Linear and Third-Order Nonlinear Optical Properties of Fe(eta(5)-C5Me5)(kappa(2)-dppe)- and trans-Ru(kappa(2)-dppe)(2)-Alkynyl Complexes Containing 2-Fluorenyl End Groups
Amédée Triadon, Guillaume Grelaud, Nicolas Richy, Olivier Mongin, Graeme J. Moxey, Isabelle Dixon, Xinwei Yang, Genmiao Wang, Adam Barlow, Joelle Rauh-Berthelot, et al.

To cite this version:
Amédée Triadon, Guillaume Grelaud, Nicolas Richy, Olivier Mongin, Graeme J. Moxey, et al.. Linear and Third-Order Nonlinear Optical Properties of Fe(eta(5)-C5Me5)(kappa(2)-dppe)- and trans-Ru(kappa(2)-dppe)(2)-Alkynyl Complexes Containing 2-Fluorenyl End Groups. Organometallics, American Chemical Society, 2018, 37 (14), pp.2245-2262. 10.1021/acs.organomet.8b00229. hal-01861417

HAL Id: hal-01861417
https://hal-univ-rennes1.archives-ouvertes.fr/hal-01861417
Submitted on 10 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Linear and Third-Order Nonlinear Optical Properties of Fe(η^5-C₅Me₅)(κ²-dppe)- and trans-Ru(κ²-dppe)₂-Alkynyl Complexes Containing 2-Fluorenyl Endgroups

Amédée Triadon, a Guillaume Grelaud, a,b Nicolas Richy, a Olivier Mongin, a Graeme J. Moxey, b Isabelle M. Dixon, c Xinwei Yang, b Genmiao Wang, b Adam Barlow, b Joelle Rault-Berthelot, c Marie P. Cifuentes, b Mark G. Humphrey, b,* and Frédéric Paul a,*

a Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes (France).
b Research School of Chemistry, Australian National University, Canberra, ACT 2601 (Australia).
c Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, F-31062 Toulouse, France.

ABSTRACT: The synthesis and characterization of a set of redox-active iron and ruthenium alkynyl complexes of general formula [(M)Cl(1-p){C≡C₆H₅-m(C≡CFlu)m}(1+p)][PF₆]ₙ are reported (n = 0-1; m = 1-2; [M] = [Fe(η^5-C₅Me₅)(κ²-dppe)] and p = 1 or [M] = [trans-Ru(κ²-dppe)₂] and p = 0-1). The linear and third-order nonlinear optical properties of these new organometallic complexes featuring phenylalkynyl ligands functionalized by 2-fluorenyl (Flu) groups were studied in their stable redox states. Their first electronic transitions are assigned with the help of DFT calculations. We show here that these compounds possess significant third-order NLO responses in the near-IR range for molecules of their size. In particular, the remarkably large 2PA activities of the new Ru(II) compounds in the 600-800 nm range (Z-scan) make them attractive nonlinear chromophores. Structure-property studies emphasize the importance of para- vs. meta- connection of the 2-fluorenylethynyl units on the phenylalkynyl core, and also reveal that upon progressing from mono- to bis-alkynyl complexes, a further increase of the 2PA cross-section can be obtained while maintaining linear transparency in the visible range.

INTRODUCTION

Among redox-active inorganic chromophores, iron(II) or ruthenium(II) alkynyl complexes were identified very early as outstanding electrophores, with potential in diverse fields ranging from photovoltaic conversion to electroluminescent displays. A large part of this promising potential in molecular photonics rests on their remarkable electrochromism, which extends to their nonlinear and chiroptical properties. The fluorenyl unit, with its high fluorescence quantum yield and large multi-photon absorption cross-section, is indeed an interesting building block for the construction of molecular arrays endowed with photonic properties. It was therefore of significant interest to study alkynyl complexes featuring 2-fluorenyl endgroups, a class of compounds that has been curiously overlooked.
in the literature.23 In this context, we have recently reported series of [Fe(η5-C\textsubscript{5}Me\textsubscript{5})(η2-dppe)]-based24 and [trans-Ru(η2-dppe)\textsubscript{2}]-based complexes25 such as 1a-b, 2a and 3 (Chart 1).26

Consistent with other alkynyl complexes,14,17,27 2-ethynyfluorenyl complexes possess strong third-order NLO responses around 800 nm,12 and if sufficient luminescence could be coupled to their NLO properties (specifically two-photon absorption), these compounds would have significant applications potential.28 Unfortunately, when excited at wavelengths around 300 nm, many of these d6-metal alkynyl complexes were found to be (at best) weakly emissive, with luminescence quantum yields of a few percent (e.g., < 1\% for 1a-b), regardless of their redox state.24-25 The origin of this emission remains unclear, a fluorene-centred (LC) excited state being suspected to be responsible instead of the lower-lying MLCT or LMCT excited states, but in contrast to hypotheses found in the literature,9-11 oxidative trapping of the excited fluorene LC state by the first MLCT state does not account for the fluorescence quenching in the M(II) complexes 1a-b and 3 (M = Fe, Ru).25
In order to learn more about the structure- and redox-dependence of the photonic properties of these fluorenyl-containing ruthenium and iron alkynyl complexes, we now report the synthesis of several additional examples (Chart 2). Compared to the known complexes, the new derivatives possess extended alkynyl ligands containing one (2b, 4a-b) or more (5a-b, 6-7) 2-ethynylfluorenyl unit(s). These structural variations will allow probing of the effect of meta vs. para connection on their luminescence properties. Thus, for a given organometallic endgroup, the para (2a-b) vs. meta (4a-b) isomers should exhibit significant differences in electronic coupling (H_{ab}) between the redox endgroups involved in the redox quenching process.

Indeed, we have shown with closely related organoiron mixed-valent complexes that the electronic coupling is reduced by an order of magnitude proceeding from para- to meta-connected diethynylphenylene-bridged complexes.

Such changes will impact the kinetics of the redox-quenching process (k_{et}) according to eqs 1-3 and, if this process dominates the non-radiative deactivation rate, they should in turn influence the luminescence quantum yields in a predictable way.

$$
\Phi_{lum} = k_{lum}/(k_{lum} + k_{et} + k_{NR}) \quad (1)
\quad k_{et} = C(H_{ab})^2 \exp(\Delta G' / k_B T) \quad (2)
\quad \Delta G' = (\Delta G_{et} + \lambda)^2 /(4\lambda) \quad (3)
$$

Finally, the impact of these structural variations on the third-order NLO properties will also be analyzed for the Ru(II) complexes and compared to corresponding data available for the Fe(II) analogues. In this respect, comparison between 5b and 6 should also provide information on the influence of symmetry (dipolar vs. quadrupolar) on cubic NLO properties. Complemented by theoretical calculations, this study should therefore contribute to a better understanding of the linear and (third-order) nonlinear optical properties of these d9/d5-metal arylalkynyl complexes incorporating 2-fluorenyl endgroups ($M = \text{Fe, Ru}$).

