-He potential energy surface, J Quant Spectrosc Radiat Transf, vol.202, pp.308-328, 2017.
DOI : 10.1016/j.jqsrt.2017.08.014

S. Hess, Kinetic theory of spectral line shapes. The transition between Doppler broadening and collisional broadening, Physica, vol.61, pp.80-94, 1972.

L. Monchick and L. W. Hunter, Diatomic-diatomic molecular collision integrals for pressure broadening and Dicke narrowing: A generalization of Hess's theory, J Chem Phys, vol.85, pp.713-721, 1986.

F. Thibault, D. Cappelletti, F. Pirani, G. Blanquet, and M. Bartolomei, Molecular-beam scattering and pressure broadening cross sections for the acetylene-neon system, Eur Phys J D, vol.44, pp.337-381, 2007.
DOI : 10.1140/epjd/e2007-00180-y

URL : https://hal.archives-ouvertes.fr/hal-00908292

F. Thibault, E. P. Fuller, K. A. Grabow, J. L. Hardwick, C. I. Marcus et al., Experimental line broadening and line shift coefficients of the acetylene ? 1 +? 3 band pressurized by hydrogen and deuterium and comparison with calculations, J Mol Spectrosc, vol.256, pp.17-27, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00667185

W. Deng, D. Mondelain, F. Thibault, C. Camy-peyret, and A. W. Mantz, Experimental He-pressure broadening for the R(10) and P(2) lines in the ? 3 band of 13 CO 2 , and experimental pressure shifts for R(10) measured at several temperatures between 300 K and 100 K, J Mol Spectrosc, vol.256, pp.102-110, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419505

T. J. Ronningen, D. Lucia, and F. C. , Helium induced pressure broadening and shifting of HCN hyperfine transitions between 1.3 and 20 K, J Chem Phys, vol.122, p.184319, 2005.
DOI : 10.1063/1.1895905

F. Thibault, B. Corretja, A. Viel, D. Bermejo, and R. Z. Martinez, Bussery-Honvault B. Linewidths of C 2 H 2 perturbed by H 2 : Experiments and calculations from an ab-initio potential, Phys Chem Chem Phys, vol.10, pp.5419-5447, 2008.

F. Thibault, D. Cappelletti, F. Pirani, and M. Bartolomei, A bond-bond description of the intermolecular interaction energy: The case of the weakly bound acetylene-hydrogen complex, J Phys Chem A, vol.113, pp.14867-74, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00660150

F. Thibault, R. Z. Martinez, D. Bermejo, S. V. Ivanov, O. G. Buzykin et al., An experimental and theoretical study of nitrogen-broadened acetylene lines, J Quant Spectrosc Radiat Transf, vol.142, pp.17-24, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00980535

D. Cappelletti, M. Bartolomei, E. Carmona-novillo, F. Pirani, G. Blanquet et al., weakly bound complexes: Information from molecular beam scattering, pressure broadening coefficients, and rovibrational spectroscopy, J Chem Phys, vol.126, p.64311, 2007.
DOI : 10.1063/1.2434174

URL : https://hal.archives-ouvertes.fr/hal-00908272

G. Buffa and O. Tarrini, Hyperfine effects on collisional lineshape. II. The case DCO +-He, J Chem Phys, vol.134, p.174310, 2011.

M. L. Hernández, J. M. Fernández, G. Tejeda, E. Moreno, and S. Montero, Broadening of H 2 O rotational lines by collisions with He atoms at low temperature, Astrophys J, vol.808, p.175, 2015.

G. Buffa, L. Dore, F. Tinti, and M. Meuwly, Experimental and theoretical study of helium broadening and shift of HCO + rotational lines, ChemPhysChem, vol.9, pp.2237-2281, 2008.

L. Gomez, R. Z. Martinez, D. Bermejo, F. Thibault, P. Joubert et al., Q-branch linewidths of N 2 perturbed by H 2 : Experiments and quantum calculations from an ab-initio potential, J Chem Phys, vol.126, p.204302, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00908228

F. Thibault, R. Z. Martinez, D. Bermejo, and L. Gomez, Collisional line widths of autoperturbed N 2 : Measurements and quantum calculations, J Quant Spectrosc Radiat Transf, vol.112, pp.2542-51, 2011.
DOI : 10.1016/j.jqsrt.2011.07.006

URL : https://hal.archives-ouvertes.fr/hal-00697625

G. Buffa, O. Tarrini, L. Dore, and M. Meuwly, Experimental and theoretical study of the broadening and shifting of N 2 H + rotational lines by helium, ChemPhysChem, vol.11, pp.3141-3146, 2010.

M. R. Cherkasov, Theory of relaxation parameters of the spectrum shape in the impact approximation-I: General consideration, J Quant Spectrosc Radiat Transf, vol.141, pp.73-88, 2014.

M. R. Cherkasov, Theory of relaxation parameters of the spectrum shape in the impact approximation-II: Simplifications, application for q Q(J,K) doublets in the ? 1 band of NH 3 self-broadening, J Quant Spectrosc Radiat Transf, vol.141, pp.89-98, 2014.

V. I. Starikov, Calculation of relaxation parameters of overlapping lines of the ammonia molecule pressure broadened by argon and helium, Opt Spectrosc, vol.114, pp.15-24, 2013.

Q. Ma, C. Boulet, and R. H. Tipping, Refinement of the Robert-Bonamy formalism: Considering effects from the line coupling, J Chem Phys, vol.139, p.34305, 2013.

C. Boulet, Q. Ma, and F. Thibault, Line interference effects using a refined Robert-Bonamy formalism: The test case of the isotropic Raman spectra of autoperturbed N 2, J Chem Phys, vol.140, p.84310, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00971731

F. Thibault, C. Boulet, and Q. Ma, Line coupling effects in the isotropic spectra of N 2 : A quantum calculation at room temperature, J Chem Phys, vol.140, p.44303, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00971689

Q. Ma, C. Boulet, and R. H. Tipping, Two dimensional symmetric correlation functions of the S operator and two dimensional Fourier transforms: Considering the line coupling for P and R lines of linear molecules, J Chem Phys, vol.140, p.104304, 2014.

Q. Ma and C. Boulet, The relaxation matrix for symmetric tops with inversion symmetry. I. Effects of line coupling on self-broadened ? 1 and pure rotational bands of NH 3, J Chem Phys, vol.144, p.224303, 2016.

Q. Ma, C. Boulet, and R. H. Tipping, Vibrational dependence of line coupling and line mixing in selfbroadened parallel bands of NH 3, J Quant Spectrosc Radiat Transf, vol.203, pp.425-458, 2017.

A. S. Pine and V. N. Markov, Self-and foreign-gas-broadened lineshapes in the ? 1 band of NH 3, J Quant Spectrosc Radiat Transf, vol.228, pp.124-166, 2004.

S. V. Ivanov and O. G. Buzykin, Classical calculation of self-broadening in N 2 Raman spectra, Mol Phys, vol.106, pp.1291-302, 2008.
DOI : 10.1080/00268970802270034

C. Povey, M. Guillorel-obregon, A. Predoi-cross, S. V. Ivanov, O. G. Buzykin et al., Low pressure line shape study of nitrogen-perturbed acetylene transitions in the ? 1 +? 3 band over a range of temperatures, Can J Phys, vol.91, pp.896-905, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00971685

S. V. Ivanov and O. G. Buzykin, Precision considerations of classical and semiclassical methods used in collision line broadening calculations: Different linear molecules perturbed by argon, J Quant Spectrosc Radiat Transf, vol.119, pp.84-94, 2013.
DOI : 10.1016/j.jqsrt.2012.12.021

S. V. Ivanov, C. Boulet, O. G. Buzykin, and F. Thibault, Line mixing effects in isotropic Raman spectra of pure N 2 : A classical trajectory study, J Chem Phys, vol.141, p.184306, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082110

K. Esteki, A. Predoi-cross, C. Povey, S. Ivanov, A. Ghoufi et al., Room temperature self-and H 2-broadened line parameters of carbon monoxide in the first overtone band: Theoretical and revised experimental results, J Quant Spectrosc Radiat Transf, vol.203, pp.309-333, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01533342

R. G. Gordon, Theory of the width and shift of molecular spectral lines in gases, J Chem. Phys, vol.44, pp.3083-3092, 1966.

R. G. Gordon, Semiclassical theory of spectra and relaxation in molecular gases, J Chem Phys, vol.45, pp.1649-55, 1966.
DOI : 10.1063/1.1727808

S. V. Ivanov, Quasi-bound complexes in collisions of different linear molecules: Classical trajectory study of their manifestations in rotational relaxation and spectral line broadening, J Quant Spectrosc Radiat Transf, vol.177, pp.269-82, 2016.

Q. Ma, R. H. Tipping, and C. Boulet, Irreducible correlation functions of the ? matrix in the coordinate representation: Application in calculating Lorentzian half-widths and shifts, J Chem Phys, vol.124, p.14109, 2006.

D. Robert and J. Bonamy, Short range force effects in semiclassical molecular line broadening calculations, J de Physique, vol.40, pp.923-966, 1979.
DOI : 10.1051/jphys:019790040010092300

URL : https://hal.archives-ouvertes.fr/jpa-00209180

J. Buldyreva, N. Lavrentieva, and V. Starikov, Collisional line broadening and shifting of atmospheric gases: A practical guide for line shape modelling by current semi-classical approaches, 2011.

A. Predoi-cross, C. Holladay, H. Heung, J. P. Bouanich, G. C. Mellau et al., Nitrogenbroadened lineshapes in the oxygen A-band: Experimental results and theoretical calculations, J Mol Spectrosc, vol.251, pp.159-75, 2008.
DOI : 10.1016/j.jms.2008.02.010

C. Yang, J. Buldyreva, I. E. Gordon, F. Rohart, A. Cuisset et al., Oxygen, nitrogen and air broadening of HCN lines at terahertz frequencies, J Quant Spectrosc Radiat Transf, vol.109, pp.2857-68, 2008.
DOI : 10.1016/j.jqsrt.2008.08.005

URL : https://hal.archives-ouvertes.fr/hal-00504805

J. P. Bouanich and A. Predoi-cross, Theoretical calculations for line-broadening and pressure-shifting in the ? 1 +? 2 +? 4 +? 5 band of acetylene over a range of temperatures, Mol Phys, vol.109, pp.2071-81, 2011.

R. R. Gamache, J. Lamouroux, A. L. Laraia, J. M. Hartmann, and C. Boulet, Semi-classical calculations of halfwidths and line shifts for transitions in the 30012-00001 and 30012-00001 bands of CO 2 I: Collisions with N 2, J Quant Spectrosc Radiat Transf, vol.113, pp.976-90, 2012.

J. Lamouroux, R. R. Gamache, A. L. Laraia, J. M. Hartmann, and C. Boulet, Semi-classical calculations of halfwidths and line shifts for transitions in the 30012-00001 and 30012-00001 bands of CO 2 II: Collisions with O 2 and air, J Quant Spectrosc Radiat Transf, vol.113, pp.991-1003, 2012.

J. Lamouroux, R. R. Gamache, A. L. Laraia, J. M. Hartmann, and C. Boulet, Semi-classical calculations of halfwidths and line shifts for transitions in the 30012-00001 and 30012-00001 bands of CO 2 III: Self collisions, J Quant Spectrosc Radiat Transf, vol.113, pp.1536-1582, 2012.

M. Dhyne, M. Lepère, and P. Joubert, Semiclassical line broadening calculations, using an ab initio potential energy surface, in Q-branch and S-branch of N 2 perturbed by H 2, J Raman Spectrosc, vol.43, pp.2008-2022, 2012.

H. Rozario, J. Garber, C. Povey, D. Hurtmans, J. Buldyreva et al., Experimental and theoretical study of N 2-broadened acetylene line parameters in the ? 1 +? 3 band over a range of temperatures, Mol Phys, vol.110, pp.2645-63, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00824826

J. M. Hartmann, L. Rosenmann, M. Y. Perrin, and J. Taine, Accurate calculated tabulations of CO line broadening by H 2 O, N 2 , O 2 , and CO 2 in the 200-3000-K temperature range, Appl Opt, vol.27, pp.3063-3068, 1988.

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, and J. Taine, Accurate calculated tabulations of IR and Raman CO 2 line broadening by CO 2 , H 2 O, N 2 , O 2 in the 300-2400-K temperature range, Appl Opt, vol.27, pp.3902-3909, 1988.

J. Bonamy, D. Robert, J. M. Hartmann, M. L. Gonze, R. Saint-loup et al., Line broadening, line shifting, line coupling effects on N 2-H 2 O stimulated Raman spectra, J Chem Phys, vol.91, pp.5916-5941, 1989.
DOI : 10.1063/1.457461

G. Fanjoux, G. Millot, R. Saint-loup, R. Chaux, and L. Rosenmann, Coherent anti-Stokes Raman spectroscopy study of collisional broadening in the O 2-H 2 O Q branch, J Chem Phys, vol.101, pp.1061-71, 1994.

J. Buldyreva, M. Guibet, S. Eliet, F. Hindle, G. Mouret et al., Theoretical and experimental studies of CH 3 X-Y 2 rotational lineshapes for atmospheric spectra modelling: Application to room temperature CH 3 Cl-O 2, Phys Chem Chem Phys, vol.13, pp.20326-20360, 2011.

J. Buldyreva and F. Rohart, Experimental and theoretical studies of room temperature sub-millimetre CH 3 35 Cl line shapes broadened by H 2, Mol Phys, vol.110, pp.2043-53, 2012.
DOI : 10.1080/00268976.2012.684895

A. Predoi-cross, V. M. Devi, K. Sung, T. Sinyakova, J. Buldyreva et al., Temperature dependences of N 2-broadening and shift coefficients in the ? 6 perpendicular band of 12 CH 3 D, J Quant Spectrosc Radiat Transf, vol.163, pp.120-161, 2015.

C. Bray, D. Jacquemart, N. Lacome, M. Guinet, A. Cuisset et al., Analysis of self-broadened pure rotational and rovibrational lines of methyl chloride at room temperature, J Quant Spectrosc Radiat Transf, vol.116, pp.87-100, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843765

L. Nguyen, G. Blanquet, J. Buldyreva, and M. Lepère, Measurements and calculations of ethylene linebroadening by argon in the ? 7 band at room temperature, Mol Phys, vol.106, pp.873-80, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00513182

A. M. Solodov and V. I. Starikov, Helium-induced halfwidths and line shifts of water vapor transitions in the ? 1 +? 2 and ? 2 +? 3 bands, Mol Phys, vol.107, pp.43-51, 2009.

V. I. Starikov, The calculation of the temperature dependence of He broadening coefficients of H 2 S rotation lines, Atmos Ocean Opt, vol.25, pp.321-328, 2012.

T. M. Petrova, A. M. Solodov, V. I. Starikov, and A. A. Solodov, Measurements and calculations of He-broadening and-shifting parameters of water vapor transitions of the ? 1 +? 2 +? 3 band, Mol Phys, vol.110, pp.1493-503, 2012.

T. M. Petrova, A. M. Solodov, and A. A. Solodov, Vibrational dependence of an intermolecular potential for H 2 O-He system, J Quant Spectrosc Radiat Transf, vol.129, pp.241-53, 2013.
DOI : 10.1016/j.jqsrt.2013.06.021

T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. I. Starikov, Measurements and calculations of Ar-broadening and shifting parameters of water vapor transitions of the ? 1 +? 2 +? 3 and, J Quant Spectrosc Radiat Transf, vol.148, pp.116-142, 2014.

