P. D. Gluckman, M. A. Hanson, and A. S. Beedle, Early life events and their consequences for later disease: a life history and evolutionary perspective, Am J Hum Biol, vol.19, pp.1-19, 2007.

K. M. Godfrey, P. D. Gluckman, H. , and M. A. , Developmental origins of metabolic disease: life course and intergenerational perspectives, Trends Endocrinol Metab, vol.21, pp.199-205, 2010.

A. R. Bedford-russell and S. H. Murch, Could peripartum antibiotics have delayed health consequences for the infant?, Bjog, vol.113, pp.758-765, 2006.

D. Schokker, J. Zhang, S. A. Vastenhouw, H. G. Heilig, H. Smidt et al., Long-lasting effects of early-life antibiotic treatment and routine animal handling on gut microbiota composition and immune system in pigs, PLoS One, vol.10, p.116523, 2015.

T. A. Ajslev, C. S. Andersen, M. Gamborg, T. I. Sorensen, J. et al., Childhood overweight after establishment of the gut microbiota: the role of delivery mode, prepregnancy weight and early administration of antibiotics, Int J Obes, vol.35, pp.522-529, 2011.

L. M. Cox, S. Yamanishi, J. Sohn, A. V. Alekseyenko, J. M. Leung et al., Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences, Cell, vol.158, pp.705-721, 2014.

L. Trasande, J. Blustein, M. Liu, E. Corwin, L. M. Cox et al., Infant antibiotic exposures and early-life body mass, Int J Obes, vol.37, pp.16-23, 2013.

G. Tolhurst, H. Heffron, Y. S. Lam, H. E. Parker, A. M. Habib et al., Short-chain fatty acids stimulate glucagonlike peptide-1 secretion via the G-protein-coupled receptor FFAR2, Diabetes, vol.61, pp.364-371, 2012.

L. L. Baggio and D. J. Drucker, Biology of incretins: GLP-1 and GIP, Gastroenterology, vol.132, pp.2131-2157, 2007.

C. De-filippo, D. Cavalieri, M. Di-paola, M. Ramazzotti, J. B. Poullet et al., Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa, Proc Natl Acad Sci U S A, vol.107, pp.14691-14696, 2010.

M. G. Dominguez-bello, E. K. Costello, M. Contreras, M. Magris, G. Hidalgo et al., Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns, Proc Natl Acad Sci U S A, vol.107, pp.11971-11975, 2010.

J. Penders, C. Thijs, C. Vink, F. F. Stelma, B. Snijders et al., Factors influencing the composition of the intestinal microbiota in early infancy, Pediatrics, vol.118, pp.511-521, 2006.

P. S. Pannaraj, F. Li, C. Cerini, J. M. Bender, S. Yang et al., Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome, JAMA Pediatr, vol.14, 2017.

M. Roberfroid, G. R. Gibson, L. Hoyles, A. L. Mccartney, R. Rastall et al., Prebiotic effects: metabolic and health benefits, Br J Nutr, vol.104, issue.2, pp.1-63, 2010.

X. D. Pan, F. Q. Chen, T. X. Wu, H. G. Tang, and Z. Y. Zhao, Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel, J Zhejiang Univ Sci B, vol.10, pp.258-263, 2009.

F. Respondek, P. Gerard, M. Bossis, L. Boschat, A. Bruneau et al., Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice, PLoS One, vol.8, p.71026, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190544

K. S. Swanson, C. M. Grieshop, E. A. Flickinger, L. L. Bauer, J. Chow et al., Fructooligosaccharides and Lactobacillus acidophilus modify gut microbial populations, total tract nutrient digestibilities and fecal protein catabolite concentrations in healthy adult dogs, J Nutr, vol.132, pp.3721-3731, 2002.

T. W. Liu, K. D. Cephas, H. D. Holscher, K. R. Kerr, H. F. Mangian et al., Nondigestible Fructans Alter Gastrointestinal Barrier Function, Gene Expression, Histomorphology, and the Microbiota Profiles of Diet-Induced Obese C57BL/6J Mice, J Nutr, vol.146, pp.949-956, 2016.

R. Fujiwara, J. Watanabe, and K. Sonoyama, Assessing changes in composition of intestinal microbiota in neonatal BALB/c mice through cluster analysis of molecular markers, Br J Nutr, vol.99, pp.1174-1177, 2008.

L. Bourgot, C. Le-normand, L. Formal, M. Respondek, F. Blat et al., Maternal short-chain fructo-oligosaccharide supplementation increases intestinal cytokine secretion, goblet cell number, butyrate concentration and Lawsonia intracellularis humoral vaccine response in weaned pigs, Br J Nutr, vol.117, pp.83-92, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01545740

L. Bourgot, C. Ferret-bernard, S. Le-normand, L. Savary, G. Menendez-aparicio et al., Maternal short-chain fructooligosaccharide supplementation influences intestinal immune system maturation in piglets, PLoS One, vol.9, p.107508, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01545743

L. B. Bindels, A. M. Neyrinck, N. Salazar, B. Taminiau, C. Druart et al., Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice, PLoS One, vol.10, p.131009, 2015.

P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann et al., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl Environ Microbiol, vol.75, pp.7537-7541, 2009.
DOI : 10.1128/aem.01541-09

URL : https://aem.asm.org/content/75/23/7537.full.pdf

C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res, vol.41, pp.590-596, 2013.

