J. Armitage, P. Taylor, and L. Poston, Experimental models of developmental programming: consequences of exposure to an energy rich diet during development, The Journal of Physiology, vol.7, issue.Suppl. 3, pp.3-8, 2005.
DOI : 10.1038/85354

D. Barker, C. Osmond, P. Winter, B. Margetts, and S. Simmonds, WEIGHT IN INFANCY 740 AND DEATH FROM ISCHAEMIC HEART DISEASE. The Lancet, 1989.

D. Rice and S. Barone, Critical Periods of Vulnerability for the Developing Nervous 743 System: Evidence from Humans and Animal Models. Environ Health Perspect, 2000.

, Jun, vol.1108, issue.s3, pp.511-544

D. Benton and . Ilsi, The influence of children???s diet on their cognition and behavior, European Journal of Nutrition, vol.23, issue.1, pp.25-37, 2008.
DOI : 10.1001/archpedi.1996.02170350091016

S. Kereliuk, G. Brawerman, and V. Dolinsky, Maternal Macronutrient Consumption and 748 the Developmental Origins of Metabolic Disease in the Offspring, Int J Mol Sci, p.749, 2017.

, Jul, vol.618, issue.7, p.1451

G. Chang, V. Gaysinskaya, O. Karatayev, and S. Leibowitz, Maternal High-Fat Diet and 751 Fetal Programming: Increased Proliferation of Hypothalamic Peptide-Producing 752

N. That, I. Risk, O. J. Overeating, and . Neurosci, , pp.12107-12126, 2008.

P. Taylor and L. Poston, Developmental programming of obesity in mammals. Exp 755 Physiol, pp.287-98, 2007.

G. Howie, D. Sloboda, T. Kamal, and M. Vickers, Maternal nutritional history predicts 757 obesity in adult offspring independent of postnatal diet: Maternal high fat nutrition 758 and obesity in offspring, J Physiol. Feb, vol.15587, issue.4, pp.905-920, 2009.

M. Morris and H. Chen, Established maternal obesity in the rat reprograms 760 hypothalamic appetite regulators and leptin signaling at birth, Int J Obes, 2009.
DOI : 10.1038/ijo.2008.213

URL : http://www.nature.com/ijo/journal/v33/n1/pdf/ijo2008213a.pdf

C. Walker, L. Naef, E. Asti, H. Long, Z. Xu et al., Perinatal Maternal Fat, p.763

, Intake Affects Metabolism and Hippocampal Function in the Offspring

A. Sci, , pp.189-202, 2008.

B. Grayson, P. Levasseur, S. Williams, M. Smith, D. Marks et al., , p.766

, Melanocortin Expression and Inflammatory Pathways in Fetal Offspring of 767 Nonhuman Primates Fed a High-Fat Diet, Endocrinology. 2010, vol.151, issue.4, pp.1622-768

T. Bale, T. Baram, A. Brown, J. Goldstein, T. Insel et al., Life 770 Programming and Neurodevelopmental Disorders, 2010.

C. Clouard, B. Kemp, D. Val-laillet, W. Gerrits, A. Bartels et al., Prenatal, but 773 not early postnatal, exposure to a Western diet improves spatial memory of pigs 774 later in life and is paired with changes in maternal prepartum blood lipid levels. 775 FASEB J [Internet], p.776, 2016.

D. Val-laillet, M. Besson, S. Guérin, N. Coquery, G. Randuineau et al., A 778 maternal Western diet during gestation and lactation modifies offspring's 779 microbiota activity, blood lipid levels, cognitive responses, and hippocampal 780 neurogenesis in Yucatan pigs, p.781, 201601015.