RESULTS

Synthesis and Characterization of the Fe(II) and Ru(II) Complexes. The targeted Fe(II) and Ru(II) mono-alkynyl complexes 2b, 4a-b and 5a-b were synthesized from the known organic alkyne precursors 8, 9 and 10 obtained following a new high-yielding approach (Supporting Information) and the corresponding Fe(II) chloride precursor $\text{Fe}(\eta^5-C_5\text{Me}_5)(\kappa^2\text{-dppe})\text{Cl}$31,36 or Ru(II) triflate precursor $[\text{Ru}(\kappa^2\text{-dppe})_2\text{Cl}]\text{[OTf]}$,37 following classic reactions (Scheme 1).4,38 The vinylidene intermediates (2b-v, 4a/b-v and 5b-v) were isolated and characterized (Supporting Information). The bis-alkynyl Ru(II) complexes 6 and 7 were obtained from $\text{trans-}[\text{Ru}(\kappa^2\text{-dppe})_2\text{Cl}]\text{[PF}_6]$, using either two equivalents of ligand 10 for one equivalent of the Ru(II) precursor (Scheme 2), or by reacting 5b with a slight excess of ethynylferrocene (Scheme 3).39
Scheme 1. Synthesis of the M(II) Alkynyl Complexes 2b, 4a-b and 5a-b. (a) M = Fe, X = Cl or PF₆⁻: (i) KPFO₆/ MeOH and (ii) 'BuOK/THF. (b) M = Ru, X = PF₆⁻: (i) 40 °C/CH₂Cl₂ and (ii) NEt₃/CH₂Cl₂ ([Fe] = Fe(η⁵-C₅Me₅)(κ₂-dppe). [Ru] = trans-Ru(κ²-dppe)₂Cl).

All of these orange/red complexes (2b, 4a-b and 5a-b) were fully characterized, providing the expected 31P NMR signatures for Fe(II)⁴ or Ru(II) mono- or bis-alkynyl derivatives.²,³⁷,³⁹-⁴⁰ The presence of the triple bond(s) was confirmed by the observation of diagnostic $\tilde{v}_\text{C≡C}$ stretching modes in IR (Supporting Information) and Raman.¹⁵ In addition, 2b, 4b and 5b were also characterized crystallographically (Figure 1), featuring usual bonding parameters for such mono-alkynyl Ru(II) complexes (Supporting Information).³⁷,⁴¹-⁴²

Figure 1. ORTEP representations of 2b (a), 4b (b) and 5b (c) at the 50% probability level.
Scheme 4. Synthesis of the Fe(III) Complexes 4a[PF₆] and 5a[PF₆] ([Fe] = Fe(η⁵-C₅H₅)(κ²-dppe)).

Synthesis and Characterization of the Fe(III) Complexes. The dark green Fe(III) complexes 4a[PF₆] and 5a[PF₆] were isolated by chemical oxidation of their Fe(II) parents 4a and 5a (Scheme 4). They were characterized by infrared, ESR and ¹H NMR spectroscopy (Supporting Information), providing the expected signatures for paramagnetic metal-centred radical cations. Thus, rhombic ESR signals were recorded for 4a[PF₆] and 5a[PF₆], resembling those previously obtained for 2a[PF₆] or for 11[PF₆]-13[PF₆] (Chart 3). Likewise to what has been previously observed for 2a[PF₆] in ¹H NMR, the fluorenyl protons are significantly less shifted than with 1a[PF₆], consistent with a less marked spin delocalization/polarization on these aromatic units spatially more “remote” from the paramagnetic Fe(III) metal center in 4a[PF₆] or 5a[PF₆].

Chart 3. Selected Alkynyl Complexes used as References.

Cyclic Voltammetry Studies. Cyclic voltammograms (CVs) were recorded for 4a and 5a (Table 1). Similar to 2a, their CVs in CH₂Cl₂ reveal a one-electron process at ca. -0.10 V, corresponding to Fe(II)/Fe(III), which appear chemically reversible at a scan rate of 0.1 V/s. Consistent with published data, the Ru(II) mono-alkynyl analogues 2b, 4b and 5b undergo M(II)/M(III) oxidation at potentials that are ca. 0.60 V higher, while an even higher potential is observed for the bis-alkynyl derivative 6. The heterobiinuclear complex 7 displays two oxidations at positive potentials, one near 0.21 V that is likely attributable to the Fe(II)/Fe(III) oxidation at the ferrocenyl unit, and a second one at 0.82 V,
possibly localized at the Ru(II) center. In addition to these chemically reversible processes, irreversible processes are observed above 1.4 V and below -2.0 V for all complexes. These correspond to oxidation and reduction of the fluorene-containing alkylnyl ligand, respectively, consistent with the electrochemical behavior of fluorene, 2-ethynyl-9,9-dibutyl-9H-fluorene, and the alkynes 8-10 (Supporting Information).

Comparing the metal-based oxidations for 2-4a-b reveals that proceeding from para- to meta-connection of the 2-ethynylfluorenyl substituent induces a very small shift toward more negative potentials (compare 2a with 4a or 2b with 4b). Expanding the π-manifold of the ligand upon proceeding from 4a to 5a or from 4b to 5b results in larger (30-60 mV) shifts in the opposite direction, in line with a less facile oxidation of the latter complexes. Compared to oxidation potentials published for Fe(II) phenylethynyl analogues (Table 1), such as 11 (Chart 3) or 12, these data suggest that 2-ethynylfluorenyl groups are comparable to 4-phenylethynyl groups in terms of electronic substituent influence. In contrast, when directly ligated to the metal center, 2-ethynylfluorenyl appears slightly more electron-releasing than phenylethynyl (compare 1a and 13 or 1b and 14).

$$\Delta G_{CS1} = E^\ddagger(D^+/D) - E^\ddagger(A/A) + \frac{(Z_A - Z_D - 1)e^2}{4\pi\varepsilon_0 \varepsilon d}$$ \hspace{1cm} (4)