J. P. Jouany, B. Zainab, J. Senaud, C. A. Groliere, J. Grain et al., Role of the rumen ciliate protozoa polyplastron-multivesiculatum, entodinium sp and isotricha-prostoma in the digestion of a mixed diet in sheep, Reproduction Nutrition Development, vol.21, pp.871-884, 1981.
URL : https://hal.archives-ouvertes.fr/hal-00897905

E. Mosnier, L. Floc'h, N. Etienne, M. Ramaekers, P. Seve et al., Reduced feed intake of lactating primiparous sows is associated with increased insulin resistance during the peripartum period and is not modified through supplementation with dietary tryptophan, J Anim Sci, vol.88, pp.612-625, 2010.

B. Christoffersen, U. Ribel, K. Raun, V. Golozoubova, P. et al., Evaluation of different methods for assessment of insulin sensitivity in Gottingen minipigs: introduction of a new, simpler method, Am J Physiol Regul Integr Comp Physiol, vol.297, pp.1195-1201, 2009.

R. N. Bergman, Minimal model: perspective from, Horm Res, vol.64, pp.8-15, 2005.
DOI : 10.1159/000089312

L. Chatelais, A. Jamin, C. Gras-le-guen, J. P. Lalles, L. Huerou-luron et al., The level of protein in milk formula modifies ileal sensitivity to LPS later in life in a piglet model, PLoS One, vol.6, p.19594, 2011.

S. Blat, A. Morise, A. Sauret, I. Louveau, K. Mace et al., The protein level of isoenergetic formulae does not modulate postprandial insulin secretion in piglets and has no consequences on later glucose tolerance, Br J Nutr, vol.108, pp.102-112, 2012.

J. A. Parnell and R. A. Reimer, Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats, Br J Nutr, vol.107, pp.601-613, 2012.
DOI : 10.1017/s0007114511003163

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8509E117E1168C1D86A678F33558A040/S0007114511003163a.pdf/div-class-title-prebiotic-fibres-dose-dependently-increase-satiety-hormones-and-alter-bacteroidetes-and-firmicutes-in-lean-and-obese-jcr-la-cp-rats-div.pdf

A. Everard, V. Lazarevic, M. Derrien, M. Girard, G. G. Muccioli et al., Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice, Diabetes, vol.60, pp.2775-2786, 2011.

A. Everard and P. D. Cani, Diabetes, obesity and gut microbiota, Best Pract Res Clin Gastroenterol, vol.27, pp.73-83, 2013.

H. M. Chan, R. Jain, B. Ahren, G. Pacini, and D. Z. Argenio, Effects of increasing doses of glucagon-like peptide-1 on insulin-releasing phases during intravenous glucose administration in mice, Am J Physiol Regul Integr Comp Physiol, vol.300, pp.1126-1133, 2011.

J. M. Bates, J. Akerlund, E. Mittge, G. , and K. , Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota, Cell Host Microbe, vol.2, pp.371-382, 2007.

C. L. Ohland, J. , and C. , Microbial activities and intestinal homeostasis: A delicate balance between health and disease, Cell Mol Gastroenterol Hepatol, vol.1, pp.28-40, 2015.
DOI : 10.1016/j.jcmgh.2014.11.004

URL : https://doi.org/10.1016/j.jcmgh.2014.11.004

N. Mach, M. Berri, J. Estelle, F. Levenez, G. Lemonnier et al., Early-life establishment of the swine gut microbiome and impact on host phenotypes, Environ Microbiol Rep, vol.7, pp.554-569, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168456

S. Boullier, M. Tanguy, K. A. Kadaoui, C. Caubet, P. Sansonetti et al., Secretory IgA-mediated neutralization of Shigella flexneri prevents intestinal tissue destruction by down-regulating inflammatory circuits, J Immunol, vol.183, pp.5879-5885, 2009.

J. P. Lalles, Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet, Nutr Rev, vol.68, pp.323-332, 2010.

J. Mourot, Control of the adiposity in breeding animals, vol.157, pp.29-34, 2004.

E. Roura, S. J. Koopmans, J. P. Lalles, L. Huerou-luron, I. De-jager et al., Critical review evaluating the pig as a model for human nutritional physiology, Nutr Res Rev, vol.29, pp.60-90, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01527066

, Table 3: Glucose homeostasis and entero-insular axis in suckling piglets

, Caecum GLP-1-secreting L-cell, nb/mm 2 mucosa 1

, Mean values ± SEM. Parameters were measured 1 hour after breastfeeding. CTRL, maternal control diet; scFOS, maternal short-chain fructooligosaccharide

, 000 UI, cholecalciferol 1,500 UI, ?-tocopherol 45 mg, menadione 2 mg, thiamine 2 mg, riboflavin 4 mg, niacin 20 mg, D-pantothenic acid 10.9 mg, pyridoxine 3 mg, D-biotin 0.2 mg, folic acid 3 mg, vitamin B12 20 µg, choline 500 mg, Fe 81.5 mg as iron carbonate and sulphate, Cu 10 mg as copper sulphate, Mn 40 mg as manganese oxide, Zn 99.2 mg as zinc oxide, Co 0.1 mg as cobalt carbonate, ) supplied per kg of diet: retinol 10