S. Bilbo and V. Tsang, Enduring consequences of maternal obesity for brain inflammation and behavior of offspring, The FASEB Journal, vol.24, issue.6, pp.2104-2119, 2010.
DOI : 10.1203/PDR.0b013e3181a7c121

J. Lu, D. Wu, Y. Zheng, B. Hu, W. Cheng et al., Ursolic acid improves high fat 784 diet-induced cognitive impairments by blocking endoplasmic reticulum stress and 785

, I?B kinase ?/nuclear factor-?B-mediated inflammatory pathways in mice, Brain, vol.786

B. Immun, , pp.1658-67, 2011.

E. Sullivan, E. Nousen, and K. Chamlou, Maternal high fat diet consumption during the perinatal period programs offspring behavior, Physiology & Behavior, vol.123, pp.236-789, 2014.
DOI : 10.1016/j.physbeh.2012.07.014

Y. Tozuka, M. Kumon, E. Wada, M. Onodera, H. Mochizuki et al., Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring, Neurochemistry International, vol.57, issue.3, pp.235-282, 2010.
DOI : 10.1016/j.neuint.2010.05.015

G. Wang, N. Volkow, P. Thanos, and J. Fowler, Imaging of Brain Dopamine Pathways, Journal of Addiction Medicine, vol.3, issue.1, pp.8-18, 2009.
DOI : 10.1097/ADM.0b013e31819a86f7

T. South and X. Huang, High-Fat Diet Exposure Increases Dopamine D2 Receptor and Decreases Dopamine Transporter Receptor Binding Density in the Nucleus Accumbens and Caudate Putamen of Mice, Neurochemical Research, vol.81, issue.11, pp.598-798, 2008.
DOI : 10.1152/ajpregu.00602.2002

L. Naef, L. Moquin, D. Bo, G. Giros, B. Gratton et al., Maternal high-fat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring, Neuroscience, vol.176, pp.225-261, 2011.
DOI : 10.1016/j.neuroscience.2010.12.037

L. Naef, L. Srivastava, A. Gratton, H. Hendrickson, S. Owens et al., Maternal high fat diet during the perinatal period alters mesocorticolimbic dopamine in the adult rat offspring: reduction in the behavioral responses to repeated amphetamine administration, Psychopharmacology, vol.83, issue.4, pp.83-94, 2008.
DOI : 10.1111/j.1530-0277.1999.tb04056.x

G. Wang, N. Volkow, J. Logan, N. Pappas, C. Wong et al., Brain dopamine and obesity, The Lancet, vol.357, issue.9253, pp.354-361, 2001.
DOI : 10.1016/S0140-6736(00)03643-6

D. Val-laillet, S. Layec, S. Guérin, P. Meurice, and C. Malbert, Changes in Brain Activity After a Diet-Induced Obesity, Obesity, vol.21, issue.4, pp.749-56, 2011.
DOI : 10.1016/j.biopsych.2005.05.043

URL : https://hal.archives-ouvertes.fr/hal-01409421

N. Volkow, G. Wang, F. Telang, J. Fowler, P. Thanos et al., Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: Possible contributing factors, NeuroImage, vol.42, issue.4, pp.1537-1580, 2008.
DOI : 10.1016/j.neuroimage.2008.06.002

J. Ifland, H. Preuss, M. Marcus, K. Rourke, W. Taylor et al., Refined 814 food addiction: A classic substance use disorder Med Hypotheses, 2009.

R. Lustig, Fructose: Metabolic, Hedonic, and Societal Parallels with Ethanol, Journal of the American Dietetic Association, vol.110, issue.9, p.817
DOI : 10.1016/j.jada.2010.06.008

, Diet Assoc, vol.110, issue.9, pp.1307-1328, 2010.

A. Gearhardt, C. Davis, R. Kuschner, and K. Brownell, The Addiction Potential of Hyperpalatable Foods, Current Drug Abuse Reviewse, vol.4, issue.3, pp.140-145, 2011.
DOI : 10.2174/1874473711104030140

E. Miller and D. Ullrey, The Pig as a Model for Human Nutrition, Annual Review of Nutrition, vol.7, issue.1, p.821, 1987.
DOI : 10.1146/annurev.nu.07.070187.002045

J. Dobbing and J. Sands, Quantitative growth and development of human brain. Arch Dis 823 Child, pp.757-67, 1973.

J. Dobbing and J. Sands, Comparative aspects of the brain growth spurt, Early Human Development, vol.3, issue.1, pp.79-83, 1979.
DOI : 10.1016/0378-3782(79)90022-7

K. Houpt, T. Houpt, and W. Pond, The pig as a model for the study of obesity and of 827 control of food intake: a review, Yale J Biol Med, vol.52, issue.3, pp.307-336, 1979.