Finally, based on the Rehm-Weller equation (eq. 4), an estimate of the free enthalpy of formation (ΔG_{CS1}) of the intramolecular charge separated state corresponding to the formal transfer of one electron from M(II) toward the fluorenyl ligand (CS1) was derived for all these complexes. These ΔG_{CS1} values are given by the difference between the metal-based oxidation potential and first reduction potential of the fluorenyl-containing ligands (Supporting Information), corrected by the electrostatic term expected in the charge separated species when the positive charge is located on the metal center and the negative charge is located on a fluorenyl group. These values had previously been derived for 1a-b using the reduction potential reported for fluorene in DMF (-2.89 V vs. SCE) corrected for the change in the dielectric constant of the solvent (ca. -3.0 V in the case of CH2Cl2). In the present work, we have now determined these potentials by cyclic voltammetry for fluorene, 2-ethynylfluorene, the alkynes 8-10, and selected complexes (Supporting Information). Our CV measurements suggest that we slightly overestimated the ΔG_{CS1} values of 1a-b by using the reduction potential of fluorene instead of that of 2-ethynylfluorene. New ΔG_{CS1} values for these compounds have now been calculated using a reduction potential of -2.65 V for the 2-ethynylfluorene in CH2Cl2. Indeed, the increased conjugation of the longer ligand appears to exert a significant impact on the reduction potential of the alkynyl compared to fluorene, resulting in a decrease of the ΔG_{CS1} value of the complexes 4a-b, 5a-b and 6. Except for 1a and 1b, these values are roughly 1 eV below those corresponding to the energies of the first MLCT transitions of the various M(II) complexes expressed in eV (Table 1). Because the onset of the various CT bands is roughly 0.5-0.6 eV below their maximum, the energies of the various CS1 states should be similar to the λ_{00} energies of the first MLCT states detected on the spectra. The driving force (ΔG_{A1}) and the activation energy (ΔG^\ddagger) for the electron transfer could then be derived according to eq 3 (See Scheme 5 and Supporting Information).

$$\Delta G_{CS2} = E^\ddagger(D^+/D) - E^\ddagger(A/A)$$ \hspace{1cm} (5)

Estimates of the free enthalpy of formation (ΔG_{CS2}) of the intramolecular charge-separated state corresponding to the formal transfer of one electron from the fluorenyl ligand to the M(III) center (CS2) were also derived for the Fe(III) complexes 2a[PF6]-5a[PF6] using a simplified version of eq. 4 (eq. 5). These ΔG_{CS2} values are given by the difference between the first reduction potential of the fluorenyl-containing ligands and the metal-based reduction potential (Supporting Information). Despite the approximations made in eqs 4 and 5 and the neglect of the electron-electron correlation
energy, the match found between the CS1 (or CS2) deduced from redox data and the energies of the first MLCT (or LMCT) states detected on the electronic absorption spectrum is good for most compounds.

Table 1. Electrochemical Data for the Fe(II) and Ru(II) Alkynyl Complexes.

<table>
<thead>
<tr>
<th>Cmpd</th>
<th>E^0 (ΔE_p)</th>
<th>i_i/i_a</th>
<th>ΔG_{CS1}</th>
<th>E_{MLCT}</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>-0.17 (0.08)</td>
<td>1</td>
<td>2.28</td>
<td>3.07</td>
<td>this work</td>
</tr>
<tr>
<td>2a</td>
<td>-0.12 (0.08)</td>
<td>1</td>
<td>1.84</td>
<td>2.76</td>
<td>24</td>
</tr>
<tr>
<td>4a</td>
<td>-0.13 (0.13)</td>
<td>1</td>
<td>1.95</td>
<td>3.38</td>
<td>this work</td>
</tr>
<tr>
<td>5a</td>
<td>-0.10 (0.07)</td>
<td>1</td>
<td>1.81</td>
<td>2.92</td>
<td>this work</td>
</tr>
<tr>
<td>1b</td>
<td>+0.41 (0.07)</td>
<td>1</td>
<td>2.86</td>
<td>3.32</td>
<td>this work</td>
</tr>
<tr>
<td>2b</td>
<td>+0.50 (0.07)</td>
<td>1</td>
<td>2.46</td>
<td>3.09</td>
<td>this work</td>
</tr>
<tr>
<td>4b</td>
<td>+0.49 (0.07)</td>
<td>1</td>
<td>2.57</td>
<td><3.61</td>
<td>this work</td>
</tr>
<tr>
<td>5b</td>
<td>+0.55 (0.07)</td>
<td>1</td>
<td>2.48</td>
<td>3.40</td>
<td>this work</td>
</tr>
<tr>
<td>6</td>
<td>+0.57 (0.09)</td>
<td>1</td>
<td>2.48</td>
<td>3.41</td>
<td>this work</td>
</tr>
<tr>
<td>7</td>
<td>+0.21 (0.08)</td>
<td>1</td>
<td>2.15</td>
<td>3.33</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td>+0.82 (0.08)</td>
<td>~1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-0.13 (0.09)</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>-0.13 (0.08)</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>-0.15 (0.08)</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>+0.44 (0.08)</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>53</td>
</tr>
</tbody>
</table>

- All E^0 values given for M(III)/M(II) redox couples are in V vs. SCE. Conditions (unless stated otherwise): CH$_2$Cl$_2$ solvent, 0.1 M [NBu$_4$][PF$_6$] supporting electrolyte, 20 °C, Pt electrode, sweep rate 0.1 V s$^{-1}$. Ferrocene/ferrocenium (FcH/FcH$^+$) was used as an internal reference for potential measurements.
- Difference between cathodic and anodic peak potentials.
- Computed (in eV) according to eq. 4 (see text).
- Energy of the $\pi^*\rightarrow\pi$ (MLCT) state in eV (see Table 2).
- Measured vs. an AgCl/Ag reference electrode and corrected using Fc as an internal reference.
- The maximum of the first MLCT peak is hidden below another (LC) peak.
- Corresponds to a different CS1 state (CS1') in which the Fc and not the Ru(II) site is oxidized.
- Computed considering an additional 6.4 Å contribution to d relative to 6 in Eq 1, for being oxidized on the Fc rather than on the Ru center.

Absorption Spectroscopy.

The UV-Vis-near-IR absorption spectra of the M(II) complexes (M = Fe, Ru) were then recorded in dichloromethane (Table 2). For the Fe(II) complexes, the broad one-photon absorption (1PA) band observed at lowest energy (in the range 400-470 nm) is at the origin of the orange color of these compounds (Figure 2). For 1 and 2, previous TD-DFT calculations indicated that this first band largely consists of a metal-to-ligand charge transfer (MLCT) band, while the next-highest-energy absorption results from the overlap of a second MLCT transition and of a fluorene-centred (LC) transition with apparent vibronic fine structure. Consistent with the involvement of the metal center, the first 1PA band is not found in the absorption spectra of the corresponding organic alkynes, while the second (LC) band occurs at comparable (4a-b and 5a-b) or at slightly higher (2a-b) energies. For 4a, the MLCT absorption is hypsochromically shifted by 81 nm (3719 cm$^{-1}$) relative to that of 2a and appears as a shoulder on the $\pi^*\rightarrow\pi$(LC) transition.
Table 2. Absorption and Emission Data for the M(II)/M(III) Complexes in CH$_2$Cl$_2$.