T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. I. Starikov, Broadening parameters of the H 2 O-He collisional system for astrophysical applications, J Mol Spectrosc, vol.321, pp.50-58, 2016.

L. R. Brown, C. M. Humphrey, and R. R. Gamache, CO 2-broadened water in the pure rotation and ? 2 fundamental regions, J Mol Spectrosc, vol.246, pp.1-21, 2007.
DOI : 10.1016/j.jms.2007.07.010

J. Buldyreva and L. Nguyen, Extension of the exact trajectory model to the case of asymmetric tops and its application to infrared nitrogen broadened linewidths of ethylene, Phys Rev A, vol.77, p.42720, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00504810

B. J. Drouin and R. R. Gamache, Temperature dependent air broadened linewidths of ozone rotational transitions, J Mol Spectrosc, vol.251, pp.194-202, 2008.
DOI : 10.1016/j.jms.2008.02.016

A. D. Bykov, N. N. Lavrentieva, T. P. Mishina, L. N. Sinitsa, R. J. Barber et al., Water vapor line width and shift calculations with accurate vibration-rotation wave functions, J Quant Spectrosc Radiat Transf, vol.109, pp.1834-1878, 2008.
DOI : 10.1016/j.jqsrt.2008.01.006

L. Gomez, H. Tran, A. Perrin, R. R. Gamache, A. Laraia et al., Some improvements of the HNO 3 spectroscopic parameters in the spectral region from 600 to 950 cm-1, J Quant Spectrosc Radiat Transf, vol.110, pp.675-86, 2009.

J. Buldyreva and N. Lavrentieva, Nitrogen and oxygen broadening of ozone infrared lines in the 5 µm region: Theoretical predictions by semiclassical and semi-empirical methods, Mol Phys, vol.107, pp.1527-1563, 2009.

N. Lavrentieva, A. Osipova, and J. Buldyreva, Calculations of ozone line shifting induced by N 2 and O 2 pressure, Mol Phys, vol.107, pp.2045-51, 2009.
DOI : 10.1080/00268970903136639

URL : https://hal.archives-ouvertes.fr/hal-00521761

D. Jacquemart, A. Laraia, F. Kwaba-tchana, R. R. Gamache, and N. Lacome, Formaldehyde around 3.5 and 5.7 ?m measurement and calculation of self and N 2 broadening coefficients, J. Quant. Spectrosc. Radiat Transf, vol.111, pp.1209-1231, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00744701

J. V. Buldyreva, T. P. Mishina, N. N. Lavrentieva, and A. S. Osipova, Calculation of coefficients of collisional line broadening of ozone spectral lines induced by pressure of atmospheric gases, Opt Spectrosc, vol.108, pp.512-534, 2010.

Q. Ma, R. H. Tipping, and R. R. Gamache, Uncertainties associated with theoretically calculated N 2-broadened half-widths of H 2 O lines, Mol Phys, vol.108, pp.2225-52, 2010.

R. R. Gamache, A. L. Laraia, and J. Lamouroux, Half-widths, their temperature dependence, and line shifts for the HDO-CO 2 collision system for applications to CO 2-rich planetary atmospheres, Icarus, vol.213, pp.720-750, 2011.

Q. Ma, R. H. Tipping, and N. N. Lavrentieva, Causal correlation functions and Fourier transforms: Application in calculating pressure induced shifts, J Quant Spectrosc Radiat Transf, vol.113, pp.936-50, 2012.

J. Buldyreva, L. Margulès, R. A. Motiyenko, and F. Rohart, , vol.3, p.35

, Cl-O 2 line-broadening parameters probed on rotational transitions: Measurements and semi-classical calculations, J Quant Spectrosc Radiat Transf, vol.130, pp.304-318, 2013.

M. V. Devi, D. C. Benner, K. Sung, T. J. Crawford, R. R. Gamache et al., Line parameters for CO 2 broadening in the ? 2 band of HD 16 O, J Quant Spectrosc Radiat Transf, vol.187, pp.472-88, 2017.

V. M. Devi, R. R. Gamache, B. Vispoel, C. L. Renaud, D. C. Benner et al., Line shape parameters of air-broadened water vapor transitions in the ? 1 and ? 3 spectral region, J Mol Spectrosc

B. K. Antony and R. R. Gamache, Self-broadening of water vapor transitions via the complex Robert-Bonamy theory, J Quant Spectrosc Radiat Transf, vol.105, pp.148-63, 2007.

N. H. Ngo, N. Ibrahim, X. Landsheere, H. Tran, P. Chelin et al., Intensities and shapes of H 2 O lines in the near-infrared by tunable diode laser spectroscopy, J Quant Spectrosc Radiat Transf, vol.113, pp.870-877, 2012.

V. M. Devi, D. C. Benner, K. Sung, T. J. Crawford, R. R. Gamache et al., Line parameters for CO 2-and self-broadening in the ? 1 band of HD 16 O, J Quant Spectrosc Radiat Transf, vol.203, pp.133-67, 2017.

V. M. Devi, D. C. Benner, K. Sung, T. J. Crawford, R. R. Gamache et al., Line parameters for CO 2-and self-broadening in the ? 3 band of HD 16 O, J Quant Spectrosc Radiat Transf, vol.203, pp.158-74, 2017.

M. Godon, A. Bauer, and R. R. Gamache, The continuum of water vapor mixed with methane: Absolute absorption at 239 GHz and linewidth calculations, J Mol Spectrosc, vol.202, pp.293-302, 2000.

B. K. Antony, D. L. Niles, S. B. Wroblewski, C. M. Humphrey, T. Gabard et al., N 2-, O 2-and airbroadened half-widths and line shifts for transitions in the ? 3 band of methane in the 2726-to 3200-cm-1 spectral region, J Mol Spectrosc, vol.251, pp.268-81, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00403896

T. Gabard and V. Boudon, Line broadening coefficient calculations for methane perturbed by nitrogen, J Quant Spectrosc Radiat Transf, vol.111, pp.1328-1371, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00452656

T. Gabard, Calculated line broadening parameters for methane perturbed by diatomic molecules, J Mol Spectrosc, vol.291, pp.61-69, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01024850

R. R. Gamache, N. Lacome, G. Pierre, and T. Gabard, Nitrogen broadening of SF 6 transitions in the ? 3 band, J Mol Struct, vol.599, pp.279-92, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01053639

A. Lévy, N. Lacome, and C. Chackerian, Collisional line mixing, Spectroscopy of the Earth's Atmosphere and Interstellar Medium, pp.261-337, 1992.

B. Lavorel, G. Millot, R. Saint-loup, H. Berger, L. Bonamy et al., Study of collisional effects on band shapes of the ? 1 /2? 2 Fermi dyad in CO 2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2? 2 band, J Chem Phys, vol.93, pp.2176-84, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00399318

M. R. Cherkasov, Effects of collisional interference of lines in the spectra of symmetric top molecules: III. Broadening of rotational transitions with a hyperfine structure, Opt Spectrosc, vol.107, pp.553-63, 2009.

M. R. Cherkasov, Effects of hyperfine splitting of levels in the pressure broadening of the methyl chloride rotational transitions, Atmos Ocean Opt, vol.24, pp.22-31, 2011.

F. Niro, C. Boulet, and J. M. Hartmann, Spectra calculations in central and wing regions of CO 2 IR bands between 10 and 20 ?m. I: Model and laboratory measurements, J Quant Spectrosc Radiat Transf, vol.88, pp.483-98, 2004.
DOI : 10.1016/j.jqsrt.2004.04.005

C. Boulet, Q. Ma, and R. H. Tipping, Line mixing in parallel and perpendicular bands of CO 2 : A further test of the refined Robert-Bonamy formalism, J Chem Phys, vol.143, p.124313, 2015.

Q. Ma, C. Boulet, and R. H. Tipping, Effects on calculated half-widths and shifts from the line coupling for asymmetric-top molecules, J Chem Phys, vol.140, p.244301, 2014.
DOI : 10.1063/1.4883058

C. Boulet and Q. Ma, The relaxation matrix for symmetric tops with inversion symmetry. II. Line mixing effects in the ? 1 band of NH 3, J Chem Phys, vol.144, p.224304, 2016.
DOI : 10.1063/1.4952996

Q. Ma, C. Boulet, and R. H. Tipping, Relaxation matrix for symmetric tops with inversion symmetry: Line coupling and line mixing effects on NH 3 lines in the ? 4 band, J Chem Phys, vol.146, p.134312, 2017.

R. G. Gordon and R. P. Mcginnis, Intermolecular potentials and infrared spectra, J Chem Phys, vol.55, pp.4898-906, 1971.
DOI : 10.1063/1.1675597

J. V. Buldyreva and L. Bonamy, Non-Markovian energy corrected sudden model for the rototranslational spectrum of N 2, Phys Rev A, vol.60, pp.370-376, 1999.

L. Daneshvar and J. Buldyreva, Extension of the non-Markovian Energy-Corrected Sudden model to the case of parallel and perpendicular infrared bands, J Chem Phys, vol.139, p.164107, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00954754

A. Predoi-cross, A. V. Unni, W. Liu, I. Schofield, C. Holladay et al., Line shape parameters measurement and computations for self-broadened carbon dioxide transitions in the 3001200001 and 30013-00001 bands, line mixing, and speed dependence, J Mol Spectrosc, vol.245, pp.34-51, 2007.
DOI : 10.1016/j.jms.2007.07.004

A. Predoi-cross, W. Liu, C. Holladay, A. V. Unni, I. Schofiel et al., Line profile study of transition in the 30012-00001 and 30013-00001 bands of carbon dioxide perturbed by air, J Mol Spectrosc, vol.246, pp.98-112, 2007.

A. Predoi-cross, K. Hambrook, R. Keller, C. Povey, I. Schofield et al., Spectroscopic line shape study of the self-perturbed oxygen A-band, J Mol Spectrosc, vol.248, pp.85-110, 2008.

C. Povey and A. Predoi-cross, Computations of temperature dependences for line shape parameters in the 30012?00001 and 30013?00001 bands of pure CO 2, J Mol Spectrosc, vol.257, pp.187-99, 2009.

A. Predoi-cross, W. Liu, R. Murphy, C. Povey, R. R. Gamache et al., Measurement and computations for temperature dependences of self-broadened carbon dioxide transitions in the 30012?00001 and 30013?00001 bands, J Quant Spectrosc Radiat Transf, vol.111, pp.1065-79, 2010.

J. Lamouroux, H. Tran, A. L. Laraia, R. R. Gamache, L. S. Rothmann et al., Updated database plus software for line-mixing in CO 2 infrared spectra and their test using laboratory spectra in the 1.5-2.3 ?m region, J Quant Spectrosc Radiat Transf, vol.111, pp.2321-2352, 2010.

A. Farooq, J. B. Jeffries, and R. K. Hanson, High-pressure measurements of CO 2 absorption near 2.7 ?m: Line mixing and finite duration collision effects, J Quant Spectrosc Radiat Transf, vol.111, pp.949-60, 2010.

H. Tran, C. Boulet, S. Stefani, M. Snels, and G. Piccioni, Measurements and modeling of high pressure pure CO 2 spectra from 750 to 8500 cm-1. I-Central and wing regions of the allowed vibrational bands, J Quant Spectrosc Radiat Transf, vol.112, pp.925-961, 2011.

N. N. Filippov, R. E. Asfin, T. N. Sinyakova, I. M. Grigoriev, T. M. Petrova et al., Experimental and theoretical studies of CO 2 spectra for planetary atmosphere modelling: Region 600-9650 cm-1 and pressures up to 60 atm, Phys Chem Chem Phys, vol.15, pp.13826-13860, 2013.
DOI : 10.1039/c3cp50279a

URL : https://hal.archives-ouvertes.fr/hal-00954759

L. Daneshvar, T. Földes, J. Buldyreva, V. Auwera, and J. , Infrared absorption by pure CO 2 near 3340 cm1 : Measurements and analysis of collisional coefficients and line-mixing effects at subatmospheric pressures, J Quant Spectrosc Radiat Transf, vol.149, pp.258-74, 2014.
DOI : 10.1016/j.jqsrt.2014.08.007

J. Lamouroux, L. Régalia, X. Thomas, V. Auwera, J. Gamache et al., CO 2 line-mixing database and software update and its tests in the 2.1 ?m and 4.3 ?m regions, J Quant Spectrosc Radiat Transf, vol.151, pp.88-96, 2015.
DOI : 10.1016/j.jqsrt.2014.09.017

A. Mashwood, A. Predoi-cross, A. Devi, V. M. Rozario, H. Billinghurst et al., Measurement and computations of line shape parameters for the 12201?03301, 11101?10002 and 12201?11102 selfbroadened CO 2 Q-branches, J Mol Spectrosc

J. V. Buldyreva, N. A. Gennadiev, and N. N. Filippov, Line-mixing in absorption bands of linear molecules diluted in high-density rare gases: Measurements and modeling for OCS-He, J Chem Phys, vol.138, p.164117, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00954766

H. Tran, C. Boulet, and J. M. Hartmann, Line-mixing and collision induced absorption by oxygen in the Aband. Laboratory measurements, model, and tools for atmospheric spectra computations, J Geophys Res Atmos, vol.111, p.15210, 2006.

H. Tran and J. M. Hartmann, An improved O 2 A-band absorption model and its consequences for retrievals of photon paths and surface pressures, J Geophys Res Atmos, vol.113, p.18104, 2008.

D. S. Makarov, M. Y. Tretyakov, and C. Boulet, Line mixing in the 60-GHz atmospheric oxygen band: Comparison of the MPM and ECS model, J Quant Spectrosc Radiat Transf, vol.124, pp.1-10, 2013.

D. S. Makarov, N. N. Filippov, and M. Y. Tretyakov, Modeling the profile of the 60 GHz absorption band of atmospheric oxygen using the memory function formalism, Opt Spectrosc, vol.105, pp.7-13, 2008.

P. Bréchignac, Reorientation and pressure broadening of IR or MW lines: New results in CH 3 F, J Chem Phys, vol.76, pp.3389-95, 1982.

J. Koubek, C. Boulet, A. Perrin, ?. Urban, and J. M. Hartmann, Line-mixing between rotational Stark components of CH 3 F self-perturbed and perturbed by helium: Experimental results and IOS analysis, J Mol Spectrosc, vol.266, pp.12-20, 2011.
DOI : 10.1016/j.jms.2011.01.006

V. Lemaire, L. Dore, G. Cazzoli, G. Buffa, O. Tarrini et al., Broadening of CH 3 F in presence of Stark fields. I. Self-broadening and self-shifting of isolated components, J Chem Phys, vol.106, pp.8995-9003, 1997.

S. Green, Effect of nuclear hyperfine structure on microwave spectral pressure broadening, J Chem Phys, vol.88, pp.7331-7337, 1988.

P. M. Flaud, J. Orphal, C. Boulet, and J. M. Hartmann, Measurements and analysis of collisional line-mixing within nuclear hyperfine components of helium broadened HI lines, J Mol Spectrosc, vol.235, pp.149-57, 2006.

G. Buffa and O. Tarrini, Hyperfine effects on collisional lineshape. I. A self-consistent set of equations, J Chem Phys, vol.134, p.174309, 2011.