J. Becker, J. Walker, and D. Olton, Neuroanatomical bases of spatial memory. Brain 829 Res, pp.307-327, 1980.

A. Bruce-keller, J. Keller, and C. Morrison, Obesity and vulnerability of the CNS, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1792, issue.5, p.831
DOI : 10.1016/j.bbadis.2008.10.004

URL : https://hal.archives-ouvertes.fr/hal-00562869

, Biochim Biophys Acta BBA - Mol Basis Dis, vol.1792, issue.5, pp.395-400, 2009.

S. Kanoski and T. Davidson, Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity, Physiology & Behavior, vol.103, issue.1, pp.59-834
DOI : 10.1016/j.physbeh.2010.12.003

H. Francis and R. Stevenson, The longer-term impacts of Western diet on human 836 cognition and the brain, Appetite. 2013, vol.63, pp.119-147

E. Isaacs, D. Gadian, S. Sabatini, W. Chong, B. Quinn et al., The Effect of Early Human Diet on Caudate Volumes and IQ, Pediatric Research, vol.20, issue.3, pp.308-839, 2008.
DOI : 10.1002/hbm.10131

J. Salamone, M. Correa, S. Mingote, and S. Weber, Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine, Current Opinion in Pharmacology, vol.5, issue.1, 2005.
DOI : 10.1016/j.coph.2004.09.004

, Feb, vol.5, issue.1, pp.34-41

A. Midtvedt and T. Midtvedt, Production of Short Chain Fatty Acids by the Intestinal Microflora During the First 2 Years of Human Life, Journal of Pediatric Gastroenterology and Nutrition, vol.15, issue.4, pp.395-403, 1992845-11.
DOI : 10.1097/00005176-199211000-00005

E. Roura, S. Koopmans, J. Lallès, L. Huerou-luron, I. De-jager et al., Critical review evaluating the pig as a model for human nutritional physiology, p.848

, Nutr Res Rev, pp.1-31, 2016.

L. Bourgot, C. , L. Normand, L. Formal, M. Respondek et al., 850 Maternal short-chain fructo-oligosaccharide supplementation increases intestinal 851 cytokine secretion, goblet cell number, butyrate concentration and Lawsonia 852 intracellularis humoral vaccine response in weaned pigs, Br J Nutr, 2017.

P. Gibson, E. Newnham, J. Barrett, S. Shepherd, and J. Muir, Review article, Journal of Advanced Nursing, vol.30, issue.3, pp.349-63, 2006.
DOI : 10.1046/j.1365-2648.1999.1143f.x

M. Ochoa, C. Malbert, J. Lallès, E. Bobillier, and D. Val-laillet, Effects of chronic intake of starch-, glucose- and fructose-containing diets on eating behaviour in adult minipigs, Applied Animal Behaviour Science, vol.157, pp.61-71, 2014.
DOI : 10.1016/j.applanim.2014.05.010

J. Arts, F. Van-der-staay, and E. Ekkel, Working and reference memory of pigs in the spatial holeboard discrimination task, Behavioural Brain Research, vol.205, issue.1, pp.303-309, 2009.
DOI : 10.1016/j.bbr.2009.06.014

B. Kornum and G. Knudsen, Cognitive testing of pigs (Sus scrofa) in translational biobehavioral research, Neuroscience & Biobehavioral Reviews, vol.35, issue.3, pp.437-51, 2011.
DOI : 10.1016/j.neubiorev.2010.05.004

E. Bolhuis, J. Oostindjer, M. Hoeks, C. De-haas, E. Bartels et al., Working and reference memory of pigs (Sus scrofa domesticus) in a holeboard 866 spatial discrimination task: the influence of environmental enrichment, Anim Cogn, vol.86716, issue.5, pp.845-50, 2013.

E. Gieling, R. Nordquist, and F. Van-der-staay, Assessing learning and memory in pigs, Animal Cognition, vol.111, issue.4, p.869
DOI : 10.1016/j.applanim.2007.05.010

, Anim Cogn, vol.14, issue.2, pp.151-73, 2011.