<table>
<thead>
<tr>
<th>Cmpd</th>
<th>Absorption: $\lambda_{	ext{max}}$/nm ($10^{-3} \varepsilon$ in M$^{-1}$ cm$^{-1}$)</th>
<th>$\lambda_{	ext{em}}$ /nm</th>
<th>E_{em} /eV</th>
<th>Φ_{lum}</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>278 (sh, 33.4), 296 (sh, 30.0), 404 (20.0)</td>
<td>334 [291]</td>
<td>3.71</td>
<td>0.4%</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>507 [403]</td>
<td>2.45</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>2a*</td>
<td>297 (sh, 32.2), 322 (51.0), 336 (sh, 48.9), 448 (28.3)</td>
<td>367 [323]</td>
<td>3.38</td>
<td>0.1%</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 510 [453]</td>
<td>2.43</td>
<td>0.0%</td>
<td>d</td>
</tr>
<tr>
<td>4a</td>
<td>306 (52.5), 324 (68.7), 340 (59.7), 367 (sh, 22.5)</td>
<td>348 [324]</td>
<td>3.56</td>
<td>0.1%</td>
<td>this work</td>
</tr>
<tr>
<td>5a</td>
<td>308 (sh, 64.8), 328 (93.9), 346 (94.5), 425 (9.6)</td>
<td>385 [330]</td>
<td>3.22</td>
<td>0.6%</td>
<td>this work</td>
</tr>
<tr>
<td>1b</td>
<td>251 (37.6), 286 (sh, 15.9), 352 (sh, 22.2), 373 (24.9)</td>
<td>331 [290]</td>
<td>3.75</td>
<td>0.8%</td>
<td>25</td>
</tr>
<tr>
<td>2b</td>
<td>308 (38.7), 319 (39.1), 401 (52.3)</td>
<td>369 [319]</td>
<td>3.36</td>
<td>2.0%</td>
<td>this work</td>
</tr>
<tr>
<td>4b</td>
<td>308 (91.3), 327 (125.4), 343 (139.5)</td>
<td>351 [377]</td>
<td>2.40</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>308 (sh, 116.7), 329 (182.2), 346 (197.4), 365 (sh, 21.5)</td>
<td>353 [327]</td>
<td>3.51</td>
<td>0.8%</td>
<td>this work</td>
</tr>
<tr>
<td>6</td>
<td>308 (sh, 157.4), 329 (248.3), 346 (266.7), 364 (sh, 56.4)</td>
<td>359 [327]</td>
<td>3.45</td>
<td>2.4%</td>
<td>this work</td>
</tr>
<tr>
<td>7</td>
<td>312 (sh, 74.6), 330 (112.7), 346 (118.0), 372 (sh, 17.7)</td>
<td>324 [327]</td>
<td>3.83</td>
<td>0.6%</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>428 [388]</td>
<td>2.89</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>1a[PF$_6$]</td>
<td>280 (36.9), 327 (sh, 26.5), 406 (8.3), 466 (4.8), 624 (sh, 1.9), 764 (8.1), 1824 (0.18)</td>
<td>332 [291]</td>
<td>3.73</td>
<td>0.8%</td>
<td>24</td>
</tr>
<tr>
<td>2a[PF$_6$]</td>
<td>290 (29.3), 346 (48.0), 454 (7.9), 613 (2.9), 756 (5.6), 1860 (0.17)</td>
<td>422 [346]</td>
<td>2.94</td>
<td>0.6%</td>
<td>this work</td>
</tr>
<tr>
<td>4a[PF$_6$]</td>
<td>307 (sh, 32.6), 324 (75.8), 343 (66.3), 388 (5.9), 579 (2.7), 671 (3.9), 1866 (0.09)</td>
<td>379 [324]</td>
<td>3.27</td>
<td>0.2 %</td>
<td>this work</td>
</tr>
<tr>
<td>5a[PF$_6$]</td>
<td>309 (sh, 84.4), 328 (123.9), 347 (114.6), 395 (7.2), 582 (3.7), 668 (4.4), 1877 (0.1)</td>
<td>378 [330]</td>
<td>3.28</td>
<td>0.4 %</td>
<td>this work</td>
</tr>
<tr>
<td>1b[PF$_6$]</td>
<td>276 (38.2), 309 (sh, 18.3), 439 (16.8), 454 (sh, 12.7), 640 (3.5), 902 (14.5)</td>
<td>ND*</td>
<td>/</td>
<td>ND*</td>
<td>25</td>
</tr>
<tr>
<td>2b[PF$_6$]</td>
<td>274 (64.6), 334 (50.5), 389 (27.0), 489 (sh, 22.0), 507 (25.3), 694 (5.9), 939 (27.3)</td>
<td>ND*</td>
<td>/</td>
<td>ND*</td>
<td>this work</td>
</tr>
<tr>
<td>4b[PF$_6$]</td>
<td>281 (105.4), 326 (103.6), 346 (102.1), 372 (sh, 19.8), 589 (6.3), 860 (20.0)</td>
<td>ND*</td>
<td>/</td>
<td>ND*</td>
<td>this work</td>
</tr>
<tr>
<td>5b[PF$_6$]</td>
<td>282 (112.7), 332 (158.2), 349 (152.7), 387 (18.2), 590 (3.2), 879 (18.2)</td>
<td>ND*</td>
<td>/</td>
<td>ND*</td>
<td>this work</td>
</tr>
<tr>
<td>6[PF$_6$]</td>
<td>312 (123.0), 332 (202.8), 351 (215.8), 397 (16.1), 631 (3.2), 961 (sh, 8.5), 1061 (21.5), 1153 (sh, 17.6)</td>
<td>ND*</td>
<td>/</td>
<td>ND*</td>
<td>this work</td>
</tr>
<tr>
<td>7[PF$_6$]</td>
<td>312 (62.9), 331 (96.9), 349 (120.0), 421 (sh, 3.7), 569 (7.8), 1557 (5.2), 2300 (5.0)</td>
<td>ND*</td>
<td>/</td>
<td>ND*</td>
<td>this work</td>
</tr>
<tr>
<td>7[PF$_6$]</td>
<td>281 (51.9), 312 (51.9), 336 (81.2), 353 (85.4), 399 (12.6), 451 (6.3), 658 (3.1), 1032 (13.0)</td>
<td>ND*</td>
<td>/</td>
<td>ND*</td>
<td>this work</td>
</tr>
<tr>
<td>8</td>
<td>311 (sh, 32.7), 331 (53.5), 352 (54.6)</td>
<td>380 [331]</td>
<td>3.26</td>
<td>58.4%</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>305 (sh, 31.1), 325 (45.4), 341 (44.9)</td>
<td>350 [323]</td>
<td>3.54</td>
<td>75.8%</td>
<td>this work</td>
</tr>
<tr>
<td>10</td>
<td>309 (sh, 62.3), 327 (96.9), 346 (103.6)</td>
<td>359 [327]</td>
<td>4.01</td>
<td>74.2 %</td>
<td>this work</td>
</tr>
</tbody>
</table>