T. A. Brunner and D. Pritchard, Fitting laws for rotationally inelastic collisions, Advances in chemical physics: Dynamics of the excited state, vol.50, pp.589-651, 1982.
DOI : 10.1002/9780470142745.ch9

H. Tran, D. Jacquemart, J. Y. Mandin, and N. Lacome, Line mixing in the ? 6 Q branches of self and nitrogenbroadened methyl bromide, J Quant Spectrosc Radiat Transf, vol.109, pp.119-150, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00395378

L. Gomez, H. Tran, and D. Jacquemart, Line mixing calculation in the ? 6 Q-branches of N 2-broadened CH 3 Br at low temperatures, J Mol Spectrosc, vol.256, pp.35-40, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00745956

C. Povey, A. Predoi-cross, and D. R. Hurtmans, Line shape study of acetylene transitions in the ? 1 +? 2 +? 4 +? 5 band over a range of temperatures, J Mol Spectrosc, vol.268, pp.177-88, 2011.

C. Bray, H. Tran, D. Jacquemart, and N. Lacome, Line mixing in the Q Q sub branches of the ? 1 band of methyl chloride, J Quant Spectrosc Radiat Transf, vol.113, pp.2182-2190, 2012.

R. Hashemi, A. Predoi-cross, A. S. Dudaryonok, N. N. Lavrentieva, and A. C. Vandaele, Vander Auwera J. CO 2 pressure broadening and shift coefficients for the 2-0 band of 12 C 16 O, J Mol Spectrosc, vol.326, pp.60-72, 2016.

H. Tran, J. M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg et al., The 2? 3 band of CH 4 revisited with line mixing. Consequences for spectroscopy and atmospheric retrievals at 1.67 ?m, J Quant Spectrosc Radiat Transf, vol.111, pp.1344-56, 2010.

H. Tran, J. Vander-auwera, X. Landsheere, N. H. Ngo, E. Pangui et al., Infrared light on molecule-molecule and molecule-surface collisions, Phys Rev A, vol.92, p.12707, 2015.
DOI : 10.1103/physreva.92.012707

URL : https://hal.archives-ouvertes.fr/hal-01187834

S. Hadded, F. Thibault, P. M. Flaud, H. Aroui, and J. M. Hartmann, Experimental and theoretical study of line mixing in NH 3 spectra. I. Scaling analysis of parallel bands perturbed by He, J Chem Phys, vol.116, pp.7544-57, 2002.

S. Hadded, F. Thibault, P. M. Flaud, H. Aroui, and J. M. Hartmann, Experimental and theoretical study of line mixing in NH 3 spectra. II. Effect of the perturber in infrared parallel bands, J Chem Phys, vol.120, pp.217-240, 2004.

N. N. Filippov and M. V. Tonkov, Semiclassical analysis of line mixing in the infrared bands of CO and CO 2, J Quant Spectrosc Radiat Transf, vol.50, pp.111-136, 1993.

F. R. Spiering, M. B. Kiseleva, N. N. Filippov, H. Naus, B. Van-lieshout et al., Line mixing and collision induced absorption in the oxygen A-band using cavity ringdown spectroscopy, J Chem Phys, vol.133, p.114305, 2010.

F. R. Spiering, M. B. Kiseleva, N. N. Filippov, B. Van-lieshout, A. Van-der-veen et al., The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy, Mol Phys, vol.109, pp.535-577, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00670237

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot et al., A rotational thermalisation model for the calculation of collisionally narrowed isotropic Raman scattering spectra _ application to the SRS N 2 QBranch, Chem Phys, vol.106, pp.427-466, 1986.

I. A. Verzhbitskiy, A. P. Kouzov, F. Rachet, and M. Chrysos, The isotropic spectrum of the CO 2 Raman 2? 3 overtone: A line-mixing band shape analysis at pressures up to several tens of atmospheres, J Chem Phys, vol.134, p.224301, 2011.

I. A. Verzhbitskiy, A. P. Kouzov, F. Rachet, and M. Chrysos, The depolarized Raman 2? 3 overtone of CO 2 : A line-mixing shape analysis, J Chem Phys, vol.134, 2011.

V. P. Kochanov, Line profiles for the description of line mixing, narrowing, and dependence of relaxation constants on speed, J Quant Spectrosc Radiat Transf, vol.112, pp.1931-1972, 2011.

P. W. Rosenkranz, Shape of the 5 mm oxygen band in the atmosphere, IEEE Trans Ant and Prop, vol.23, pp.498-506, 1975.

J. M. Hartmann, C. Boulet, H. Tran, and M. T. Nguyen, Molecular dynamics simulations for CO 2 absorption spectra. I. Line broadening and the far wing of the ? 3 infrared band, J Chem Phys, vol.133, p.144313, 2010.

J. M. Hartmann and C. Boulet, Molecular dynamics simulations for CO 2 spectra. III. Permanent and collisioninduced tensors contributions to light absorption and scattering, J Chem Phys, vol.134, p.184312, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00840845

J. M. Hartmann, C. Boulet, and D. Jacquemart, Molecular dynamics simulations for CO 2 spectra. II. The far infrared collision-induced absorption band, J Chem Phys, vol.134, p.94316, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00840845

J. M. Hartmann, C. Boulet, D. D. Tran, H. Tran, and Y. Baranov, Effect of humidity on the absorption continua of CO 2 and N 2 near 4 ?m. Calculations, comparisons with measurements and consequences for atmospheric spectra, J Chem Phys, vol.148, p.54304, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01738115

A. P. Kouzov, Rotational relaxation matrix for fast non-Markovian collisions, Phys Rev A, vol.60, pp.2931-2940, 1999.
DOI : 10.1103/physreva.60.2931

URL : https://hal.archives-ouvertes.fr/hal-02129996

L. Daneshvar and J. Buldyreva, Line mixing in Raman scattering spectra of CO 2 modelled by a nonMarkovian Energy-Corrected Sudden approach, Mol Phys, vol.110, pp.2077-89, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00824836

J. V. Bogdanova and O. B. Rodimova, Line shape in far wings and water vapor absorption in a broad temperature interval, J Quant Spectrosc Radiat Transf, vol.111, pp.2298-307, 2010.

T. E. Klimeshina, T. M. Petrova, O. B. Rodimova, A. A. Solodov, and A. M. Solodov, CO 2 absorption in band wings in near IR, Atmos Ocean Opt, vol.28, pp.387-93, 2015.
DOI : 10.1134/s1024856015050073

T. E. Klimeshina and O. B. Rodimova, Temperature dependence of the water vapor continuum absorption in the 3-5 ?m spectral region, J Quant Spectrosc Radiat Transf, vol.119, pp.77-83, 2013.

T. E. Klimeshina and O. B. Rodimova, Water-vapor foreign-continuum absorption in the 8-12 and 3-5 ?m atmospheric windows, J Quant Spectrosc Radiat Transf, vol.161, pp.145-52, 2015.
DOI : 10.1016/j.jqsrt.2015.04.005

T. Tanaka, M. Fukabori, T. Sugita, T. Yokota, R. Kumazawa et al., Line shape of the far-wing beyond the band head of the CO 2 ? 3 band, J Mol Spectrosc, vol.252, pp.185-194, 2008.

H. Tran, M. Turbet, P. Chelin, and X. Landsheere, Measurements and modelling of absorption by CO 2 +H 2 O mixtures in the spectral region beyond the ? 3 CO 2 band head, Icarus, vol.306, pp.116-137, 2018.

K. P. Shine, I. V. Ptashnik, and G. Rädel, The water vapour continuum: Brief history and recent developments, Surv Geophys, vol.33, pp.535-55, 2012.
DOI : 10.1007/978-94-007-4327-4_15

URL : https://hal.archives-ouvertes.fr/hal-01131043

S. A. Clough, F. X. Kneizys, and R. W. Davies, Line shape and the water vapor continuum, Atmos Res, vol.23, pp.229-270, 1989.
DOI : 10.1016/0169-8095(89)90020-3

E. J. Mlawer, V. H. Payne, J. Moncet, J. S. Delamere, M. J. Alvarado et al., Development and recent evaluation of the MT_CKD model of continuum absorption, Phil Trans R Soc A, vol.370, pp.2520-56, 2012.

E. J. Mlawer, M. J. Alvarado, D. Gombos, M. J. Iacono, K. E. Cady-pereira et al., A potpourri of updates to the AER Models

D. E. Burch, Continuum absorption by H 2 O, 1982.
DOI : 10.1117/12.931899

D. E. Burch and R. L. Alt, Continuum absorption by H 2 O in the 700-1200 cm-1 and 2400-2800 cm-1 windows, 1984.

D. E. Burch and R. L. Alt, Continuum absorption by H 2 O in the 700-1200 cm-1 and 2400-2800 cm-1 windows, 1984.
DOI : 10.21236/ada147391

URL : http://www.dtic.mil/dtic/tr/fulltext/u2/a147391.pdf

J. G. Cormier, R. Ciurylo, and J. R. Drummond, Cavity ringdown spectroscopy measurements of the infrared water vapor continuum, J Chem Phys, vol.116, pp.1030-1034, 2002.

S. M. Newman, P. D. Green, I. V. Ptashnik, T. D. Gardiner, M. D. Coleman et al., Airborne and satellite remote sensing of the mid-infrared water vapour continuum, Phil Trans R Soc A, vol.370, pp.2611-2647, 2012.
DOI : 10.1098/rsta.2011.0223

URL : http://rsta.royalsocietypublishing.org/content/roypta/370/1968/2611.full.pdf

. Clough, M. J. Iacono, and J. L. Moncet, Line-by-line calculations of atmospheric fluxes and cooling ratesapplication to water vapor, J Geophys Res Atmos, vol.97, pp.15761-85, 1992.
DOI : 10.1029/92jd01419

S. Costa and K. P. Shine, Outgoing longwave radiation due to directly transmitted surface emission, J Atmos Sci, vol.69, pp.1865-70, 2012.
DOI : 10.1175/jas-d-11-0248.1

J. Hinderling, M. W. Sigrist, and F. K. Kneubuhl, Laser photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 ?m and 14 ?m atmospheric window, Infrared Phys, vol.27, pp.63-120, 1987.

J. G. Cormier, J. T. Hodges, and J. R. Drummond, Infrared water vapor continuum absorption at atmospheric temperatures, J Chem Phys, vol.122, p.114309, 2005.
DOI : 10.1063/1.1862623

Y. I. Baranov, W. J. Lafferty, Q. Ma, and R. H. Tipping, Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, J Quant Spectrosc Radiat Transf, vol.109, pp.2291-302, 2008.

D. D. Turner, D. C. Tobin, S. A. Clough, P. D. Brown, R. G. Ellingson et al., The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance, J Atmos Sci, vol.61, pp.2657-75, 2004.
DOI : 10.1175/jas3300.1

I. V. Ptashnik, R. A. Mcpheat, K. P. Shine, K. M. Smith, and R. G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, J Geophys Res Atmos, vol.116, p.16305, 2011.
DOI : 10.1029/2011jd015603

URL : https://hal.archives-ouvertes.fr/hal-01131045

I. V. Ptashnik, T. M. Petrova, Y. B. Ponomarev, K. P. Shine, A. A. Solodov et al., Near-infrared water vapour self-continuum at close to room temperature, J Quant Spectrosc Radiat Transf, vol.120, pp.23-35, 2013.
DOI : 10.1016/j.jqsrt.2013.02.016

I. V. Ptashnik, T. M. Petrova, Y. B. Ponomarev, K. P. Shine, A. A. Solodov et al., Water vapor continuum absorption in near-IR atmospheric windows, Atmos Ocean Opt, vol.28, pp.115-135, 2015.
DOI : 10.1134/s1024856015020098

D. Mondelain, A. Aradj, S. Kassi, and A. Campargue, The water vapour self-continuum by CRDS at room temperature in the 1.6 ?m transparency window, J Quant Spectrosc Radiat Transf, vol.130, pp.381-91, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00997615

D. Mondelain, S. Manigand, S. Kassi, and A. Campargue, Temperature dependence of the water vapor selfcontinuum by cavity ring-down spectroscopy in the 1.6 ?m transparency window, J Geophys Res Atmos, vol.119, pp.5625-5664, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01094704

I. Ventrillard, D. Romanini, D. Mondelain, and A. Campargue, Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 ?m atmospheric window, J Chem Phys, vol.143, p.134304, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252310

D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, and A. Campargue, The self-and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 ?m, Phys Chem Chem Phys, vol.17, pp.17762-77, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252196

A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, and D. Romanini, Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, J Geophys Res Atmos, vol.121, pp.13180-203, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430402

L. Richard, S. Vasilchenko, D. Mondelain, J. Ventrillard, D. Romanini et al., Water vapor selfcontinuum absorption measurements in the 4.0 and 2.1 ?m transparency windows, J Quant Spectrosc Radiat Transf, vol.201, pp.171-180, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01766014

W. E. Bicknell, D. Cecca, S. Griffin, M. K. Swartz, S. D. Flusberg et al., Search for low-absorption regimes in the 1.6 and 2.1 ?m atmospheric windows, J Directed Ener, vol.2, pp.151-61, 2006.

S. F. Fulghum and M. M. Tilleman, Interferometric calorimeter for the measurement of water-vapor absorption, J Opt Soc Am B, vol.8, pp.2401-2414, 1991.

Y. I. Baranov and W. J. Lafferty, The water-vapor continuum and selective absorption in the 3-5 ?m spectral region at temperatures from 311 to 363 K, J Quant Spectrosc Radiat Transf, vol.112, pp.1304-1317, 2011.

D. E. Burch, D. A. Gryvnak, and J. D. Pembrook, Investigation of the absorption of infrared radiation by atmospheric gases: Water, nitrogen, nitrous oxide, 1971.

I. V. Ptashnik, R. Mcpheat, K. P. Shine, K. M. Smith, and R. G. Williams, Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements, Phil Trans R Soc A, vol.370, pp.2557-77, 2012.
DOI : 10.1098/rsta.2011.0218

URL : http://rsta.royalsocietypublishing.org/content/roypta/370/1968/2557.full.pdf

Y. I. Baranov and W. J. Lafferty, The water vapour self-and water-nitrogen continuum absorption in the 1000 and 2500 cm ?1 atmospheric windows, Phil Trans R Soc A, vol.370, pp.2578-89, 2012.

Y. I. Baranov, The continuum absorption in H 2 O+N 2 mixtures in the 2000-3250 cm-1 spectral region at temperatures from 326 to 363 K, J Quant Spectrosc Radiat Transf, vol.112, pp.2281-2287, 2011.

L. Frommhold, Collision Induced Absorption in Gases. Cambridge Monographs on Atomic, Molecular, and Chemical Physics, 2006.

G. C. Tabisz, . Neuman, and . Eds, Collision-and interaction-induced spectroscopy, 2012.

A. A. Vigasin, Water vapor continuum: Whether collision-induced absorption is involved, J Quant Spectrosc Radiat Transf, vol.148, pp.58-64, 2014.
DOI : 10.1016/j.jqsrt.2014.06.019

T. Karman, A. Van-der-avoird, and C. Groenenboom, Collision-induced absorption with exchange effects and anisotropic interactions: Theory and application to H 2-H 2, J Chem Phys, vol.142, p.84305, 2015.
DOI : 10.1063/1.4907916

URL : http://repository.ubn.ru.nl/bitstream/2066/144917/1/144917.pdf

M. Gustafsson, L. Frommhold, D. Bailly, J. P. Bouanich, and C. Brodbeck, Collision-induced absorption in the rototranslational band of dense hydrogen gas, J Chem Phys, vol.119, p.12264, 2003.

T. Karman, E. Miliordos, K. Hunt, G. C. Groenenboom, and A. Van-der-avoird, Quantum mechanical calculation of the collision-induced absorption spectra of N 2-N 2 with anisotropic interactions, J Chem Phys, vol.142, p.84306, 2015.