A. Rosset, L. Spadola, and O. Ratib, OsiriX: An Open-Source Software for Navigating in 871

D. Multidimensional and . Images, J Digit Imaging, vol.17, issue.3, pp.205-221, 2004.

C. Clouard, M. Meunier-salaã¼n, P. Meurice, C. Malbert, and D. Val-laillet, Combined 873 compared to dissociated oral and intestinal sucrose stimuli induce different brain 874 hedonic processes, Front Psychol [Internet], vol.5, 2014.

S. Saikali, P. Meurice, P. Sauleau, P. Eliat, P. Bellaud et al., A three- 878 dimensional digital segmented and deformable brain atlas of the domestic pig. J 879 Neurosci Methods, pp.102-111, 2010.

D. Val-laillet, S. Blat, I. Louveau, and C. Malbert, A computed tomography scan 881 application to evaluate adiposity in a minipig model of human obesity, Br J Nutr, vol.882104, issue.11, pp.1719-1747, 2010.

S. Blat, S. Vincent, L. Lefeuvre, S. Lemoine-morel, C. Malbert et al., Dietary ??-lactalbumin supplementation alleviates normocaloric western diet-induced glucose intolerance in G??ttingen minipigs, Obesity, vol.134, issue.2, pp.415-436, 2015.
DOI : 10.1038/ejcn.2012.48

B. Christoffersen, U. Ribel, K. Raun, V. Golozoubova, and G. Pacini, Evaluation of different methods for assessment of insulin sensitivity in G??ttingen minipigs: introduction of a new, simpler method, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.281, issue.4, pp.1195-201, 2009.
DOI : 10.1111/j.0959-9673.2004.00394.x

R. Bergman, L. Phillips, and C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose., Journal of Clinical Investigation, vol.68, issue.6, pp.1456-67, 1981.
DOI : 10.1172/JCI110398

R. Innis, V. Cunningham, J. Delforge, M. Fujita, A. Gjedde et al., Consensus 896 Nomenclature for in vivo Imaging of Reversibly Binding Radioligands. J Cereb Blood 897 Flow Metab, pp.1533-1542, 2007.

L. Minuzzi, A. Olsen, D. Bender, S. Arnfred, R. Grant et al., Quantitative autoradiography of ligands for dopamine receptors and transporters in brain of G??ttingen minipig: Comparison with results in vivo, Synapse, vol.1, issue.4, pp.211-220, 2006.
DOI : 10.1038/sj.npp.1380111

C. Grimberg-henrici, P. Vermaak, E. Bolhuis, J. Nordquist, and R. , Effects of environmental enrichment on cognitive performance of pigs in a spatial holeboard discrimination task, Animal Cognition, vol.15, issue.2, pp.271-83, 2016.
DOI : 10.1002/9780470751046.ch1

S. Roelofs, R. Nordquist, and F. Van-der-staay, Female and male pigs??? performance in a spatial holeboard and judgment bias task, Applied Animal Behaviour Science, vol.191, pp.5-16
DOI : 10.1016/j.applanim.2017.01.016

F. Bellisle, Effects of diet on behaviour and cognition in children, British Journal of Nutrition, vol.125, issue.S2, p.908, 2004.
DOI : 10.1016/S0278-5846(99)00063-9

M. Wolraich, S. Lindgren, P. Stumbo, L. Stegink, M. Appelbaum et al., 910 Effects of Diets High in Sucrose or Aspartame on The Behavior and Cognitive 911 Performance of Children, N Engl J Med Feb, vol.3330, issue.5, pp.301-308, 1994.

E. Sullivan, B. Grayson, D. Takahashi, N. Robertson, A. Maier et al., Chronic Consumption of a High-Fat Diet during Pregnancy Causes Perturbations in the Serotonergic System and Increased Anxiety-Like Behavior in Nonhuman Primate Offspring, Journal of Neuroscience, vol.30, issue.10, pp.3826-3856, 2010.
DOI : 10.1523/JNEUROSCI.5560-09.2010

M. Joëls, Z. Pu, O. Wiegert, M. Oitzl, and H. Krugers, Learning under stress: how does it 917 work? Trends Cogn Sci, pp.152-160, 2006.