 b Energy of emission.
 c Extinction coefficients redetermined.
 d Not detected.
 e Not determined.
This shift can be attributed to the meta-connection of the 2-fluorenylethynyl substituent in the former complex which somewhat disrupts conjugation through the \(\pi \)-manifold compared to the para-connection in 2a (Figure 2). Upon progressing from 4a to 5a, the MLCT band is shifted bathochromically by 51 nm (3219 cm\(^{-1}\)), this shift being induced by the extension of the \(\pi \)-manifold on the alkynyl ligand.

The same observations can be made for the MLCT transition at lowest energy of the Ru(II) analogues 2b, 4b and 5b, except that the hypsochromic shift of the MLCT band between 2b and 4b is much larger (4216 cm\(^{-1}\)) so that this band remains hidden beneath the LC transition in 4b. Extending the \(\pi \)-manifold upon progressing from 4b to 5b shifts this band bathochromically, but not sufficiently to become fully resolved in the spectrum. As a result, this MLCT band appears as a shoulder on the low-energy side of the LC band. The extinction coefficients of this LC band in 4b and 5b are larger than those for the corresponding absorptions in 4a and 5a, and also than those of the organic alkynes 9 and 10, consistent with the contribution of an additional transition within this band in the Ru(II) complexes. The same LC transition (overlapped by the MLCT band at low energy) is also observed for the bis-alkynyl Ru(II) complex 6, except that its intensity is increased when compared to that of 5b, in line with the increased number of fluorenyl chromophores present in the alkynyl ligand. The spectrum of the heterobinuclear bis-alkynyl complex 7 also strongly resembles that of 5a, most probably because the characteristic absorptions originating from the alkynylferrocene ligand, which are often weak in the visible range,\(^{44}\) remain hidden beneath those of the Ru-alkynyl fragment.\(^{45}\)

Figure 2. UV-Vis absorption spectra for (a) 1a, 2a, 4a and 5a and (b) 1b, 2b, 4b, 5b, 6 and 7 complexes in CH\(_2\)Cl\(_2\) at 25 °C.

Figure 3. UV-Vis absorption spectra for 1a[PF\(_6\)], 2a[PF\(_6\)], 4a[PF\(_6\)] and 5a[PF\(_6\)] in CH\(_2\)Cl\(_2\) at 25 °C.
The UV-Vis-near-IR spectra of the Fe(III) complex cations $2a[PF_6]$, $4a[PF_6]$ and $5a[PF_6]$ were also recorded (Table 2 and Figure 3). The dark blue/green colour of these compounds originates from several overlapping absorptions in the visible range, featuring a maximum on the low energy side in the 650-800 nm range. This first intense absorption, which corresponds to a LMCT transition, occurs at lower energy in the para-substituted complex $2a[PF_6]$ than in $4a[PF_6]$ and $5a[PF_6]$, reflecting the energetic ordering observed for the intense fluorenne-based LC transitions near 360 nm. A very weak absorption is detected in the near-IR range at ca. 1870 nm, which formally corresponds to a forbidden ligand-field (LF) transition ($d_{e1} \leftarrow d_{e2}$). The fluorenne-based LC transitions observed at 322, 340 and 346 nm for $2a$, $4a$ and $5a$ undergo bathochromic shifts upon oxidation (to 346, 343 and 347 nm, respectively), which is more pronounced for the para-substituted complex $2a[PF_6]$.

Spectroelectrochemistry of the Ru(II) Complexes. Due to their greater reactivity, the Ru(III) analogues $2a[PF_6]$, $4a[PF_6]$, $5a[PF_6]$, $6[PF_6]$ and $7[PF_6]$ were not isolated but instead were generated in situ from their Ru(II) parents by spectroelectrochemistry and their electronic spectra recorded (Table 2, Figure 4 and ESI). In contrast to $2b-5b[PF_6]$ for which the original spectrum could be restored upon back-reduction to the starting complex $2b-5b$, the oxidation of the bis-alkynyl complexes 6 and 7 was only partially reversible at 25 °C and spectroelectrochemistry had to be performed at lower temperature (–30 °C) to become fully reversible in the chemical sense. The spectrum of these complexes is typical of Ru(III) bis-alkynyl complexes. It reveals that oxidation switches on an intense absorption with a strong LMCT character in the near-IR range. Among the monoalkynyl complexes, this band is more intense and takes place at lower energy for $2a[PF_6]$ than for $4a[PF_6]$ and $5a[PF_6]$. According to calculations, the next transitions at higher energies should be described as $\pi^* \leftarrow \pi$ transitions involving arylalkynyl carbon- and metal-containing MOs.

Excluding the changes in intensity of the LC band near 330 nm and the ca. 200 nm (ca. 2300 cm$^{-1}$) bathochromic shift experienced by the first intense absorption in $6[PF_6]$, the spectra of the Ru(III) compounds $5b[PF_6]$ and $6[PF_6]$ (Supporting Information) strongly resemble that of $4b[PF_6]$. In
contrast, the spectroelectrochemistry of 7 deserves some comments (Figure 5). The first oxidation of this complex results in the appearance of two new absorption bands at lower energy than for the neutral parent: one near 570 nm and a second one of nearly similar intensity near 1560 nm, with a shoulder at 2300 nm. The second oxidation results in the disappearance of these absorptions and in the appearance of two new bands at 658 and 1032 nm, which resemble those previously observed for 6[PF$_6$] (Supporting Information). These low-energy bands in 7$^{2+}$ can therefore be assigned to ligand-to-metal charge-transfer (LMCT) processes. For 7$^+$, the low-energy bands observed at 2300 and 1557 nm more likely correspond to intervalence charge transfer (IVCT) transitions, followed by LMCT transitions at higher energies (569 nm and below). This pronounced electrochromism is an important observation for NLO redox-switching purposes, because stepwise oxidation of 7 triggers the appearance of new and specific absorptions in quite distinct spectral ranges. Thus, highly contrasting NLO responses can be anticipated in these specific spectral ranges for each redox state.

Figure 5. Spectroelectrochemistry in the near UV-Vis-near-IR range for complex 7 in CH$_2$Cl$_2$ (0.2 M TBAH) at -30 °C. Inset: expansion of the 750-2500 nm region.