T. Karman, A. Van-der-avoird, and A. Groenenboom, O 2-O 2 collision-induced absorption, J Chem Phys, vol.147, p.84307, 2017.

T. Karman, M. Koenis, A. Banerjee, D. H. Parker, I. E. Gordon et al., Mechanisms of collision-induced absorption for spin-forbidden transitions, Nature Chem in press

T. Karman, A. Van-der-avoird, and C. G. Gerrit, Potential energy and dipole moment surfaces of the triplet states of the O 2

G. Tabisz, Intra-collision effects in the collision-broadening of spectral line profiles, Int Rev Atomic Molecular Physics, vol.1, pp.53-61, 2010.

M. Gustafsson, L. Frommhold, X. Li, and K. Hunt, Roto-translational Raman spectra of pairs of hydrogen molecules from first principles, J Chem Phys, vol.130, p.164314, 2009.

W. G?az, T. Bancewicz, J. L. Godet, M. Gustafsson, A. Haskopoulos et al., Effects of anisotropic interaction-induced properties of hydrogen-rare gas compounds on rototranslational Raman scattering spectra: Comprehensive theoretical and numerical analysis, J Chem Phys, vol.145, p.34303, 2016.

M. Abel, L. Frommhold, and M. Gustafsson, Collision-induced absorption at wavelengths near 5 ?m by dense hydrogen gas, J Chem Phys, p.181102, 2009.
DOI : 10.1063/1.3263609

M. Abel, L. Frommhold, X. Li, and K. Hunt, Collision-induced Absorption by H 2 pairs: From hundreds to thousands of Kelvin, J Phys Chem A, vol.115, pp.6805-6817, 2011.
DOI : 10.1021/jp109441f

L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li et al., Infrared atmospheric emission and absorption by simple molecular complexes, from first principles, Mol Phys, vol.108, pp.2265-72, 2010.
DOI : 10.1080/00268976.2010.507556

M. Abel, L. Frommhold, X. Li, and K. Hunt, Infrared absorption by collisional H 2-He complexes at temperatures up to 9000 K and frequencies from 0 to 20 000 cm-1, J Chem Phys, p.44319, 2012.
DOI : 10.1063/1.3676405

M. Abel and L. Frommhold, Note: Collision-induced infrared absorption by gaseous deuterium, J Chem Phys, vol.133, p.146101, 2010.
DOI : 10.1063/1.3491811

M. Abel, L. Frommhold, X. Li, and K. Hunt, Note: Computation of collision-induced absorption by dense deuterium-helium gas mixtures, J Chem Phys, vol.134, p.76101, 2011.
DOI : 10.1063/1.3556876

M. Abel, L. Frommhold, X. Li, and K. Hunt, Comparison of the calculated collision-induced absorption spectra by dense hydrogen-helium, deuterium-helium, and tritium-helium gas mixtures, J Atomic Molec Opt Phys, p.470530, 2011.
DOI : 10.1155/2011/470530

URL : http://downloads.hindawi.com/archive/2011/470530.pdf

M. El-kader, J. L. Godet, A. A. El-sadek, and G. Maroulis, Spectral line shapes of collision-induced light scattering (CILS) and collision-induced absorption (CIA) using isotropic intermolecular potential for H 2-Ar, Mol Phys, vol.115, pp.2614-2639, 2017.
DOI : 10.1080/00268976.2017.1338774

URL : https://hal.archives-ouvertes.fr/hal-01545350

M. El-kader and G. Maroulis, Spectral line shapes of collision-induced absorption (CIA) using isotropic intermolecular potential for mixtures of molecular hydrogen with helium, Chem Phys Lett, vol.684, pp.141-148, 2017.

M. El-kader and G. Maroulis, An empirical multi-parameter anisotropic intermolecular potential, collision-induced absorption and predicted collision-induced light scattering spectra for CF 4-He, Chem Phys, vol.388, pp.78-85, 2011.
DOI : 10.1016/j.chemphys.2011.07.027

M. El-kader and G. Maroulis, New insights into collision-induced rototranslational absorption and scattering spectra of gaseous methane at different temperatures, J Mol Spectrosc, vol.281, pp.28-39, 2012.
DOI : 10.1016/j.jms.2012.10.003

M. El-kader, S. I. Mostafa, T. Bancewicz, and G. Maroulis, Spectral lineshapes of collision-induced absorption (CIA) and collision-induced light scattering (CILS) for molecular nitrogen using isotropic intermolecular potential. New insights and perspectives, Chem Phys, vol.440, pp.127-161, 2014.
DOI : 10.1016/j.chemphys.2014.06.010

M. El-kader, Theoretical calculation of the rototranslational collision-induced absorption (CIA) spectra in O 2-O 2 pairs, Zeitschrift für Physikalische Chemie, vol.230, pp.1099-109, 2016.

D. V. Oparin, N. N. Filippov, I. M. Grigoriev, and A. P. Kouzov, Effect of stable and metastable dimers on collision-induced rototranslational spectra: Carbon dioxide-rare gas mixtures, J Quant Spectrosc Radiat Transf, vol.196, pp.87-93, 2017.
DOI : 10.1016/j.jqsrt.2017.04.002

M. Gruszka and A. Borysow, Computer simulation of the far infrared collision induced absorption spectra of gaseous CO 2, Mol Phys, vol.93, pp.1007-1023, 1998.

B. Bussery-honvault and J. M. Hartmann, Ab initio calculations for the far infrared collision induced absorption by N 2 gas, J Chem Phys, vol.140, p.54309, 2014.
DOI : 10.1063/1.4863636

J. M. Hartmann, C. Boulet, and G. Toon, Collision-induced absorption by N 2 near 2.16 ?m: Calculations, model and consequences for atmospheric remote sensing, J Geophys Res Atmos, vol.122, pp.2419-2447, 2017.

Y. I. Baranov, I. A. Buryak, S. E. Lokshtanov, V. A. Lukyanchenko, and A. A. Vigasin, H 2 O-N 2 collision-induced absorption band intensity in the region of the N 2 fundamental: ab initio investigation of its temperature dependence and comparison with laboratory data, Phil Trans R Soc A, vol.370, pp.2691-709, 2012.

M. M. Shapiro and H. P. Gush, The collision-induced fundamental and first overtone bands of oxygen and nitrogen, Can J Phys, vol.44, pp.949-63, 1966.

H. B. Levine, Quantum theory of collision-induced absorption in rare-gas mixtures, Phys Rev, vol.160, pp.159-69, 1967.
DOI : 10.1103/physrev.172.241.3

G. Birnbaum and E. R. Cohen, Theory of line shape in pressure-induced absorption, Can J Phys, vol.54, pp.593-602, 1976.

S. E. Lokshtanov, B. Bussery-honvault, and A. A. Vigasin, Extensive ab initio study of the integrated IR intensity in the N 2 fundamental collision-induced band, Mol Phys, vol.106, pp.1227-1258, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00336967

I. A. Buryak, Y. N. Kalugina, and A. A. Vigasin, Ab initio and multipolar characterisation of the induced dipole surface for CH 4-CH 4 : Application to dipole-forbidden absorption in the Titan's atmosphere, J Mol Spectrosc, vol.291, pp.102-109, 2013.

Y. N. Kalugina, S. E. Lokshtanov, V. M. Cherepanov, and A. A. Vigasin, Ab initio 3D potential energy and dipole moment surfaces for the CH 4-Ar complex: Collision-induced intensity and dimer content, J Chem Phys, vol.144, p.54304, 2016.
DOI : 10.1063/1.4940779

M. El-kader and G. Maroulis, Quantum spectral rototranslational collision-induced absorption (CIA) in CO 2 and CO 2-Rg pairs (Rg=He, Ar and Xe): An insightful analysis based on new empirical multiproperty isotropic intermolecular potentials, Chem Phys Lett, vol.670, pp.95-101, 2017.
DOI : 10.1016/j.cplett.2016.12.066

M. Chrysos, A. P. Kouzov, N. I. Egorova, and F. Rachet, Exact low-order classical moments in collision-induced bands by linear rotors: CO 2-CO 2, Phys Rev Lett, vol.100, p.133007, 2008.
DOI : 10.1103/physrevlett.100.133007

C. Leforestier, R. H. Tipping, and Q. Ma, Temperature dependences of mechanisms responsible for the watervapor continuum absorption. II. Dimers and collision-induced absorption, J Chem Phys, vol.132, p.164302, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00490187

I. Buryak and A. A. Vigasin, Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface, J Chem Phys, vol.143, p.234304, 2015.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner et al., The HITRAN2012 molecular spectroscopic database, J Quant Spectrosc Radiat Transf, vol.130, pp.4-50, 2013.
DOI : 10.1016/j.jqsrt.2013.07.002

URL : https://hal.archives-ouvertes.fr/hal-01005779

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan et al., The HITRAN2016 Molecular Spectroscopic Database, J Quant Spectrosc Radiat Transf, vol.203, pp.3-69, 2017.
DOI : 10.1016/j.jqsrt.2017.06.038

URL : https://hal.archives-ouvertes.fr/hal-01765945

N. Jacquinet-husson, R. Armante, N. A. Scott, A. Chédin, L. Crépeau et al., The 2015 edition of the GEISA spectroscopic database, J Mol Spectrosc, vol.327, pp.31-72, 2016.
DOI : 10.1016/j.jms.2016.06.007

URL : https://hal.archives-ouvertes.fr/hal-01535662

C. Richard, I. E. Gordon, L. S. Rothman, M. Abel, L. Frommhold et al., New section of the HITRAN database: Collision-induced absorption (CIA), J Quant Spectrosc Radiat Transf, vol.113, pp.1273-85, 2012.
DOI : 10.1016/j.jqsrt.2011.11.004

T. Karman, Y. I. Baranov, J. M. Hartmann, R. L. Kurucz, K. Sun et al., Update of the HITRAN collision-induced absorption section

N. Tasinato, P. Charmet, A. Stoppa, P. Giorgianni, and S. , Determination of the vinyl fluoride line intensities by TDL spectroscopy: the object oriented approach of Visual Line Shape Fitting Program to line profile analysis, Mol Phys, vol.108, pp.677-85, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00588657

D. Lisak, D. K. Havey, and J. T. Hodges, Spectroscopic line parameters of water vapor for rotation-vibration transitions near 7180 cm-1, Phys Rev A, vol.79, p.52507, 2009.
DOI : 10.1103/physreva.79.052507

J. Mendonca, K. Strong, G. C. Toon, D. Wunch, K. Sung et al., Improving atmospheric CO 2 retrievals using line mixing and speed-dependence when fitting highresolution ground-based solar spectra, J Mol Spectros, vol.323, pp.15-27, 2016.
DOI : 10.1016/j.jms.2016.01.007

URL : https://manuscript.elsevier.com/S002228521630008X/pdf/S002228521630008X.pdf

J. Domys?awska, S. Wójtewicz, P. Mas?owski, A. Cygan, K. Bielska et al., A new approach to spectral line shapes of the weak oxygen transitions for atmospheric applications, J Quant Spectrosc Radiat Transf, vol.169, pp.111-132, 2016.

J. M. Hartmann and H. Tran, Ortho-Para-Dependent Pressure Effects Observed in the Near Infrared Band of Acetylene by Dual-Comb Spectroscopy, Phys Rev Lett, vol.119, p.69401, 2017.

J. Loos, M. Birk, and G. Wagner, Measurement of air-broadening line shape parameters and temperature dependence parameters of H 2 O lines in the spectral ranges 1850-2280 cm-1 and 2390-4000 cm-1, J Quant Spectrosc Radiat Transf, vol.203, pp.103-121, 2017.

J. T. Hodges, D. Lisak, N. Lavrentieva, A. Bykov, L. Sinitsa et al., Comparison between theoretical calculations and high-resolution measurements of pressure broadening for near-infrared water spectra, J Mol Spectrosc, vol.249, pp.86-94, 2008.

D. Lisak and J. T. Hodges, Low-uncertainty H 2 O line intensities fort he 930-nm region, J Mol Spectrosc, vol.249, pp.6-13, 2008.
DOI : 10.1016/j.jms.2007.12.007

D. Lisak and J. T. Hodges, High-resolution cavity ring-down spectroscopy measurements of blended H 2 O transitions, Appl Phys B, vol.88, pp.317-342, 2007.
DOI : 10.1007/s00340-007-2691-x

K. Y. Osipov, V. A. Kapitanov, A. E. Protasevich, A. A. Pereslavtseva, and Y. Y. Ponurovsky, Diode laser spectroscopy of H 2 16 O spectra broadened by N 2 and He in 1.39 ?m region, J Quant Spectrosc Radiat Transf, vol.142, pp.1-8, 2014.

H. M. Campbell and D. K. Havey, Pressure-broadening of water transitions near 7180 cm ?1 by helium isotopes, Spectrochim Acta A, vol.109, pp.232-240, 2013.
DOI : 10.1016/j.saa.2013.01.099

P. J. Schroeder, M. J. Cich, J. Yang, W. C. Swann, I. Coddington et al., Broadband, high-resolution investigation of advanced absorption line shapes at high temperature, Phys Rev A, vol.96, p.22514, 2017.
DOI : 10.1103/physreva.96.022514

URL : https://link.aps.org/accepted/10.1103/PhysRevA.96.022514

J. Loos, M. Birk, and G. Wagner, Measurement of positions, intensities and self-broadening line shape parameters of H 2 O lines in the spectral ranges 1850-2280 cm-1 and 2390-4000 cm-1, J Quant Spectrosc Radiat Transf, vol.203, pp.119-151, 2017.

I. Ptashnik, R. Mcpheat, O. L. Polyansky, K. P. Shine, and K. M. Smith, Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25 ?m absorption bands, J Quant Spectrosc Radiat Transf, vol.177, pp.92-107, 2016.

M. A. Koshelev, G. Y. Golubiatnikov, I. N. Vilkov, and M. Y. Tretyakov, Line shape parameters of the 22-GHz water line for accurate modeling in atmospheric applications, J Quant Spectrosc Radiat Transf, vol.205, pp.51-59, 2018.

D. Hurtmans, A. Henry, A. Valentin, and C. Boulet, Narrowing broadening and shifting parameters for R(2) and P(14) lines in the HCl fundamental band perturbed by N 2 and rare gases from tunable diode laser spectroscopy, J Mol Spectrosc, vol.254, pp.126-162, 2009.

T. Le, L. Fissiaux, M. Lepère, and H. Tran, Isolated line shape of methane with various collision partners, J Quant Spectrosc Radiat Transf, vol.185, pp.27-36, 2016.
DOI : 10.1016/j.jqsrt.2016.07.017

L. Fissiaux, J. C. Populaire, G. Blanquet, and M. Lepère, Infrared spectroscopy at high temperature: N 2-and O 2-broadening coefficients in the ? 4 band of CH 4, J Mol Spectrosc, vol.317, pp.26-31, 2015.

L. Fissiaux, Q. Delière, G. Blanquet, S. Robert, A. C. Vandaele et al., CO 2-broadening coefficients in the ? 4 fundamental band of methane at room temperature and application to CO 2-rich planetary atmospheres, J Mol Spectrosc, vol.297, pp.35-40, 2014.

E. Es-sebbar and A. Farooq, Intensities, broadening and narrowing parameters in the ? 3 band of methane, J Quant Spectrosc Radiat Transf, vol.149, pp.241-52, 2014.

V. M. Devi, D. C. Benner, K. Sung, L. R. Brown, T. J. Crawford et al., Spectral line parameters including line shapes in the 2? 3 Q branch of 12 CH 4, J Quant Spectrosc Radiat Transf, vol.177, pp.152-69, 2016.

