M. Wilmet and T. Truong,

T. Matsui, T. Hara, N. Takei, T. Saito, T. Kim-ngan-nguyen et al., Tetsuo Uchikoshi: Contributed reagents, materials, analysis tools or data

J. Lowe, D. Stock, B. Jap, P. Zwickl, W. Baumeister et al., Science, vol.268, pp.533-539, 1995.

P. Cramer, D. A. Bushnell, J. Fu, A. L. Gnatt, B. Maier-davis et al., Architecture of RNA polymerase II and implications for the transcription mechanism, Science, vol.288, pp.640-649, 2000.

K. N. Ferreira, T. M. Iverson, K. Maghlaoui, and J. Barber, Architecture of the photosynthetic oxygen-evolving center, Science, vol.43, pp.1831-1839, 2004.

B. F. Mullan, M. T. Madsen, L. Messerle, V. Kolesnichenko, and J. Kruger, X-ray attenuation coefficients of high-atomic-number, hexanuclear transition metal cluster compounds: a new paradigm for radiographic contrast agents, Acad. Radiol, vol.7, pp.254-259, 2000.

A. Renaud, M. Wilmet, T. G. Truong, M. Seze, P. Lemoine et al., Transparent tantalum cluster-based UV and IR blocking electrochromic devices, J. Mater. Chem. C, vol.5, pp.8160-8168, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581225

N. T. Nguyen, A. Renaud, M. Wilmet, N. Dumait, S. Paofai et al., New ultra-violet and near-infrared blocking filters for saving energy applications: fabrication of tantalum metal atom cluster-based nanocomposite thin films by electrophoretic deposition, J. Mater. Chem. C, vol.5, pp.10477-10484, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01631913

E. J. Welch and J. R. Long, Atomlike Building Units of Adjustable Character: Solid-state and Solution Routes to Manipulating Hexanuclear Transition Metal Chalcohalide Clusters, 2005.

B. Peri-c, D. Jozi-c, P. Planini-c, N. Brni-cevi-c, and G. Giester, Synthesis, crystal structure, spectroscopic and thermal properties of

, Br 4 $4H 2 O (Et¼ethyl)-a new compound with the paramagnetic, J. Solid State Chem, vol.182, pp.2443-2450, 2009.

F. Ogliaro, S. Cordier, J. Halet, C. Perrin, J. Saillard et al., Detailed structural and theoretical studies of the bonding in edge-bridged halide and oxyhalide octahedral niobium and tantalum clusters, Inorg. Chem, vol.37, pp.6199-6207, 1998.

T. G. Gray, Hexanuclear and higher nuclearity clusters of the groups 4-7 metals with stabilizing p-donor ligands, Coord. Chem. Rev, vol.243, pp.213-235, 2003.

D. Bauer and H. Schnering, Beitr? age zur Chemie der Elemente Niob und Tantal. LXVII. Die Struktur der Tantalhalogenide Ta 6 Cl 15 und Ta 6 Br 15, Z. Anorg. Allg. Chem, vol.361, pp.259-276, 1968.

F. W. Koknat, J. A. Parsons, and A. Vongvusharintra, Metal cluster halide complexes. i. efficient synthesis of hydrated hexanuclear niobium and tantalum cluster halides M 6 X 14 $8H 2 O, Inorg. Chem, vol.13, pp.1699-1702, 1974.

D. N. Hay and L. Messerle, Low-temperature, high yield synthesis, and convenient isolation of the high-electron-density cluster compound Ta 6 Br 14 8H 2 O for use in biomacromolecular crystallographic phase determination, J. Struct. Biol, vol.139, pp.147-151, 2002.

B. G. Hughes, J. L. Meyer, P. B. Fleming, and R. E. Mccarley, Chemistry of polynuclear metal halides. III. synthesis of some niobium and tantalum m 6 x 12 nþ cluster derivatives, Inorg. Chem, vol.9, pp.1343-1346, 1970.

N. Prokopuk and D. F. Shriver, The octahedral M 6 Y 8 and M 6 Y 12 clusters of group 4 and 5 transition metals, Adv. Inorg. Chem, vol.46, pp.1-49, 1998.