Luminescence Studies. Upon excitation in the 320-380 nm range (corresponding to the LC absorptions) in CH$_2$Cl$_2$ solutions at ambient temperatures, all the fluorenyl-containing M(II) and M(III) complexes (M = Fe, Ru) were found to luminesce slightly around 350-370 nm (Figure 6). In line with previous observations made with 1a and 1b, this luminescence seems to mostly originate from the fluorene-based LC state, rather than from the lowest MLCT state, even when both states overlap such as in the case of 4b-6. Likewise to 1a (Table 2), the para-substituted Ru(II) complex 2b seems also to luminesces weakly ($\Phi_{\text{lum}} \leq 0.2 \%$) at slightly lower energies (500 nm) when excited at its first MLCT band (Supporting Information). Luminescence from the lowest lying (LMCT and LF) states of the various Fe(III) cations could not be probed due to instrumental limitations.

Figure 6. UV-Vis emission spectra for 2a-b, 4a-b, 2a[PF$_6$] and 4a[PF$_6$] complexes in dichloromethane at 300 K.
In all cases, the LC-based fluorescence yields found for the alkynyl complexes are significantly lower than those of their organic alkyne precursors (Supporting information). Thus, the measured yields for the new M(II) and M(III) alkynyl complexes (M = Fe, Ru) are always below 2% (except for 6 or 2b), whereas yields above 55% were found for all alkynyl precursors 8-10 (Supporting Information). Comparing the luminescence yields for the Fe(II) and Ru(II) analogues, it appears that those of the Ru complexes are always superior to those of the Fe complexes. As previously observed, oxidation of the Fe(II) center(s) in 2a, 4a and 5a appears to affect only marginally the emission wavelength of the LC state in the resulting radical cation. However, except for 5a/5a⁺, oxidation always induces a slight increase in the luminescence quantum yield of these complexes.

Nonlinear Optical Properties. We next determined the cubic hyperpolarizabilities of the new Ru(II) alkynyl complexes 2b-5b, 6 and 7 in solution in CH₂Cl₂ by Z-scan, using femtosecond laser pulses at various incident wavelengths between 550 and 800 nm (Figure 7, Table 3 and Supporting Information). Consistent with Z-scan measurements on related complexes,24-25 the nonlinear refraction (γre) has a negative sign and dominates in absolute value the nonlinear absorption (γim) at all wavelengths. Focussing on the latter, effective 2PA spectra were obtained for all compounds in the 500-900 nm range (Figure 7). In all nonlinear absorption spectra, there is a strong correlation between λ2PA,max and λMLCT for the first 2PA peak (Table 3), the latter being found at twice the wavelength of the former. This suggests that the transition in the 1PA spectra is the primary origin of the two-photon absorption (2PA) effect. 2b has an additional 2PA maximum corresponding to twice the wavelength of the second absorption band (ca. 600 nm, which corresponds to a superposition of a second MLCT transition and of the fluorene-centered LC transition). For the meta-linked complexes 4b-6, this second 2PA band appears at higher energy and its maximum was not always resolved in the spectral range investigated by Z-scan. For all compounds, it is clearly blue-shifted relative to twice the wavelength of the LC band, which is easily identified by its characteristic vibronic structure. This suggests that this 2PA transition does not take place in the LC state but rather in a higher-lying state which is possibly also a MLCT band, analogous to the first 2PA transition of 2b which is mainly ascribable to population of the first MLCT state.

The cross-section of this first 2PA band is clearly sensitive to the structure of the appended alkynyl ligands. Thus, it decreases in intensity when moving from the para-linked complex 2b to the meta-linked complex 4b. This band undergoes a hypsochromic shift that is correlated to the shift of the first MLCT band in the 1PA spectra of these compounds. No further increase (nor shift) is seen when a second fluorenyl group is appended in non-conjugated position to the central phenyl group. As a result, the cross-section of the mono-fluorenyl Ru(II) alkynyl complex 2b is larger than that of the meta-disubstituted Ru(II) alkynyl complex 5b, emphasizing the importance of π-conjugation between metal centers and 2-fluorenyl units for obtaining large 2PA responses.

Finally, the 2PA cross-section of this first band increases strongly upon progressing from mono- to bis-alkynyl complexes. Thus, the bis-alkynyl complex 6 has the largest cross-section (2270 GM) for the first 2PA peak followed by the heterobinuclear bis-alkynyl complex 7 (1480 GM). Interestingly, the 1PA spectrum of 6 plotted at twice the wavelength does not strongly differ from its 2PA spectrum above 500 nm. However, contrary to what is observed for 7, the first π⁺ ← Ru MLCT absorption (shoulder) does not appear to be red-shifted relative to that of 5b. Given that this complex certainly exists in solution in both co-planar and non-coplanar conformations,4 observation of its 1PA spectrum resembling that of 5b and of a single 2PA band similarly shaped to that of 5b indicates that all conformers of 6 absorb at fairly similar energies. Indeed, the centrosymmetric nature of complex 6 in its coplanar conformation forbids 1PA and 2PA to take place in similar excited states (exclusion rule), so non-coplanar conformations with non-forbidden 2PA must be strong contributors in solution.
Table 3. Nonlinear Optical Data at Wavelengths of the Apparent 2PA Extrema in CH₂Cl₂ (unless otherwise indicated).

| | λ_{1PA} (nm) | λ_{2PA} (nm) | γ_{re} (10^{-34} esu) | γ_{im} (10^{-34} esu) | | (10^{-34} esu) | σ₂ (GM) | Ref |
|---|-------------|-------------|----------------------|----------------------|-----|---------|-------|
| 1a | 404 | 740 | -25 ± 15 | 14 ± 2 | 28 ± 15 | 330 ± 50 | 24 |
| 1a | 404 | 740 | -160 ± 17 | 84 ± 16 | 180 ± 25 | 2400 ± 470 | 24 |
| 1b | 373 | 720 | -15 ± 5 | 12 ± 2 | 19 ± 5 | 360 ± 60 | 25 |
| 1a*| 764 | 760 | -99 ± 10 | -11 ± 2 | 100 ± 10 | -300 ± 45 | 24 |
| 2a | 448 | 760 | -87 ± 9 | 14 ± 2 | 88 ± 9 | 370 ± 60 | 24 |
| 2a*| 756 | 760 | -1200 ± 32 | -250 ± 76 | 1200 ± 330 | -6700 ± 2100 | 24 |
| 2b | 308 | 600 | -136 ± 26 | 22 ± 7 | 138 ± 27 | 990 ± 340 | this work |
| 3 | 489 | 1000 | -35 ± 70 | 55 ± 19 | 66 ± 73 | 860 ± 290 | 25 |
| 4b | 343 | 700 | 87 ± 20 | 21 ± 5 | 90 ± 21 | 920 ± 170 | this work |
| 5b | ≈365 | 700 | -22 ± 6 | 30 ± 3 | 38 ± 7 | 950 ± 110 | this work |
| 6 | ≈364 | 720 | -71 ± 25 | 76 ± 14 | 104 ± 28 | 2270 ± 410 | this work |
| 7 | ≈372 | 700 | -31 ± 9 | 47 ± 5 | 56 ± 11 | 1480 ± 170 | this work |

a Maximum of the first 1PA (MLCT) band. b Maximum of the first 2PA band. c Apparent 2PA cross-section of the 2PA band. d Determined in THF. e Suspected to undergo a photochemical reaction in CH₂Cl₂ contributing to an increase in the apparent 2PA cross-section measured by Z-scan.²⁴