V. M. Devi, D. C. Benner, M. Smith, A. W. Mantz, K. Sung et al., Predoi-Cross A. Self-and airbroadened line shape parameters in the ? 2 +?? 3 band of 12 CH 4 : 4500-4630 cm-1, J Quant Spectrosc Radiat Transf, vol.152, pp.149-65, 2015.

V. M. Devi, D. C. Benner, K. Sung, L. R. Brown, T. J. Crawford et al., Line parameters including temperature dependences of selfand air-broadened line shapes of 12 C 16 O 2 : 1.6-?m region, J Quant Spectrosc Radiat Transf, vol.177, pp.117-161, 2016.

G. Larcher, X. Landsheere, M. Schwell, and H. Tran, Spectral shape parameters of pure CO 2 transitions near 1.6 ?m by tunable diode laser spectroscopy, J Quant Spectrosc Radiat Transf, vol.164, pp.82-90, 2015.
DOI : 10.1016/j.jqsrt.2015.05.013

D. A. Long, K. Bielska, D. Lisak, D. K. Havey, M. Okumura et al., The air-broadened, near-infrared CO 2 line shape in the spectrally isolated regime: Evidence of simultaneous Dicke narrowing and speed dependence, J Chem Phys, vol.135, p.64308, 2011.

D. A. Long, S. Wójtewicz, C. E. Miller, and J. T. Hodges, Frequency-agile, rapid scanning cavity ring-down spectroscopy (FARS-CRDS) measurements of the (30012)?(00001) near-infrared carbon dioxide band, J Quant Spectrosc Radiat Transf, vol.161, pp.35-40, 2015.

V. M. Devi, D. C. Benner, C. E. Miller, and A. Predoi-cross, Lorentz half-width, pressure-induced shift and speed-dependent coefficients in oxygen-broadened CO 2 bands at 6227 and 6348 cm-1 using a constrained multispectrum analysis, J Quant Spectrosc Radiat Transf, vol.111, pp.2355-69, 2010.

M. Kiseleva, J. Mandon, V. Persijn, and F. Harren, Line strength measurements and relative isotopic ratio 13
DOI : 10.1016/j.jqsrt.2017.09.021

, C/ 12 C measurements in carbon dioxide using cavity ring down spectroscopy, J Quant Spectrosc Radiat Transf, vol.204, pp.152-160, 2018.

L. Rutkowski, P. Mas?owski, A. C. Johansson, A. Khodabakhsh, and A. Foltynowicz, Optical frequency comb Fourier transform spectroscopy with sub-nominal resolution and precision beyond the Voigt profile, J Quant Spectrosc Radiat Transf, vol.204, pp.63-73, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01936240

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, The line shape problem in the near-infrared spectrum of self-colliding CO 2 molecules: Experimental investigation and test of semiclassical models, J Chem Phys, vol.130, p.184306, 2009.

T. Q. Bui, D. A. Long, A. Cygan, V. T. Sironneau, D. W. Hogan et al., Observations of Dicke narrowing and speed dependence in air-broadened CO 2 lineshapes near 2.06 ?m, J Chem Phys, vol.141, p.174301, 2014.

D. C. Benner, V. M. Devi, K. Sung, L. R. Brown, C. E. Miller et al., Line parameters including temperature dependences of air-and self-broadened line shapes of 12 C 16 O 2 : 2.06-?m region, J Mol Spectrosc, vol.326, pp.21-47, 2016.

Q. Delière, L. Fissiaux, and M. Lepère, Absolute line intensities and self-broadening coefficients in the ? 3-? 1 band of carbon dioxide, J Mol Spectros, vol.272, pp.36-42, 2012.

K. Owen, E. Es-sebbar, and A. Farooq, Measurements of NH 3 linestrengths and collisional broadening coefficients in N 2 , O 2 , CO 2 , and H 2 O near 1103.46cm ?1, J Quant Spectrosc Radiat Transf, vol.121, pp.56-68, 2013.

M. Triki, C. Lemarchand, B. Darquié, P. Sow, V. Roncin et al., Speed-dependent effects in NH 3 self-broadened spectra: Towards the determination of the Boltzmann constant, Phys Rev A, vol.85, p.62510, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00661417

J. Loos, M. Birk, and G. Wagner, Pressure broadening,-shift, speed dependence and line mixing in the ? 3 rovibrational band of N 2 O, J Quant Spectrosc Radiat Transf, vol.151, pp.300-309, 2015.

K. J. Hoffman and P. B. Davies, Pressure broadening coefficients of transitions in the ? 5 band of methyl bromide from fitting to Voigt and Galatry line profiles, J Mol Spectrosc, vol.254, pp.69-77, 2009.

A. S. Dudaryonok, N. N. Lavrentieva, J. Buldyreva, L. Margulès, R. A. Motiyenko et al., Experimental studies, line-shape analysis and semi-empirical calculations of broadening coefficients for CH 3 35 Cl-CO 2 submillimeter transitions, J Quant Spectrosc Radiat Transf, vol.145, pp.50-56, 2014.

V. Gupta, F. Rohart, L. Margulès, R. A. Motiyenko, and J. Buldyreva, Line-shapes and broadenings of rotational transitions of CH 3 35 Cl in collision with He, Ar and Kr, J Quant Spectrosc Radiat Transf, vol.161, pp.85-94, 2015.

A. F. Seleznev, G. V. Fedoseev, M. A. Koshelev, and M. Y. Tretyakov, Shape of collision-broadened lines of carbon monoxide, J Quant Spectrosc Radiat Transf, vol.161, pp.171-180, 2015.

A. Predoi-cross, K. Esteki, H. Rozario, H. Naseri, S. Latif et al., Theoretical and revisited experimentally retrieved He-broadened line parameters of carbon monoxide in the fundamental band, J Quant Spectrosc Radiat Transf, vol.184, pp.322-362, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01370533

A. Predoi-cross, F. Rohart, J. P. Bouanich, and D. R. Hurtmans, Xenon-broadened CO line shapes in the fundamental band at 349 K, Can J Phys, vol.87, pp.485-98, 2009.
DOI : 10.1063/1.3026438

V. M. Devi, D. C. Benner, M. Smith, A. W. Mantz, K. Sung et al., Predoi-Cross A. Spectral line parameters including temperature dependences of self-and air-broadening in the 2?0 band of CO at 2.3 ?m, J Quant Spectrosc Radiat Transf, vol.113, pp.1013-1046, 2012.

V. M. Devi, D. C. Benner, M. Smith, A. W. Mantz, K. Sung et al., Spectral line parameters including temperature dependences of air-broadening for the 2?0 band of 13 C 16 O and 12 C 18 O at 2.3 ?m, J Mol Spectrosc, pp.33-48, 2012.

S. Wójtewicz, K. Stec, P. Mas?owski, A. Cygan, D. Lisak et al., Low pressure lineshape study of self-broadened CO transitions in the (3?0) band, J Quant Spectrosc Radiat Transf, vol.130, pp.191-200, 2013.

G. Kowzan, K. Stec, M. Zaborowski, S. Wojtewicz, A. Cygan et al., Line positions, pressure broadening and shift coefficients for the second overtone transitions of carbon monoxide in argon, J Quant Spectrosc Radiat Transf, vol.191, pp.46-54, 2017.

V. M. Devi, D. C. Benner, I. Kleiner, R. L. Sams, and L. N. Fletcher, Line shape parameters of PH 3 transitions in the Pentad near 4-5 ?m: Self-broadened widths, shifts, line mixing and speed dependence, J Mol Spectrosc, vol.302, pp.17-33, 2014.

D. Forthomme, C. P. Mcraven, T. J. Sears, and G. E. Hall, Argon-induced pressure broadening, shifting and narrowing in the CN A 2 ?-X 2 ? + (1-0) band, J Phys Chem A, vol.117, pp.11837-11883, 2013.
DOI : 10.1021/jp4030359

L. Fissiaux, M. Dhyne, and M. Lepère, Diode-laser spectroscopy: Pressure dependence of N 2-broadening coefficients of lines in the ? 4 +?? 5 band of C 2 H 2, J Mol Spectrosc, vol.254, pp.10-15, 2009.

M. B. Sajid, E. Es-sebbar, and A. Farooq, Measurements of line strengths, N 2-, Ar-, He and self-broadening coefficients of acetylene in the ? 4 +? 5 combination band using a cw quantum cascade laser, J Quant Spectrosc Radiat Transf, vol.148, pp.1-12, 2014.

T. Le, L. Fissiaux, H. Tran, and M. Lepère, O 2-broadening coefficients of acetylene lines in the ? 4 +? 5 band at room temperature, J Mol Spectrosc, vol.314, pp.48-53, 2015.

R. Hashemi, H. Rozario, C. Povey, and A. Predoi-cross, Line-shape models testing on six acetylene transitions in the ? 1 +? 3 band broadened by N 2, J Quant Spectrosc Radiat Transf, vol.140, pp.58-66, 2014.
DOI : 10.1016/j.jqsrt.2014.02.013

M. J. Cich, C. P. Mcraven, G. V. Lopez, T. J. Sears, D. Hurtmans et al., Temperature-dependent pressure broadened line shape measurements in the ? 1 +? 3 band of acetylene using a diode laser referenced to a frequency comb, Appl Phys B, vol.109, pp.373-84, 2012.

M. A. Koshelev, T. Delahaye, E. A. Serov, I. N. Vilkov, C. Boulet et al., Accurate modeling of the diagnostic 118-GHz oxygen line for remote sensing of the atmosphere, J Quant Spectrosc Radiat Transf, vol.196, pp.78-86, 2017.

S. Wójtewicz, A. Cygan, P. Mas?owski, J. Domys?awska, D. Lisak et al., Spectral line shapes of self-broadened P-branch transitions of oxygen B band, J Quant Spectrosc Radiat Transf, vol.144, pp.36-48, 2014.

J. Domys?awska, S. Wójtewicz, P. Mas?owski, A. Cygan, K. Bielska et al., Spectral line shapes and frequencies of the molecular oxygen B-band R-branch transitions, J Quant Spectrosc Radiat Transf, vol.155, pp.22-31, 2015.

S. Wójtewicz, D. Lisak, A. Cygan, J. Domys?awska, R. S. Trawinski et al., Line-shape study of selfbroadened O 2 transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy, Phys Rev A, vol.84, p.32511, 2011.

S. Wójtewicz, P. Mas?owski, A. Cygan, P. Wcis?o, M. Zaborowski et al., Speed-dependent effects and Dicke narrowing in nitrogen-broadened oxygen, J Quant Spectrosc Radiat Transf, vol.165, pp.68-75, 2015.

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, O 2 A-band line parameters to support atmospheric remote sensing, J Quant Spectrosc Radiat Transf, vol.111, pp.2021-2057, 2010.
DOI : 10.1016/j.jqsrt.2010.05.011

D. A. Long, E. D. Robichaud, and J. T. Hodges, Frequency-stabilized cavity ring-down spectroscopy measurements of line mixing and collision-induced absorption in the O 2 A-band, J Chem Phys, vol.137, p.14307, 2012.

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski et al., Experimental intensity and lineshape parameters oft he oxygen A-band using frequency-stabilized cavity ring-down spectrocopy, J Mol Spectrosc, vol.248, pp.1-13, 2008.
DOI : 10.1016/j.jms.2007.10.010

D. K. Havey, D. A. Long, M. Okumura, C. E. Miller, and J. T. Hodges, Ultra-sensitive optical measurements of high-J transitions in the O 2 A-band, Chem Phys Lett, vol.483, pp.49-54, 2009.

V. A. Kapitanov, K. Y. Osipov, A. E. Protasevich, and Y. N. Ponomarev, Collisional parameters of N 2 broadened methane lines in the R9 multiplet of the 2? 3 band. Multispectrum fittings of the overlapping spectral lines, J Quant Spectrosc Radiat Transf, vol.113, pp.1985-92, 2012.

K. Y. Osipov, A. E. Protasevich, V. A. Kapitanov, and Y. Y. Ponurovskii, Collision parameters of N 2-broadened methane lines in R5 multiplet of 2? 3 band. Multispectrum fitting of overlapping spectral lines, Appl Phys B, vol.106, pp.725-757, 2012.

R. Hashemi, A. Predoi-cross, A. V. Nikitin, V. G. Tyuterev, K. Sung et al., Spectroscopic line parameters of 12 CH 4 for atmospheric composition retrievals in the 4300-4500 cm-1 region, J Quant Spectrosc Radiat Transf, vol.186, pp.106-123, 2017.

M. Ghysels, L. Gomez, J. Cousin, H. Tran, N. Amarouche et al., Temperature dependences of air-broadening, air-narrowing and line-mixing coefficients of the methane ? 3 R(6) manifold lines-Application to in-situ measurements of atmospheric methane, J Quant Spectrosc Radiat Transf, vol.133, pp.206-222, 2014.

J. Manne, T. Q. Bui, and C. R. Webster, Determination of foreign broadening coefficients for methane lines targeted by the tunable laser spectrometer (TLS) on the Mars curiosity rover, J Quant Spectrosc Radiat Transf, vol.191, pp.59-66, 2017.

M. Smith, D. C. Benner, A. Predoi-cross, and V. M. Devi, Air-and self-broadened half widths, pressureinduced shifts, and line mixing in the ? 2 band of 12 CH 4, J Quant Spectrosc Radiat Transf, vol.133, pp.217-251, 2014.

M. Smith, D. C. Benner, A. Predoi-cross, M. Devi, and V. , Multispectrum analysis of 12 CH 4 in the ? 4 spectral region: I. Air-broadened half widths, pressure-induced shifts, temperature dependences and line mixing, J Quant Spectrosc Radiat Transf, vol.110, pp.639-53, 2009.

M. Smith, D. C. Benner, A. Predoi-cross, M. Devi, and V. , Multispectrum analysis of 12 CH 4 in the ? 4 spectral region: II. Self-broadened half widths, pressure-induced shifts, temperature dependences and line mixing, J Quant Spectrosc Radiat Transf, vol.111, pp.1152-66, 2010.

M. Smith, D. C. Benner, A. Predoi-cross, M. Devi, and V. , A multispectrum analysis of the ? 4 band of 13 CH 4 : Widths, shifts, and line mixing coefficients, J Quant Spectrosc Radiat Transf, vol.112, pp.952-68, 2011.

V. M. Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, Line mixing and speed dependence in CO 2 at 6348 cm-1 :positions, intensities, and air-and self-broadening derived with constrained multispectrum analysis, J Mol Spectrosc, vol.242, pp.90-117, 2007.

V. M. Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, Line mixing and speed dependence in CO 2 at 6227.9 cm-1 :constrained multispectrum analysis of intensities and line shapes in the 30013-00001 band, J Mol Spectrosc, vol.245, pp.52-80, 2007.
DOI : 10.1364/fts.2007.ftud3

L. E. Christensen, G. D. Spiers, R. T. Menzies, and J. C. Jacob, Tunable laser spectroscopy of CO 2 near 2.05 ?m: Atmospheric retrieval biases due to neglecting line-mixing, J Quant Spectrosc Radiat Transf, vol.113, pp.739-787, 2012.

M. Smith, C. P. Rinsland, T. A. Blake, R. L. Sams, D. C. Benner et al., Low-temperature measurements of HCN broadened by N 2 in the 14-?m spectral region, J Quant Spectrosc Radiat Transf, vol.109, pp.922-51, 2008.

T. M. Petrova, A. M. Solodov, and A. A. Solodov, Line mixing in the water vapour transitions of the ? 1 +? 2 +? 3 band perturbed by helium pressure, Mol Phys, vol.110, pp.2071-2076, 2012.