S. M. Brni, Cluster hydroxides of the composition M 2

, Cl 12 ] 2þ in alkaline medium, Croat. Chem. Acta, vol.57, pp.529-535, 1984.

A. Kashta, N. Brni-ceai-c, and R. E. Mccarley, Reactions of niobium and tantalum clusters with aliphatic alcohols. Synthesis and properties of, vol.10, pp.2031-2036, 1991.

M. N. Sokolov, P. A. Abramov, M. A. Mikhailov, E. V. Peresypkina, A. V. Virovets et al., Simplified synthesis and structural study of {Ta 6 Br 12 } clusters, Z. Anorg. Allg. Chem, vol.636, pp.1543-1548, 2010.

M. B. Robin and N. A. Kuebler, Color and nonintegral valence in niobium and tantalum subhalides, Inorg. Chem, vol.4, pp.978-985, 1965.

B. Spreckelmeyer, Absorptionsspektren von verbindungen mit, Z. Anorg. Allg. Chem, vol.365, pp.225-242, 1969.

P. B. Fleming, J. L. Meyer, W. K. Grindstaff, and R. E. Mccarley, Chemistry of polynuclear metal halides. VIII. Infrared spectra of some Nb 6 X 12 nþ and Ta 6 X 12 nþ derivatives, Inorg. Chem, vol.9, pp.1769-1771, 1970.

K. Osseo-asare and F. J. Arriagada, Preparation of SiO 2 nanoparticles in a nonionic reverse micellar system, Colloids Surf, vol.50, pp.321-339, 1990.

C. Chang and H. S. Fogler, Kinetics of silica particle formation in nonionic W/ O microemulsions from TEOS, Mater. Interfaces Electrochem. Phenom, vol.42, pp.3153-3163, 1996.

K. S. Finnie, J. R. Bartlett, C. J. Barb-e, and L. Kong, Formation of silica nanoparticles in microemulsions, Langmuir, vol.23, pp.3017-3024, 2007.

S. Y. Chang, L. Liu, and S. A. Asher, Preparation and properties of tailored morphology, monodisperse colloidal silica-cadmium sulfide nanocomposites, J. Am. Chem. Soc, vol.116, pp.6739-6744, 1994.

T. Aubert, F. Grasset, S. Mornet, E. Duguet, O. Cador et al., Functional silica nanoparticles synthesized by water-in-oil microemulsion processes, J. Colloid Interface Sci, vol.341, pp.201-208, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00442827

A. Guerrero-martínez, J. Erez-juste, and L. M. , Liz-Marz an, Recent progress on silica coating of nanoparticles and related nanomaterials, Adv. Mater, vol.22, pp.1182-1195, 2010.

J. Wang, Z. H. Shah, S. Zhang, and R. Lu, Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications, Nanoscale, vol.6, p.4418, 2014.

A. K. Ganguli, T. Ahmad, S. Vaidya, and J. Ahmed, Microemulsion route to the synthesis of nanoparticles, Pure Appl. Chem, vol.80, pp.2451-2477, 2008.

T. Ahmad and A. K. Ganguli, Structural and dielectric characterization of nanocrystalline (Ba, Pb)ZrO 3 developed by reverse micellar synthesis, J. Am. Ceram. Soc, vol.89, pp.3140-3146, 2006.

T. Ahmad, K. Ramanujachary, S. E. Lofland, and A. K. Ganguli, Reverse micellar synthesis and properties of nanocrystalline GMR materials (LaMnO 3 , La 0$67 Sr 0$33 MnO 3 and La 0$67 Ca 0$33 MnO 3 ): ramifications of size, J. Chem. Sci, vol.118, pp.513-518, 2006.

R. Koole, M. M. Van-schooneveld, J. Hilhorst, C. D. Doneg-a, C. Hart et al., On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method on the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method, Chem. Mater, vol.20, pp.2503-2512, 2008.

Y. Zhu, F. Y. Jiang, K. Chen, F. Kang, and Z. K. Tang, Modified reverse microemulsion synthesis for iron oxide/silica core-shell colloidal particles, J. Sol. Gel Sci. Technol, vol.66, pp.180-186, 2013.