S. Haber and N. Mcfarland, The Concept of the Ventral Striatum in Nonhuman Primates, Annals of the New York Academy of Sciences, vol.10, issue.4, pp.33-48, 1999.
DOI : 10.1002/cne.903460305

B. Baldo and A. Kelley, Discrete neurochemical coding of distinguishable motivational 921 processes: insights from nucleus accumbens control of feeding. 922 Psychopharmacology (Berl), pp.439-59, 2007.

S. Ikemoto and J. Panksepp, Dissociations between appetitive and consummatory 924 responses by pharmacological manipulations of reward-relevant brain regions, p.925

, Behav Neurosci, vol.110, issue.2, pp.331-376, 1996.

H. Berendse, H. Groenewegen, and A. Lohman, Compartmental distribution of ventral striatal neurons projecting to the mesencephalon in the rat, The Journal of Neuroscience, vol.12, issue.6, pp.2079-103, 1992.
DOI : 10.1523/JNEUROSCI.12-06-02079.1992

A. Asher and D. Lodge, Distinct prefrontal cortical regions negatively regulate evoked 930 activity in nucleus accumbens subregions, Int J Neuropsychopharmacol, p.2012

L. Baxter, Reduction of Prefrontal Cortex Glucose Metabolism Common to Three 933 Types of Depression. Arch Gen Psychiatry, pp.243-934, 1989.

J. Martinot, P. Hardy, A. Feline, J. Huret, B. Mazoyer et al., Left 935 prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J 936 Psychiatry, pp.1313-1320, 1990.

P. Videbech, PET measurements of brain glucose metabolism and blood flow in 938 major depressive disorder: a critical review, Acta Psychiatr Scand, 2000.

E. Sullivan, M. Smith, and K. Grove, Perinatal Exposure to High-Fat Diet Programs 941 Energy Balance, Metabolism and Behavior in Adulthood, Neuroendocrinology, vol.94293, issue.1, pp.1-8, 2011.

D. Le, N. Pannacciulli, K. Chen, A. Salbe, D. Parigi et al., Less activation 944 in the left dorsolateral prefrontal cortex in the reanalysis of the response to a meal 945 in obese than in lean women and its association with successful weight loss, Am J, p.946

, Clin Nutr, vol.86, issue.3, pp.573-582, 2007.

E. Stice, S. Spoor, C. Bohon, M. Veldhuizen, and D. Small, Relation of reward from food intake and anticipated food intake to obesity: A functional magnetic resonance imaging study., Journal of Abnormal Psychology, vol.117, issue.4, pp.924-959, 2008.
DOI : 10.1037/a0013600

J. Cone, E. Chartoff, D. Potter, S. Ebner, M. Roitman et al., Prolonged High Fat Diet 951 Reduces Dopamine Reuptake without Altering DAT Gene Expression. Simon SA, 952 editor. PLoS ONE Diet-induced 954 obesity: dopamine transporter function, impulsivity and motivation Available from: 956 http, Int J Obes, vol.837, issue.9558, pp.2005-957, 2013.

L. Minuzzi, A. Olsen, D. Bender, S. Arnfred, R. Grant et al., Quantitative autoradiography of ligands for dopamine receptors and transporters in brain of G??ttingen minipig: Comparison with results in vivo, Synapse, vol.1, issue.4, pp.211-220, 2006.
DOI : 10.1038/sj.npp.1380111

X. Huang, K. Zavitsanou, X. Huang, Y. Yu, H. Wang et al., Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity, Behavioural Brain Research, vol.175, issue.2, pp.415-424, 2006.
DOI : 10.1016/j.bbr.2006.08.034

J. Cone, E. Chartoff, D. Potter, S. Ebner, and M. Roitman, Prolonged High Fat Diet 965 Reduces Dopamine Reuptake without Altering DAT Gene Expression, PLOS ONE, vol.9668, issue.3, p.58251, 2013.