T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. L. Starikov, Line mixing in some water vapor transitions perturbed by N 2 , Ar and He pressure, J Mol Struc, vol.1080, pp.63-71, 2015.
DOI : 10.1016/j.molstruc.2014.09.072

M. N. Tretyakov, M. A. Koshelev, L. A. Koval, V. V. Parshin, L. M. Kukin et al., Temperature dependence of pressure broadening of the N = 1? fine structure oxygen line at 118.75 GHz, J Mol Spectrosc, vol.241, pp.109-120, 2007.

H. Rubens and E. Aschkinass, Beobachtungen über Absorption und Emission von Wasserdampf und Kohlensaüre im ultrarothen Spectrum, Ann Phys, vol.300, pp.584-601, 1898.
DOI : 10.1002/andp.18983000309

G. Hettner, Über das ultrarote Absorptionsspektrum des Wasserdampfes, Ann Phys, vol.360, pp.476-96, 1918.
DOI : 10.1002/andp.19183600603

, Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, NATO ARW Proceedings Series, 2003.

Q. Ma, R. H. Tipping, and C. Leforestier, Temperature dependences of mechanisms responsible for the watervapor continuum absorption. I. Far wings of allowed lines, J Chem Phys, vol.128, p.124313, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00490187

I. V. Ptashnik, Evidence for the contribution of water dimers to the near-IR water vapour self-continuum, J Quant Spectrosc Radiat Transf, vol.109, pp.831-52, 2008.

I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, Water vapour self-continuum and water dimers: 1. Analysis of recent work, J Quant Spectrosc Radiat Transf, vol.112, pp.1286-303, 2011.

M. Y. Tretyakov, M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova et al., Water dimer and the atmospheric continuum, English translation available, vol.184, pp.1083-98, 2014.

M. Y. Tretyakov, Spectroscopy underlying microwave remote sensing of atmospheric water vapor, J Mol Spectrosc, vol.328, pp.7-26, 2016.

E. A. Serov, T. A. Odintsova, M. Y. Tretyakov, and V. E. Semenov, On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands, J Quant Spectrosc Radiat Transf, vol.193, pp.1-12, 2017.

T. A. Odintsova, M. Y. Tretyakov, O. Pirali, and R. P. , Water vapor continuum in the range of rotational spectrum of H 2 O molecule: New experimental data and their comparative analysis, J Quant Spectrosc Radiat Transf, vol.187, pp.116-139, 2017.

M. N. Tretyakov, E. A. Serov, M. A. Koshelev, V. V. Parshin, and A. F. Krupnov, Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature, Phys Rev Lett, vol.110, p.93001, 2013.

J. Y. Kiehl and K. E. Trenberth, Earth's annual global mean energy budget, Bull Am Meteorol Soc, vol.78, pp.197-208, 1997.

I. M. Held and B. J. Soden, Water vapor feedback and global warming, Annu Rev Energy Environ, vol.25, pp.441-75, 2000.

D. J. Paynter and V. Ramaswamy, An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer, J Geophys Res Atmos, vol.116, p.203302, 2011.

D. J. Paynter and V. Ramaswamy, Variations in water vapor continuum radiative transfer with atmospheric conditions, J Geophys Res Atmos, vol.117, p.16310, 2012.

D. J. Paynter and V. Ramaswamy, Investigating the impact of the shortwave water vapor continuum upon climate simulations using GFDL global models, J Geophys Res Atmos, vol.119, pp.10720-10757, 2014.

R. K. Kopparapu, R. Ramirez, J. F. Kasting, V. Eymet, T. D. Robinson et al., Habitable zone around the main sequence stars: New estimates, Astrophys J, vol.765, p.131, 2013.

J. Leconte, F. Forget, B. Charnay, R. Wordsworth, F. Selsis et al., 3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability, and habitability, Astron Astrophys, vol.554, p.69, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839218

J. Leconte, F. Forget, B. Charnay, R. Wordsworth, and A. Pottier, Increased insolation threshold for runaway greenhouse processes on Earth-like planets, Nature, vol.504, pp.268-71, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01096298

, Continuum Absorption at Visible and Infrared wavelengths and its Atmospheric Relevance (CAVIAR

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma et al., New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz, J Quant Spectrosc Radiat Transf, vol.109, pp.458-67, 2008.

J. M. Hartmann, M. Y. Perrin, Q. Ma, and R. H. Tipping, The infrared continuum of pure water vaporcalculations and high-temperature measurements, J Quant Spectrosc Radiat Transf, vol.49, pp.675-91, 1993.

D. J. Paynter, I. V. Ptashnik, K. P. Shine, K. M. Smith, R. Mcpheat et al., Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and351K, J Geophys Res, vol.114, p.21301, 2009.

M. Aldener, S. S. Brown, H. Stark, J. S. Daniel, and A. R. Ravishankara, Near-IR absorption of water vapor: Pressure dependence of line strengths and an upper limit for continuum absorption, J Mol Spectrosc, vol.232, pp.223-253, 2005.

K. P. Shine, A. Campargue, D. Mondelain, R. A. Mcpheat, I. V. Ptashnik et al., The water vapour continuum in near-infrared windows-Current understanding and prospects for its inclusion in spectroscopic databases, J Mol Spectrosc, vol.327, pp.193-208, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430606

B. E. Rocher-casterline, L. C. Ch'ng, A. K. Mollner, and H. Reisler, Communication: determination of the bond dissociation energy (D 0 ) of the water dimer, J Chem Phys, vol.134, issue.2, p.211101, 2011.

C. Serio, G. Masiello, F. Esposito, D. Girolamo, P. et al., Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the H 2 O rotational band from 240 to 590 cm-1, Opt Express, vol.16, pp.15816-15849, 2008.

G. Liuzzi, G. Masiello, C. Serio, L. Palchetti, and G. Bianchini, Validation of H 2 O continuum absorption models in the wave number range 180-600 cm ?1 with atmospheric emitted spectral radiance measured at the Antarctica Dome-C site, Opt Express, vol.22, pp.16784-801, 2014.

A. Reichert, M. Rettinger, and R. Sussmann, The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared-Part 2: Accurate calibration of high spectral-resolution infrared measurements of surface solar radiation, Atmos Meas Tech, vol.9, pp.4673-86, 2016.

A. Reichert and R. Sussmann, The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared-Part 3: Quantification of the mid-and near-infrared water vapor continuum in the 2500 to 7800 cm ?1 spectral range under atmospheric conditions, Atmos Chem Phys, vol.16, pp.11671-86, 2016.

R. Sussmann, A. Reichert, and M. Rettinger, The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared-Part 1: Setup, uncertainty analysis, and assessment of far-infrared water vapor continuum, Atmos Chem Phys, vol.16, pp.11649-69, 2016.

H. Brogniez, S. English, J. F. Mahfouf, A. Behrendt, W. Berg et al., A review of sources of systematic errors and uncertainties in observations and simulations at 183 GHz, Atmos Meas Tech, vol.9, pp.2207-2228, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01264256

M. A. Koshelev, E. A. Serov, V. V. Parshin, and M. Y. Tretyakov, Millimeter wave continuum absorption in moist nitrogen at temperatures 261-328 K, J Quant Spectrosc Radiat Transf, vol.112, pp.2704-2716, 2011.
DOI : 10.1016/j.jqsrt.2011.08.004

L. Reichert, A. Hernández, M. D. Burrows, J. P. Tikhomirov, A. B. Firsov et al., First CRDS-measurements of water vapour continuum in the 940 nm absorption band, J Quant Spectrosc Radiat Transf, vol.105, pp.303-314, 2007.

A. B. Tikhomirov, I. V. Ptashnik, and B. A. Tikhomirov, Measurements of the continuum absorption coefficient of water vapour near 14400 cm-1 (0.694 ?m), Opt Spectrosc, vol.101, pp.80-89, 2006.

S. Stefani, G. Piccioni, M. Snels, D. Grassi, and A. Adriani, Experimental CO 2 absorption coefficients at high pressure and high temperature, J Quant Spectrosc Radiat Transf, vol.117, pp.21-29, 2013.

Y. I. Baranov, On the significant enhancement of the continuum-collision induced absorption in H 2 O+CO 2 mixtures, J Quant Spectrosc Radiat Transf, vol.175, pp.100-106, 2016.

M. V. Tonkov, N. N. Filippov, V. V. Bertsev, J. P. Bouanich, N. Van-thanh et al., Measurements and empirical modelling of pure CO 2 absorption in the 2.3 ?m region at room temperature: far wings, allowed and collision-induced bands, Appl Opt, vol.35, pp.4863-70, 1996.

D. Mondelain, S. Vasilchenko, P. ?ermák, A. Kassi, and A. Campargue, The CO 2 absorption spectrum in the 2.3 µm transparency window by high sensitivity CRDS: (II) Self absorption continuum, J Quant Spectrosc Radiat Transf, vol.187, pp.38-43, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01496408

S. Kassi, A. Campargue, D. Mondelain, and H. Tran, High pressure Cavity Ring Down Spectroscopy: Application to the absorption continuum of CO 2 near 1.7 ?m, J Quant Spectrosc Radiat Transf, vol.167, pp.97-104, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252315

D. Mondelain, A. Campargue, P. ?ermák, R. R. Gamache, S. Kassi et al., The CO 2 absorption continuum by high pressure CRDS in the 1.74 ?m window, J Quant Spectrosc Radiat Transf, vol.203, pp.530-567, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01765983

M. Snels, S. Stefani, G. Piccioni, and B. Bézard, Carbon dioxide absorption at high densities in the 1.18 ?m nightside transparency window of Venus, J Quant Spectrosc Radiat Transf, vol.133, pp.464-71, 2014.

Y. Baranov, Collision-induced absorption in the region of the ? 2 +? 3 band of carbon dioxide, J Mol Spectrosc

S. Stefani, G. Piccioni, D. Grassi, A. Adriani, and M. Snels, Temperature dependence of Collisional Induced Absorption (CIA) bands of CO 2 with implications for Venus' atmosphere, J Quant Spectrosc Radiat Transf, vol.204, pp.242-251, 2018.

Y. I. Baranov, G. T. Fraser, and W. J. Lafferty, Collision-induced absorption in the CO 2 Fermi triad for temperatures from 211 to 296 K, pp.149-158
DOI : 10.1007/978-94-010-0025-3_12

M. Abu-kharma, H. Y. Omari, N. Shawaqfeld, and C. Stamp, Collision induced absorption spectra of the fundamental band of D 2 in binary mixtures D 2-Kr at 298 K, J Mol Spec, vol.259, pp.111-116, 2010.

A. Vasilchenko, D. Mondelain, S. Kassi, P. ?ermák, B. Chomet et al., The HD spectrum near 2.3 ?m by CRDS-VECSEL: Electric quadrupole transition and collision-induced absorption, J Mol Spectrosc, vol.326, pp.9-16, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430614

S. Kassi and A. Campargue, Electric quadrupole transitions and collision-induced absorption in the region of the first overtone band of H 2 near 1.25 ?m, J Mol Spectrosc, vol.300, pp.55-64, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01094716

M. Abu-kharma, Collision-induced absorption in the second overtone band of H 2, Can J Phys, vol.90, pp.339-382, 2012.

M. Vangvichith, H. Tran, and J. M. Hartmann, Line-mixing and collision induced absorption for O 2-CO 2 mixtures in the oxygen A band region, J Quant Spectrosc Radiat Transf, vol.110, pp.2212-2218, 2009.

F. R. Spiering, M. B. Kiseleva, . Filippov, L. Van-kesteren, and W. J. Van-der-zande, Collision-induced absorption in the O 2 B-band region near 670 nm, Phys Chem Chem Phys, vol.13, pp.9616-9637, 2011.
DOI : 10.1039/c1cp20403c

F. R. Spiering and W. J. Van-der-zande, Collision induced absorption in the 13 a ( 2) X oxygen, Phys Chem Chem Phys, vol.14, pp.9923-9931, 2012.

R. Thalman and R. Volkamer, Temperature dependent absorption cross-sections of O 2-O 2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure, Phys Chem Chem Phys, vol.15, pp.15371-15380, 2013.
DOI : 10.1039/c3cp50968k

M. Sneep, D. Ityaksov, I. Aben, H. Linnartz, and W. Ubachs, Temperature-dependent cross section of O 2-O 2 collision-nduced absorption resonances at 477 and 577 nm, J Quant Spectrosc Radiat Transf, vol.98, pp.405-429, 2006.
DOI : 10.1016/j.jqsrt.2005.06.004

W. A. Herrebout, B. J. Van-der-veken, A. P. Kouzov, and N. N. Filippov, Origin of abnormally sharp features in collision-induced spectra of cryosolutions, J Chem Phys, vol.143, p.44508, 2015.

C. Hill, I. E. Gordon, L. S. Rothman, and J. Tennyson, A new relational database structure and online interface for the HITRAN database, J Quant Spectrosc Radiat Transf, vol.130, pp.51-61, 2013.
DOI : 10.1016/j.jqsrt.2013.04.027

C. Hill, I. E. Gordon, R. V. Kochanov, L. Barrett, J. S. Wilzewski et al., HITRANonline: An online interface and the flexible representation of spectroscopic data in the HITRAN database, J Quant Spectrosc Radiat Transf, vol.177, pp.4-14, 2016.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, P. Wcis?o, C. Hill et al., HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data, J Quant Spectrosc Radiat Transf, vol.177, pp.15-30, 2016.
DOI : 10.1016/j.jqsrt.2016.03.005

J. S. Wilzewski, I. E. Gordon, R. V. Kochanov, C. Hill, and L. S. Rothman, H 2 , He, and CO 2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database, J Quant Spectrosc Radiat Transf, vol.1, issue.2, pp.193-206, 2016.
DOI : 10.1016/j.jqsrt.2015.09.003

N. A. Scott and A. Chédin, A fast line-by-line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas, J Appl Meteor, vol.20, pp.802-814, 1981.
DOI : 10.1175/1520-0450(1981)020<0802:aflblm>2.0.co;2

URL : http://journals.ametsoc.org/doi/pdf/10.1175/1520-0450%281981%29020%3C0802%3AAFLBLM%3E2.0.CO%3B2

F. Chéruy, N. A. Scott, R. Armante, B. Tournier, and A. Chédin, Contribution to the development of radiative transfer models for high spectral resolution observations in the infrared, J Quant Spectrosc Radiat Transf, vol.53, pp.597-611, 1995.

R. Armante, N. Scott, C. Crevoisier, V. Capelle, L. Crépeau et al., Evaluation of spectroscopic databases through radiative transfer simulations compared to observations. Application to the validation of GEISA 2015 with IASI and TCCON, J Mol Spectrosc, vol.327, pp.180-92, 2016.
DOI : 10.1016/j.jms.2016.04.004

URL : https://hal.archives-ouvertes.fr/hal-01310834

. Microcarb, Carbon Dioxide Monitoring Mission

B. Maté, C. Lugez, G. T. Fraser, and W. J. Lafferty, Absolute intensities for the O 2 1.27 ?m continuum absorption, J Geophys Res Atmos, vol.104, pp.30585-90, 1999.

F. Thibault, V. Menoux, L. Doucen, R. Rosenmann, L. Hartmann et al., Infrared collision induced absorption by O 2 near 6.4 µm for atmospheric applications: Measurements and empirical modeling, Appl Opt, vol.36, pp.563-570, 1997.

P. Y. Foucher, Détermination de profils verticaux de concentration en CO 2 atmosphérique à partir d'observations spatiales. Application aux données en occultation solaire de l'instrument ACE-FTS sur SCISAT 1, 2009.