Figure 8. Selected metallic and fluorenyl-based Kohn-Sham frontier molecular orbitals for 2a, 2b and 4b illustrating the HOMO-LUMO gap (red arrows). The first MLCT and LC transitions with significant oscillator strength (TD-DFT, see Supporting Information, Tables S7-S9) are indicated by dark arrows and dashed blue arrows, respectively. Hydrogen atoms are omitted for clarity.
Figure 7. Apparent two-photon absorption cross-sections (in Goppert-Mayer units) for 2b (a) and 4b (b) in dichloromethane at 25 °C by open-aperture Z-scan measurements. The 2PA spectral data are overlaid by the one-photon absorption spectrum (black) and the one-photon absorption spectrum plotted at 2\(\lambda\) (red).

DFT Calculations. Ground state optimizations have been performed on 2a, 2b and 4b at the DFT/B3LYP*-D3/def2-TZVP(-f) level of theory with ZORA scalar relativity (Supporting Information). These calculations reveal that ruthenium complexes 2b and 4b have their HOMO and HOMO-1 localized on the Cl–Ru–C≡C endgroup while their HOMO-2 is fluorenyl-based (Figure 8). For the iron complex 2a, as previously shown,24 the three highest-energy occupied orbitals (HOMO, HOMO-1 and HOMO-2) are localized on the Fe–C≡C organoiron fragment, while the fourth one (HOMO-3) is on the fluorenyl fragment group. In contrast, for the ruthenium complexes 2-4b, a deeper lying one (HOMO-4 or HOMO-5, resp.) is again centered on ruthenium. Thus, the assignment of the first oxidation step as mostly metal-localized is appropriate for all M(II) complexes. In all three cases, the LUMO is localized on the fluorenyl fragment.

The lowest triplet and quintet excited states were then optimized for 2a by unrestricted DFT, as well as the the lowest triplet excited state for 2b. In the case of 2a, singlet/triplet, triplet/quintet and singlet/quintet minimum energy crossing points (MECPs) were also optimized (see Computational Details and Supporting Information for selected geometrical parameters), permitting us to propose a more complete picture of the possible nonradiative deactivation processes for this particular compound (Figure 9). This study revealed that all lowest-lying excited states are of metal-centered character for M(II) complexes (see the singly-occupied natural orbitals in the Supporting Information). According to our calculations, intersystem crossing to low-lying triplet (and quintet) LF states affords a likely decay pathway for both families of M(II) compounds, regardless of the nature of the metal center. As shown for complex 2a, population of the \(|3\text{LF}\rangle\) or \(|5\text{LF}\rangle\) states is thermodynamically favored. Either of these excited states can easily deactivate nonradiatively via intersystem crossing to the ground state (GS) through highly accessible MECPs. In this scheme, the distortion coordinate combines contributions from Fe–P, Fe–Cp* and to a lesser extent Fe–alkynyl bond elongations (Supporting Information). The principal differences between the Fe(II) and Ru(II) complexes resides in the energetic gap between the GS and the first \(|3\text{LF}\rangle\) triplet state which is roughly 1 eV larger for Ru(II) complexes (2a: 0.95 eV; 2b: 2.21 eV and 4b: 2.27 eV). Furthermore, TD-DFT calculations (Supporting Information, Tables S7-S9) reveal that for the para complexes 2a-b, the (forbidden) transition to the first singlet \(|1\text{LF}\rangle\) states (2a: 3.80 eV; 2b: 3.78 eV) takes place at slightly lower energies than those to the first \(|1\text{LC}\rangle\) states (2a: 3.89 eV; 2b: 3.85 eV), providing additional potential decay pathways when these LC states are populated. For the meta complex 4b, however, this first \(|1\text{LF}\rangle\) states is not found among the first 40 computed states, its energy being therefore slightly higher.
Figure 9. Schematic potential energy curves for complex 2a, showing low-lying LF excited states (3LF and 5LF) and minimum energy crossing points (MECPs) that are involved in the proposed relaxation pathways to the GS. For comparison purposes, the potentially emitting states (not shown) are found around 3 eV (3MLCT) and 4 eV (1LC) by TD-DFT at the GS geometry. Thick bars are global minima. Numbers in circles correspond to single point energy calculations. Rectangular boxes depict MECPs.

DISCUSSION

A new set of metal alkynyl complexes has been synthesized and the linear and nonlinear optical properties of selected examples have been investigated in their M(II) and M(III) redox states (M = Fe, Ru). Along with the data previously gathered on closely related complexes (1a-b, 2a, 3), several conclusions can be drawn regarding their linear and third-order nonlinear optical properties.

Redox-Dependent Electronic Absorption. In line with previous DFT calculations, a reduction in the HOMO-LUMO gap is evidenced in each case, upon proceeding from the 2-fluorenylethynyl complexes (1a-b) to those possessing corresponding alkynyl ligands extended with a phenylethynyl unit (2a-b, 4a-b). This structural modification translates into the appearance in their absorption spectra of an MLCT transition possessing a marked fluorenyl character at a lower energy than for 1a-b. This first MLCT transition occurs at a lower energy for the para-substituted complexes (2a-b) than for their meta-substituted analogues 4a-b. In the latter complexes, it also overlaps with the fluorene-centered π→π(π) excitation, easily recognizable by its vibronic fine structure. For the larger meta-substituted homologues 5a-b, qualitatively similar absorptions are observed as for 4a-b, although two 2-fluorenylethynyl ligands are now appended to the phenylene linker. The increase in the number of fluorenyl groups translates into a relative increase in the intensity of the LC band. Similar spectral features are seen for the bis-alkynyl Ru(II) complexes 6 and 7.