P. Chen, Y. Yang, T. Yeh, I. Lee, W. Yao et al., Correlation between body mass index and striatal dopamine transporter availability in healthy volunteers???A SPECT study, NeuroImage, vol.40, issue.1, pp.275-284, 2008.
DOI : 10.1016/j.neuroimage.2007.11.007

X. Chen, K. Margolis, M. Gershon, G. Schwartz, and J. Sze, Reduced Serotonin Reuptake Transporter (SERT) Function Causes Insulin Resistance and Hepatic Steatosis Independent of Food Intake, PLoS ONE, vol.4, issue.3, pp.32511-973, 2012.
DOI : 10.1371/journal.pone.0032511.s005

V. Bohbot, J. Allen, A. Dagher, S. Dumoulin, A. Evans et al., Role of 974 the parahippocampal cortex in memory for the configuration but not the identity of 975 objects: converging evidence from patients with selective thermal lesions and fMRI. 976 Front Hum Neurosci [Internet] Available from: 977 http, 2015.

E. Aminoff, K. Kveraga, and M. Bar, The role of the parahippocampal cortex in cognition. 979 Trends Cogn Sci, pp.379-90, 2013.

C. Clouard, M. Chataignier, M. Meunier-salaün, and D. Val-laillet, Flavour preference 981 acquired via a beverage-induced conditioning and its transposition to solid food, p.982

, Sucrose but not maltodextrin or saccharin induced significant flavour preferences 983 in pigs, Appl Anim Behav Sci. 2012, vol.136, issue.1, pp.26-36

P. Bateson, P. Gluckman, and M. Hanson, , p.985

, Predictive Adaptive Response hypothesis: Developmental plasticity and the PAR 986 response, J Physiol, vol.592, issue.11, pp.2357-68, 2014.

C. Petry, S. Ozanne, and C. Hales, Programming of intermediary metabolism, Molecular and Cellular Endocrinology, vol.185, issue.1-2, pp.81-91, 2001.
DOI : 10.1016/S0303-7207(01)00627-X

M. Alfaradhi and S. Ozanne, Developmental Programming in Response to Maternal 990

. F. Overnutrition and . Genet, Available from: 991 http, 2011.

J. Ferezou-viala, A. Roy, C. Serougne, D. Gripois, M. Parquet et al., Long-term consequences of maternal high-fat feeding on hypothalamic leptin sensitivity and diet-induced obesity in the offspring, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.293, issue.3, pp.1056-62, 2007.
DOI : 10.1113/jphysiol.2005.100313

O. Couvreur, J. Ferezou, D. Gripois, C. Serougne, D. Crépin et al., Unexpected Long-Term Protection of Adult Offspring Born to High-Fat Fed Dams against Obesity Induced by a Sucrose-Rich Diet, PLoS ONE, vol.242, issue.3, pp.18043-1000, 2011.
DOI : 10.1371/journal.pone.0018043.s001

URL : https://hal.archives-ouvertes.fr/hal-00719394

I. Khan, Predictive Adaptive Responses to Maternal High-Fat Diet Prevent, 1001.

, Endothelial Dysfunction but Not Hypertension in Adult Rat Offspring. Circulation. Aug, vol.1002110, issue.239, pp.1097-102, 2004.

C. White, M. Purpera, and C. Morrison, Maternal obesity is necessary for 1004 programming effect of high-fat diet on offspring. AJP Regul Integr Comp Physiol, pp.1464-72, 1005.

P. Turnbaugh, R. Ley, M. Mahowald, V. Magrini, E. Mardis et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, vol.20, issue.7122, pp.1027-131, 1008.
DOI : 10.1093/bioinformatics/bth078

B. Félix, M. Léger, D. Albe-fessard, J. Marcilloux, O. Rampin et al., Stereotaxic atlas of the pig brain, Stereotaxic atlas of the pig brain, pp.1-137, 1010.
DOI : 10.1016/S0361-9230(99)00012-X

, N_Immobile as occurrences of immobility, duration as test duration, Explore_Wall 1034 representing the time of wall exploration by animals, and Index as index of performance of 1035

, C) Individuals graphic from PCA analysis for maze test. With 5 WD individuals 1036 (red) and 5 SD individuals (black), p.1037

, Binding potential (mean ± SEM) of DAT in VOIs in WD (black) and SD 1054 (white) animals. *, P

, overweight animals (hatched) animals. D) Dorsal backfat thickness evolution between lean 1062 and overweight status in SD (grey) and WD (black) animals