W. J. Lafferty, A. M. Solodov, A. Weber, W. B. Olson, and J. M. Hartmann, Infrared collision-induced absorption by N 2 near 4.3 µm for atmospheric applications: Measurements and empirical modeling, Appl Opt, vol.35, pp.5911-5918, 1996.

H. Tran, P. M. Flaud, T. Gabard, F. Hase, T. Von-clarmann et al., Model, software, and database for line-mixing effects in the ? 3 and ? 4 bands of CH 4 and tests using laboratory and planetary measurements. I. N 2 (and air) broadenings and the Earth atmosphere, J Quant Spectrosc Radiat Transf, vol.101, pp.284-305, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00110650

, GOSAT (Greenhouse gases Observing SATellite) / Ibuki

, OCO-2 (Orbiting Carbon Observatory-2)

. Tansat, Chinese Carbon Dioxide Observation Satellite Mission)

, Active Sensing of CO 2 Emissions over Nights, Days, & Seasons (ASCENDS)

A. Eldering, P. O. Wennberg, D. Crisp, D. S. Schimel, M. R. Gunson et al., The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes, Science, vol.358, pp.188-197, 2017.

G. Durry, V. Zéninari, B. Parvitte, F. Lefevre, J. Ovarlez et al., Pressure-broadening coefficients and line strengths of H 2 O near 1.39 ?m: Application to the in situ sensing of the middle atmosphere with balloonborne diode lasers, J quant Spectrosc Radiat Transf, vol.94, pp.387-403, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00076836

M. Schneider, F. Hase, J. F. Blavier, G. C. Toon, and T. Leblanc, An empirical study on the importance of a speed-dependent Voigt line shape model for tropospheric water vapor profile remote sensing, J Quant Spectrosc Radiat Transf, vol.112, pp.465-74, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01103867

H. Tran, F. Rohart, C. Boone, M. Eremenko, F. Hase et al., Non-Voigt line-shape effects on retrievals of atmospheric ozone: Collisionally isolated lines, J Quant Spectrosc Radiat Transf, vol.111, pp.2012-2032, 2010.

B. Barret, D. Hurtmans, M. R. Carleer, M. De-mazière, E. Mahieu et al., Line narrowing effect on the retrieval of HF and HCl vertical profiles from ground-based FTIR measurements, J Quant Spectrosc Radiat Transf, vol.95, pp.499-519, 2005.

P. Duchatelet, P. Demoulin, F. Hase, R. Ruhnke, W. Feng et al., Hydrogen fluoride total and partial column time series above the Jungfraujoch from long-term FTIR measurements: Impact of the line-shape model, characterization of the error budget and seasonal cycle, and comparison with satellite and model data, J Geophys Res Atmos, vol.115, p.22306, 2010.

D. Wunch, G. C. Toon, J. Blavier, R. A. Washenfelder, J. Notholt et al., The total carbon column observing network, Phil Trans R Soc A, vol.369, pp.2087-112, 2011.

J. Mendonca, Improving the Retrievals of Greenhouse Gases from Ground-Based Solar Absorption Spectra, 2017.

R. A. Washenfelder, P. O. Wennberg, and G. C. Toon, Tropospheric methane retrieved from ground-based nearIR solar absorption spectra, Geophys Res Lett, vol.30, p.2226, 2003.

C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase et al., Pressure broadening in the 2? 3 band of methane and its implication on atmospheric retrievals, Atmos Chem Phys, vol.8, pp.5061-75, 2008.

J. Mendonca, K. Strong, K. Sung, V. M. Devi, G. C. Toon et al., Using high-resolution laboratory and ground-based solar spectra to assess CH 4 absorption coefficient calculations, J Quant Spectrosc Radiat Transf, vol.190, pp.48-59, 2017.

D. Mondelain, C. Camy-peyret, W. Deng, S. Payan, and A. W. Mantz, Study of molecular line parameters down to very low temperature, Appl Phys B, vol.90, pp.227-260, 2008.
DOI : 10.1007/s00340-007-2918-x

URL : https://hal.archives-ouvertes.fr/hal-00370896

J. M. Hartmann, H. Tran, and G. C. Toon, Influence of line mixing on the retrievals of atmospheric CO 2 from spectra in the 1.6 and 2.1 ?m regions, Atmos Chem Phys, vol.9, pp.7303-7315, 2009.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi et al., Atmospheric validation of high accuracy CO 2 absorption coefficients for the OCO-2 mission, J Quant Spectrosc Radiat Transf, vol.113, pp.2265-76, 2012.

C. P. Rinsland, E. Mahieu, P. Demoulin, R. Zander, C. Servais et al., Decrease of the carbon tetrachloride (CCl 4 ) loading above Jungfraujoch, based on high resolution infrared solar spectra recorded between 1999 and, J Quant Spectrosc Radiat Transf, vol.113, pp.1322-1331, 2011.

H. Tran, B. Picquet-varrault, C. Boursier, C. Viatte, M. Eremenko et al., Non-Voigt lineshape effects on retrievals of atmospheric ozone: Line-mixing effects, J Quant Spectrosc Radiat Transf, vol.112, pp.2287-95, 2011.
DOI : 10.1016/j.jqsrt.2011.06.001

URL : https://hal.archives-ouvertes.fr/hal-00658499

M. J. Alvarado, V. H. Payne, E. J. Mlawer, G. Uymin, M. W. Shephard et al., Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies, Atmos Chem Phys, vol.13, pp.6687-711, 2013.

V. H. Payne, E. Mlawer, K. E. Cady-pereira, and J. L. Moncet, Water vapor continuum absorption in the microwave, IEEE Trans Geosci Remote Sensing, vol.49, pp.2194-208, 2011.
DOI : 10.1109/tgrs.2010.2091416

C. Coll, V. Caselles, E. Valor, and R. Niclòs, Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data, Remote Sensing of Environment, vol.117, pp.199-210, 2012.

J. S. Delamere, S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner et al., A far-infrared radiative closure study in the Arctic: Application to water vapor, J Geophys Res Atmos, vol.115, p.17106, 2010.

G. Masiello, M. Matricardi, and C. Serio, The use of IASI data to identify systematic errors in the ECMWF forecasts of temperature in the upper stratosphere, Atmos Chem. Phys, vol.11, pp.1009-1030, 2011.

D. A. Long and J. T. Hodges, On spectroscopic models of the O 2 A-band and their impact upon atmospheric retrievals, J Geophy Res Atmos, vol.117, p.12309, 2012.

P. Y. Foucher, A. Chédin, G. Dufour, V. Capelle, D. C. Boone et al., Technical note: Feasibility of CO 2 profile retrieval from limb viewing solar occultation made by the ACE-FTS instrument, Atmos Chem Phys, vol.9, pp.2873-90, 2009.

P. Y. Foucher, A. Chédin, R. Armante, D. C. Boone, C. Crevoisier et al., Carbon dioxide atmospheric vertical profiles retrieved from space observation using ACE-FTS solar occultation instrument, Atmos Chem Phys, vol.11, pp.2455-70, 2011.
DOI : 10.5194/acp-11-2455-2011

URL : https://hal.archives-ouvertes.fr/hal-01117347

O. Dell, C. W. Connor, B. Bösch, H. O&apos;brien, D. Frankenberg et al., The ACOS CO 2 retrieval algorithm-Part 1: Description and validation against synthetic observations, Atmos Meas Tech, vol.5, pp.99-121, 2012.

D. Crisp, B. M. Fisher, O. Dell, C. Frankenberg, C. Basilio et al., The ACOS CO 2 retrieval algorithm-Part II: Global XCO2 data characterization, Atmos Meas Tech, vol.5, pp.687-707, 2012.
DOI : 10.5194/amtd-5-1-2012

URL : https://doi.org/10.5194/amtd-5-1-2012

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao et al., Pulsed airborne lidar measurements of atmospheric CO 2 column absorption, Tellus B, vol.62, pp.770-83, 2010.
DOI : 10.3402/tellusb.v62i5.16633

URL : https://doi.org/10.3402/tellusb.v62i5.16633

K. Sung and P. Varanasi, CO 2-broadened half-widths and CO 2-induced line shifts of 12 C 16 O relevant to the atmospheric spectra of Venus and Mars, J Quant Spectrosc Radiat Transf, vol.91, pp.319-351, 2005.

N. N. Lavrentieva, B. A. Voronin, O. V. Naumenko, A. D. Bykov, and A. A. Fedorova, Linelist of HD 16 O for study of atmosphere of terrestrial planets (Earth, Venus and Mars), Icarus, vol.236, pp.38-47, 2014.

M. Tudorie, T. Földes, and A. C. Vandaele, Vander Auwera J. CO 2 pressure broadening and shift coefficients for the 1-0 band of HCl and DCl, J Quant Spectrosc Radiat Transf, vol.113, pp.1092-101, 2012.

A. A. Fedorova, O. I. Korablev, J. L. Bertaux, A. V. Rodin, F. Montmessin et al., Solar infrared occultation observations by SPICAM experiment on Mars-Express: Simultaneous measurements of the vertical distributions of H 2 O, CO 2 and aerosol, Icarus, vol.200, pp.96-117, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00363911

M. Smith, M. Wolff, R. T. Clancy, and S. Murchie, Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide, J Geophys Res Planets, vol.114, pp.0-03, 2009.

V. A. Krasnopolsky, Variations of the HDO/H 2 O ratio in the martian atmosphere and loss of water from Mars, Icarus, vol.257, pp.377-86, 2015.

A. Fedorova, O. Korablev, A. C. Vandaele, J. L. Bertaux, D. Belyaev et al., HDO and H 2 O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express, J Geophys Res Planets, vol.113, pp.0-22, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00349253

A. C. Vandaele, M. De-mazière, R. Drummond, A. Mahieux, E. Neefs et al., Composition of the Venus mesosphere measured by Solar Occultation at Infrared on board Venus Express, J Geophys Res Planets, vol.113, pp.0-23, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00349440

V. A. Krasnopolsky, D. A. Belyaev, I. E. Gordon, G. Li, and L. S. Rothman, Observations of D/H ratios in H 2 O, HCl, and HF on Venus and new DCl and DF line strengths, Icarus, vol.224, pp.57-65, 2013.

A. A. Fedorova, S. Trokhimovsky, O. Korablev, and F. Montmessin, Viking observation of water vapor on Mars: Revision from up-to-date spectroscopy and atmospheric models, Icarus, vol.208, pp.156-64, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00450441

B. Bézard, A. Fedorova, J. L. Bertaux, A. Rodin, and O. Korablev, The 1.10-and 1.18-?m nightside windows of Venus observed by SPICAV-IR aboard Venus Express, Icarus, vol.216, pp.173-83, 2011.

A. Fedorova, B. Bézard, J. L. Bertaux, O. Korablev, and C. Wilson, The CO 2 continuum absorption in the 1.10and 1.18-?m windows on Venus from Maxwell Montes transits by SPICAV IR onboard Venus express, Planet Space Sci, pp.66-77, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01059379

M. Snels, S. Stefani, D. Grassi, G. Piccioni, and A. Adriani, Carbon dioxide opacity of the Venus' atmosphere. Planetary and Space Sciences, vol.103, pp.347-354

M. Hirtzig, B. Bézard, E. Lellouch, A. Coustenis, C. De-bergh et al., Titan's surface and atmosphere from Cassini/VIMS data with updated methane opacity, Icarus, vol.226, pp.470-86, 2013.

M. Rey, A. Nikitin, B. Bézard, P. Rannou, A. Coustenis et al., New accurate theoretical line lists of 12 CH 4 and 13 CH 4 in the 0-13400 cm-1 range: Application to the modeling of methane absorption in Titan's atmosphere, Icarus, vol.303, pp.114-130, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01918917

K. Devaraj, P. G. Steffes, and D. Duong, The centimeter-wavelength opacity of ammonia under deep jovian conditions, Icarus, vol.241, pp.165-79, 2014.

P. G. Steffes, T. R. Hanley, B. M. Karpowicz, K. Devaraj, S. Noorizadeh et al., High-precision laboratory measurements supporting retrieval of water vapor, gaseous ammonia, and aqueous ammonia clouds with the Juno Microwave Radiometer (MWR), Space Sci Rev, 2016.

A. Bellotti, P. G. Steffes, and G. Chinsomboon, Laboratory measurements of the 5-20 cm wavelength opacity of ammonia, water vapor, and methane under simulated conditions for the deep jovian atmosphere, Icarus, vol.280, pp.255-67, 2016.

S. J. Bolton, A. Adriani, V. Adumitroaie, A. M. Anderson, J. Atreya et al., Jupiter's interior and deep atmosphere: The initial pole-to, Science, vol.356, pp.821-826, 2017.

C. Li, A. Ingersoll, M. Janssen, S. Levin, S. Bolton et al., The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data, Geophys Res Lett, vol.44, pp.5317-5342, 2017.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache et al., HITEMP, the high-temperature molecular spectroscopic database, J Quant Spectrosc Radiat Transf, vol.111, pp.2139-50, 2010.

J. Tennyson, S. N. Yurchenko, A. F. Al-refaie, E. J. Barton, K. L. Chubb et al., The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres, J Mol Spectrosc, vol.327, pp.73-94, 2016.

E. J. Barton, C. Hill, M. Czurylo, H. Y. Li, A. Hyslop et al., The ExoMol pressure broadening diet: H 2 and He line-broadening parameters, J Quant Spectrosc Radiat, vol.203, pp.490-495, 2017.

C. Hedges and N. Madhusudhan, Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres, Mon Notice Royal Astron Soc, vol.458, pp.1427-1476, 2016.

S. N. Yurchenko, J. Tennyson, and E. J. Barton, Molecular line shape parameters for exoplanetary atmospheric applications, J Phys Conf Series, vol.810, p.12010, 2017.
DOI : 10.1088/1742-6596/810/1/012010

URL : http://iopscience.iop.org/article/10.1088/1742-6596/810/1/012010/pdf

R. K. Hanson, Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems, Proc Combust Inst, vol.33, pp.1-40, 2011.
DOI : 10.1016/j.proci.2010.09.007

M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, Tunable diode laser spectroscopy as a technique for combustion diagnostics, Spectrochimica Acta B, vol.106, pp.45-66, 2015.
DOI : 10.1016/j.sab.2015.01.010

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, Infrared laser-absorption sensing for combustion gases, Prog Energy Combust Sci, vol.60, pp.132-76, 2017.
DOI : 10.1016/j.pecs.2016.12.002

R. H. Johnson and M. Strandberg, Broadening of microwave absorption lines by collisions with the cell walls, Phys Rev, vol.86, pp.811-813, 1952.

M. Danos and S. Geschwind, Broadening of microwave absorption lines due to wall collisions, Phys Rev, vol.91, pp.1159-62, 1953.
DOI : 10.1103/physrev.91.1159

Y. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, IR spectroscopy of water vapor confined in nanoporous silica aerogel, Opt Express, vol.18, pp.26062-26069, 2010.