F. Grasset, N. Labhsetwar, D. Li, D. C. Park, N. Saito et al., Synthesis and magnetic characterization of zinc ferrite nanoparticles with different environments: powder, colloidal solution, and zinc ferrite-silica core-shell nanoparticles, Langmuir, vol.18, pp.8209-8216, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00733930

F. Grasset, R. Marchand, A. M. Marie, D. Fauchadour, and F. Fajardie, Synthesis of CeO 2 @SiO 2 core-shell nanoparticles by water-in-oil microemulsion. Preparation of functional thin film, J. Colloid Interface Sci, vol.299, pp.726-732, 2006.

J. H. Son, H. Y. Park, D. P. Kang, and D. S. Bae,

A. , Pd doped SiO 2 nanoparticles by a reverse micelle and sol-gel processing, Colloids Surf. A, vol.313, issue.314, pp.105-107, 2008.

J. Qian, Z. Zhou, X. Cao, and S. Liu-songqin, Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy) 3 2þ -encapsulated silica nanosphere labels, Anal. Chim. Acta, vol.665, pp.32-38, 2010.

H. L. Ding, Y. X. Zhang, S. Wang, J. M. Xu, S. C. Xu et al., Fe 3 O 4 @SiO 2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses, Chem. Mater, vol.24, pp.4572-4580, 2012.

F. Grasset, F. Dorson, S. Cordier, Y. Molard, C. Perrin et al., Water-in-oil microemulsion preparation and characterization of Cs 2 [Mo 6 X 14 ]@SiO 2 phosphor nanoparticles based on transition metal clusters (X ¼ Cl, Br, and I), Adv. Mater, vol.20, pp.143-148, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00414417

T. Aubert, F. Cabello-hurtado, M. A. Esnault, C. Neaime, D. Lebret-chauvel et al., Extended investigations on luminescent Cs 2 [Mo 6 Br 14 ]@SiO 2 nanoparticles: physico-structural characterizations and toxicity studies, J. Phys. Chem. C, vol.117, 2013.

Y. A. Vorotnikov, O. A. Efremova, N. A. Vorotnikova, K. A. Brylev, M. V. Edeleva et al., On the synthesis and characterisation of luminescent hybrid particles: Mo 6 metal cluster complex/SiO 2, RSC Adv, vol.6, pp.43367-43375, 2016.

C. Neaime, M. Amela-cortes, F. Grasset, Y. Molard, S. Cordier et al., Time-gated luminescence bioimaging with new luminescent nanocolloids based on
URL : https://hal.archives-ouvertes.fr/hal-01438115

. Phys, , vol.18, pp.30166-30173, 2016.

A. O. Solovieva, Y. A. Vorotnikov, K. E. Trifonova, O. A. Efremova, A. A. Krasilnikova et al., Cellular internalisation, bioimaging and dark and photodynamic cytotoxicity of silica nanoparticles doped by {Mo 6 I 8 } 4þ metal clusters, J. Mater. Chem

, B, vol.4, pp.4839-4846, 2016.

N. Brni-cevi-c, H. Sch?-ufer-;-m-¼-nb, ;. Ta, and . Ci, Die reaktion der komplexe, vol.441, pp.219-229, 1978.

P. J. Kuhn and R. E. Mccarley, Chemistry of polynuclear metal halides. I. preparation of the polynuclear tantalum halides Ta 6 X 14, Inorg. Chem, vol.4, pp.1482-1486, 1965.

B. Spreckelmeyer, Beitr? age zur chemie der elemente niob und tantal. LXVI. wasserhaltige verbindungen mit, Z. Anorg. Allg. Chem, vol.358, pp.147-162, 1968.

S. A. Best and R. A. Walton, X-ray photoelectron spectra of inorganic molecules. 22. Halogen core electron binding energies of low oxidation state molybdenum bromide and molybdenum iodide clusters and niobium and tantalum chlorides containing the, Inorg. Chem, vol.18, pp.484-488, 1979.

B. Spreckelmeyer, H. Sch?, and . Afer, Die photometrische titration des, J. Less Common Met, vol.13, pp.127-129, 1967.