T. Svensson and Z. Shen, Laser spectroscopy of gas confined in nanoporous materials, Appl Phys Lett, vol.96, p.21107, 2010.
DOI : 10.1063/1.3292210

URL : http://lup.lub.lu.se/search/ws/files/2070270/2370765.pdf

C. T. Xu, M. Lewander, S. Andersson-engels, E. Adolfsson, T. Svensson et al., Wall-collision line broadening of molecular oxygen within nanoporous materials, Phys Rev A, 2011.
DOI : 10.1103/physreva.84.042705

URL : http://lup.lub.lu.se/search/ws/files/2417197/2426264.pdf

J. Vander-auwera, N. H. Ngo, H. Hamzaoui, B. Capoen, M. Bouazaoui et al., Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low pressure results, Phys Rev A, vol.88, p.42506, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00880287

J. M. Hartmann, J. Vander-auwera, C. Boulet, M. Birot, M. A. Dourges et al., Infrared absorption by molecular gases to probe porous materials and comparisons with other techniques, Micropor Mesopor Mat, vol.237, pp.31-38, 2017.
DOI : 10.1016/j.micromeso.2016.09.014

URL : https://hal.archives-ouvertes.fr/hal-01370202

T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu et al., Pore size assessment based on wall collision broadening of spectral lines of confined gas:experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes, Appl Phys B, vol.110, pp.147-54, 2013.

J. M. Hartmann, C. Boulet, V. Auwera, J. Hamzaoui, H. Capoen et al., Line broadening of confined CO gas. From molecule-wall to molecule-molecule collisions with pressure, J Chem Phys, vol.140, p.64302, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00944444

J. M. Hartmann, X. Landsheere, C. Boulet, D. Sarkisyan, A. S. Sarkisyan et al., Infrared look at the spectral effects of submicron confinements of CO 2 gas, Phys Rev A, vol.93, p.12516, 2016.

T. M. Petrova, Y. N. Ponomarev, A. A. Solodov, A. M. Solodov, and A. F. Danilyuk, Spectroscopic nanoporometry of aerogel, JETP Lett, vol.101, pp.65-72, 2015.
DOI : 10.1134/s0021364015010117

Y. N. Ponomarev, T. M. Petrova, A. A. Solodov, and A. M. Solodov, Observation of a forbidden vibrational absorption band of H 2 in nanoporous aerogel, JETP Lett, vol.99, pp.619-640, 2014.

J. Vander-auwera, C. Boulet, Y. Carré, L. Kocon, and J. M. Hartmann, Confinement-induced infrared absorption by H 2 and N 2 gases in a porous silica aerogel, J Quant Spectrosc Radiat Transf, vol.182, pp.193-201, 2016.

X. H. Zhang, A. Khan, and W. A. Ducker, A nanosclae state, Phys Rev Lett, vol.98, p.136101, 2007.

X. H. Zhang, A. Quinn, and W. A. Ducker, Nanobubbles at the interface between water and a hydrophobic solid, Langmuir, vol.24, pp.4756-64, 2008.
DOI : 10.1021/la703475q

J. Fischer, Low uncertainty Boltzmann constant determinations and the kelvin redefinition, Phil Trans R Soc A, vol.374, 2016.
DOI : 10.1098/rsta.2015.0038

R. M. Gavioso, M. Ripa, D. Steur, P. Gaiser, C. Zandt et al., Progress towards the determination of thermodynamic temperature with ultra-low uncertainty, Phil Trans R Soc A, vol.374, 2016.

C. J. Bordé, Base units of the SI, fundamental constants and modern quantum physics, Phil Trans R Soc A, vol.363, pp.2177-201, 2005.

C. Daussy, M. Guinet, A. Amy-klein, K. Djerroud, Y. Hermier et al., Direct determination of the Boltzmann constant by an optical method, Phys Rev Lett, vol.98, p.250801, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00126269

L. Moretti, A. Castrillo, E. Fasci, D. Vizia, M. Casa et al., Determination of the Boltzmann constant by means of precision measurements of H 2 18 O line shapes at 1.39 ?m, Phys Rev Lett, vol.111, p.60803, 2013.

E. Fasci, D. Vizia, M. Merlone, A. Moretti, L. Castrillo et al., The Boltzmann constant from the H 2 18 O vibration-rotation spectrum: complementary tests and revised uncertainty budget, Metrologia, vol.52, pp.233-274, 2015.

A. Cygan, D. Lisak, R. S. Trawi?ski, and R. Ciurylo, Influence of the line-shape model on the spectroscopic determination of the Boltzmann constant, Phys Rev A, vol.82, p.32515, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01103912

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone et al., Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the Boltzmann constant, Phys Rev Lett, vol.100, 2008.

C. Lemarchand, M. Triki, B. Darquié, C. J. Bordé, C. Chardonnet et al., Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy, New J Phys, vol.13, p.73028, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00548188

R. Hashemi, C. Povey, M. Derksen, H. Naseri, J. Garber et al., Doppler broadening thermometry of acetylene and accurate measurement of the Boltzmann constant, J Chem Phys, vol.141, p.214201, 2014.

S. Mejri, P. Sow, O. Kozlova, C. Ayari, S. K. Tokunaga et al., Measuring the Boltzmann constant by mid-infrared laser spectroscopy of ammonia, Metrologia, vol.52, pp.314-337, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01159864

P. Amodio, D. Vizia, M. D. Moretti, L. Gianfrani, and L. , Investigating the ultimate accuracy of Doppler broadening thermometry by means of a global fitting procedure, Phys Rev A, vol.92, p.32506, 2015.

C. F. Cheng, J. Wang, Y. R. Sun, Y. Tan, P. Kang et al., Doppler broadening thermometry based on cavity ring-down spectroscopy, Metrologia, vol.52, pp.385-93, 2015.

R. Gotti, L. Moretti, D. Gatti, A. Castrillo, G. Galzerano et al., A CavityRing-Down Doppler broadening thermometer, Phys Rev A, vol.97, p.12515, 2018.

E. Zak, J. Tennyson, O. L. Polyansky, L. Lodi, N. Zobov et al., A room temperature CO 2 line list with ab initio computed intensities, J Quant Spectrosc Radiat Transf, vol.177, pp.31-42, 2016.

X. Huang, D. W. Schwenke, R. S. Freedman, and T. J. Lee, Ames-2016 line lists for 13 isotopologues of CO 2 : Updates, consistency, and remaining issues, J Quant Spectrosc Radiat Tranf, vol.203, pp.224-265, 2017.

S. A. Tashkun, V. I. Perevalov, R. R. Gamache, and J. Lamouroux, CDSD-296, high resolution carbon dioxide spectroscopic databank: Version for atmospheric applications, J Quant Spectrosc Radiat Transf, vol.152, pp.45-73, 2015.

G. C. Rhoderick, D. L. Duewer, L. Ning, and K. Desirant, Hydrocarbon gas standards at the pmol/mol level to support atmospheric measurements, Anal Chem, vol.82, pp.859-67, 2010.

M. E. Kelley, G. C. Rhoderick, and F. R. Guenther, Development and verification of air balance gas primary standards for the measurement of nitrous oxide at atmospheric levels, Anal Chem, vol.86, pp.4544-4553, 2014.

C. Pascale, M. Guillevic, A. Ackermann, D. Leuenberger, and B. Niderhauser, Two generators to produce SItraceable reference gas mixtures for reactive compounds at atmospheric levels, Meas Sci Tech, vol.28, p.124002, 2017.

J. A. Nwaboh, O. Werhahn, and V. Ebert, Line strength and collisional broadening coefficients of H 2 O at 2.7 ?m for natural gas assurance applications, Mol Phys, vol.112, pp.2451-61, 2014.

D. A. Long, M. Okumura, C. E. Miller, and J. T. Hodges, Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios, Appl Phys B, vol.105, pp.471-478, 2011.
DOI : 10.1007/s00340-011-4518-z

S. Wójtewicz, A. Cygan, P. Mas?owski, J. Domys?awska, P. Wcis?o et al., Spectral line-shapes of oxygen B-band transitions measured with cavity ring-down spectroscopy, J Phys Conf Ser, vol.548, p.12028, 2014.

D. Lisak, P. Mas?owski, A. Cygan, K. Bielska, S. Wójtewicz et al., Line shapes and intensities of self-broadened O 2 b 1 ? g + (v=1)?X 3 ? g ? (v=0) band transitions measured by cavity ring-down spectroscopy, Phys Rev A, vol.81, p.42504, 2010.
DOI : 10.1103/physreva.81.042504

H. Yi, Q. Liu, L. Gameson, A. J. Fleisher, and J. T. Hodges, High-accuracy CO 2 line intensities in the 2 ?m wavelength region measured by frequency-stabilized cavity ring-down spectroscopy, J Quant Spectrosc Radiat Transf, vol.206, pp.367-77, 2018.
DOI : 10.1016/j.jqsrt.2017.12.008

O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. Zobov et al., High-accuracy CO 2 line intensities determined from theory and experiment, Phys Rev Lett, vol.114, p.243001, 2015.
DOI : 10.1103/physrevlett.114.243001

URL : http://link.aps.org/pdf/10.1103/PhysRevLett.114.243001

E. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H. J. Jost et al., A water isotope ( 2 H, 17 O, and 18 O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications, Appl Phys B, vol.85, pp.397-406, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01103473

T. Wu, W. Chen, E. Kerstel, X. Gao, J. Koeth et al., Kalman Filtering real-time measurements of H 2 O isotopologue ratios by laser absorption spectroscopy at 2.73 ?m, Opt Lett, vol.35, pp.634-640, 2010.
DOI : 10.1364/ol.35.000634

URL : https://hal.archives-ouvertes.fr/hal-00563766

A. Castrillo, H. Dinesan, G. Casa, G. Galzerano, P. Laporta et al., Amount-ratio determinations of water isotopologues by dual-laser absorption spectrometry, Phys Rev A, vol.86, p.52515, 2012.
DOI : 10.1103/physreva.86.052515

URL : https://hal.archives-ouvertes.fr/hal-01103870

E. Kerstel and L. Gianfrani, Advances in laser-based isotope ratio measurements: selected applications, Appl Phys B, vol.92, pp.439-488, 2008.
DOI : 10.1007/s00340-008-3128-x

URL : https://pure.rug.nl/ws/files/6722530/2008ApplPhysBKerstel.pdf

F. Oyafuso, V. H. Payne, B. J. Drouin, V. M. Devi, D. C. Benner et al., High accuracy absorption coefficients for the Orbiting Carbon Observatory-2 (OCO-2) mission: Validation of updated carbon dioxide cross-sections using atmospheric spectra, J Quant Spectrosc Radiat Transf, vol.203, pp.213-236, 2017.

J. Taine and A. Soufiani, Gas IR radiative properties: From spectroscopic data to approximate models, Adv Heat Transf, vol.33, pp.295-414, 1999.
DOI : 10.1016/s0065-2717(08)70306-x

P. Rivière and A. Soufiani, Updated band model parameters for H 2 O, CO 2 , CH 4 and CO radiation at high temperature, Int J Heat Mass Transf, vol.55, pp.3349-58, 2012.

J. R. Howell, M. P. Menguc, and R. Siegel, Thermal radiation heat transfer, 2015.

C. Lee and M. I. Richardson, A discrete ordinate, multiple scattering, radiative transfer model of the Venus atmosphere from 0.1 to 260 ?m, J Atmos Sci, vol.68, pp.1323-1362, 2011.

S. Lebonnois, V. Eymet, C. Lee, and J. Vatant-d&apos;ollone, Analysis of the radiative budget of the Venusian atmosphere based on infrared Net Exchange Rate formalism, J Geophys Res Planets, vol.120, pp.1186-200, 2015.

J. M. Mendonça, P. L. Read, C. E. Wilson, and C. Lee, A new fast and flexible radiative transfer method for Venus general circulation models, Planet Space Sci, vol.105, pp.80-93, 2015.

A. Borysow and L. Frommhold, Theoretical collision-induced rototranslational absorption spectra for the outer planets: H 2-CH 4 pairs, Astrophys J, vol.304, pp.849-65, 1986.
DOI : 10.1086/164221

A. Borysow and L. Frommhold, Collision-induced rototranslational absorption spectra of CH 4-CH 4 pairs at temperatures from 50 to 300 K, Astrophys J, vol.318, pp.940-943, 1987.

A. Borysow and C. Tang, Far infrared CIA spectra of N 2-CH 4 pairs for modeling of Titan's atmosphere, Icarus, vol.105, pp.175-83, 1993.

S. Guerlet, A. Spiga, M. Sylvestre, M. Indurain, T. Fouchet et al., Global climate modeling of Saturns atmosphere. Part I: Evaluation of the radiative transfer model, Icarus, vol.238, pp.110-134, 2014.

F. Forget and J. Leconte, Possible climates on terrestrial exoplanets, Phil Trans R Soc A, vol.372, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01088926

J. Kasting, D. P. Whitmire, and R. T. Reynolds, Habitable zones around main sequence stars, Icarus, vol.101, pp.108-136, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01016703

J. B. Pollack, J. F. Kasting, S. M. Richardson, and K. Poliakoff, The case for a wet, warm climate on early Mars, Icarus, vol.71, pp.203-227, 1987.

J. F. Kasting, CO 2 condensation and the climate of early Mars, Icarus, vol.94, pp.1-13, 1991.

F. Forget and R. T. Pierrehumbert, Warming early Mars with carbon dioxide clouds that scatter infrared radiation, Science, vol.278, pp.1273-1279, 1997.

J. B. Pollack, O. B. Toon, and R. Boese, Greenhouse models of Venus' high surface temperature, as constrained by Pioneer Venus measurements, J Geophys Res Space Phys, vol.85, pp.8223-8254, 1980.

J. F. Kasting, J. B. Pollack, and D. Crisp, Effects of high CO 2 levels on surface temperature and atmospheric oxidation state of the early Earth, J Atmos Chem, vol.1, pp.403-431, 1984.

W. Ho, G. Birnbaum, and A. Rosenberg, Far-infrared collision-induced absorption in CO 2. I. Temperature dependence, J. Chem. Phys, vol.55, pp.1028-1066, 1971.

J. F. Moore, Infrared absorption of carbon dioxide at high densities with application to the atmosphere of Venus, NASA Goddard Space Flight Center, 1971.

R. Wordsworth, F. Forget, and V. Eymet, Infrared collision-induced and far-line absorption in dense CO 2 atmospheres, Icarus, vol.210, pp.992-999, 2010.

Y. I. Baranov, W. J. Lafferty, and G. T. Fraser, Infrared spectrum of the continuum and dimer absorption in the vicinity of the O 2 vibrational fundamental in O 2 /CO 2 mixtures, J Mol Spectrosc, vol.228, pp.432-472, 2004.

N. Ozak, O. Aharonson, and I. Halevy, Radiative transfer in CO 2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars, J Geophys Res Planets, vol.121, pp.965-85, 2016.

M. Turbet and H. Tran, Comment on "Radiative transfer in CO 2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars, J Geophys Res Planets, vol.122, pp.2362-2367, 2017.

F. Forget, R. Wordsworth, E. Millour, J. Madeleine, L. Kerber et al., 3D modelling of the early martian climate under a denser CO 2 atmosphere: temperatures and CO 2 ice clouds, Icarus, vol.222, pp.81-99, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00747673

R. Wordsworth, Y. Kalugina, S. Lokshtanov, A. Vigasin, B. Ehlmann et al., Transient reducing greenhouse warming on early Mars, Geophys Res Lett, vol.44, pp.665-71, 2017.

R. M. Ramirez, R. Kopparapu, M. E. Zugger, T. D. Robinson, R. Freedman et al., Warming early Mars with CO 2 and H 2, Nature Geosci, vol.7, pp.59-63, 2014.

E. Marcq, A simple 1-D radiative-convective atmospheric model designed for integration into coupled models of magma ocean planets, J Geophys Res Planets, vol.117, p.1001, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00639286

T. L. Segura, O. B. Toon, A. Colaprete, and K. Zahnle, Environmental effects of large impacts on Mars, Science, vol.298, pp.1977-80, 2002.