Upon mono-oxidation the corresponding M(III) radical cations are formed. Depending on whether Fe(II) or Ru(II) complexes are oxidized, mono-oxidation occurs at similar potentials for each type of complex (-0.12 ± 0.02 V or 0.60 ± 0.05 V, respectively), the Ru(III) cations being much more reactive than their Fe(III) analogues in solution. For these radical cations, the first MLCT band is shifted to higher energy, while new LMCT bands of moderate intensity appear at the visible/near-IR edge (680-760 nm for Fe(III) or 850-1100 nm for Ru(III)) along with very weak (formally forbidden) LF bands in the near-IR/IR range (observed around 1850 nm in the case of the Fe(III) complexes). Thus, all these fluorenylalkynyl complexes exhibit a strong linear electrochromism resulting in a pronounced colour change from red/orange to deep-green/deep-blue in solution. As previously discussed, this
electrochromism can be usefully exploited to reversibly switch their linear or nonlinear optical properties in a spectroelectrochemical cell, provided water and oxygen are carefully excluded from the electrolytic solution.

Luminescence. As exemplified by the data gathered on 8-10, the 2-ethynylfluorenyl-containing arylalkynyl ligands are usually powerful organic luminophores. However, when functionalized by the organometallic \([\text{Fe}(\pi^2\text{C}_5\text{Me}_3)(\pi^2\text{dppe})]^{1+}\) or trans-\([\text{Ru}(\pi^2\text{dppe})_2\text{Cl}]^{1+}\) end groups, efficient quenching of the ligand-based luminescence takes place, regardless of the oxidation state \((n = 0, 1)\). As previously underlined by us and others, the weak luminescence detected for all these complexes does usually not originate from the lowest-lying excited state, but most likely from a higher lying luminophore-based LC state, in violation of Kasha’s rule. This constitutes a rather unusual phenomenon, but one which has precedence with organometallic chromophores, including the closely related complexes 15a-b \(^{17}\) \((n = 0, 1)\), 16, 17, \(^{11}\) and 18a-b \(^{19}\) (Chart 4).

Chart 4. Selected Examples of Redox-switchable Lumino-phores.

![Chart 4](image)

Scheme 5. LC-Based Luminescence Trapping Process of a M(II) (a) or M(III) (b) Complex.
When M(II) (or M(III)) complexes are excited in the fluorene-based band, our redox study in combination with the use of Rehm-Weller equations (eqs 4-5) reveals that the corresponding charge-separated state CS1 (or CS2) can be formed via a photo-induced intramolecular electron-transfer mechanism, given the positive driving force (ΔG°) found in each case for this process. The latter state most likely corresponds to the first MLCT (or LMCT) excited state of the complex (Scheme 5). Based on the Marcus-Hush treatment, estimates of the corresponding activation barriers (ΔG°) were derived for this electron quenching process (eq 3), in addition to its rate (k_{Q}; eq 2). However, no clear correlation between these data and the experimentally measured luminescence quantum yields was found for compounds with comparable electronic couplings (H_{ab}) such as 1a-b/1a', 2a-b/2a' or 4-6/4a' (Supporting Information), nor between all compounds when corrections for the different H_{ab} are considered; this suggests that a redox-quenching process does not dominate the nonradiative decay of the LC state. This is unsurprising given that deactivation of this state into the lower-lying MLCT (or LMCT) state can also take place via other processes (Scheme 6a). Thus, conversion of this LC state into other lower-lying (dark) singlet or triplet ligand field (LF) states (see below) via nonradiative processes (internal conversion or intersystem crossing) will also contribute to its decay in a competitive way. As a result, any structural modification (Fe vs. Ru exchange or meta vs. para bonding) effected on these compounds to modify the driving force for the redox quenching process has only a marginal effect on the LC-based luminescence of these compounds. Thus, in line with previous results, the luminescence quantum yields measured for this LC-based emission are definitively not controlled by the redox trapping reaction forming the lower-lying CT state.

Scheme 6. Some nonradiative deactivation pathways operative for (a) M(II) and (b) M(III) complexes (IC: internal conversion, (back-)eT: (back-)electron-transfer; isc: intersystem crossing).

The lower-lying excited CT or LF states possess very efficient nonradiative decay channels, resulting in nearly total quenching for most of the M(II) (or M(III)) complexes. In line with previous reports, we could not detect any luminescence originating from the first MLCT state of most of the new M(II) complexes investigated. Thus, along with 1a-b, only in the case of the Ru(II) complex 2b could a very weak emission from the MLCT state be determined, as expected for a class of compounds known to be luminescence quenchers. In several instances, selected bis-alkynyl complexes have been shown to be emissive from their first excited state. However, in these cases, either the MLCT character of the emissive state is totally absent, as in 19a-b, or it is strongly admixed with another character (such as LLCT, for instance). The rapid nonradiative deactivation of the first MLCT state of the Fe(II) alkynyl complex 16 has previously been investigated by ultrafast transient absorption. In addition to the expected back-electron transfer to the GS, other pathways involving intersystem crossing to lower-lying (dark) triplet ligand field (LF) states have been evidenced. In line with this former study, DFT calculations confirm the existence of low lying triplet ligand-field (3LF) states for the fluorenyl-alkynyl M(II) complexes (around 1 eV for Fe(II) and 2.3 eV for Ru(II)) and clearly show the potential relevance of the latter state for nonradiative relaxation. Thus, besides back-electron transfer, intersystem crossing to 3LF states (and possibly to 5LF states for Fe(II) complexes) can also regenerate the GS in a non-radiative way. Similar to 19a-b, more luminescent M(II) alkynyl
complexes can however be obtained when the emitting state is at sufficiently low energy to avoid efficient quenching by \(^1\)MLCT and \(^3\)LF states. Such a situation was never reached with the alkynyl compounds in the present study, but it was approached with the Ru(II) complex 6, which, as a result, possesses the highest luminescence yield.

Regarding the M(III) complexes, their first excited states correspond to \(^2\)LF states. However, such \(^2\)LF states were experimentally detected by electronic absorption only in the case of the Fe(III) mono-alkynyl complexes,\(^{43}\) not in the case of mono-alkynyl Ru(III) complexes.\(^{37,44}\) In the latter case, only the first \(^2\)LMCT state in the near-IR range is usually observed. Based on the energy gap law,\(^{67}\) these low-lying states should be essentially non-luminescent and, to our knowledge, their luminescence has never been probed. In the present case, it is the luminescence of the \(^2\)LC (fluorenyl-based, but the unpaired spin is localized on the M(III) center) state at higher energies (around 330 nm) that was detected. Considering the larger activation energies derived for the redox trapping process (see Supporting Information), nonradiative deactivation via the CS2 state appears less likely than for their M(II) parents (via the CS1 state). This possibly partly explains the increased luminescence quantum yields found for most of the Fe(III) compounds compared to their Fe(II) parents. However, here again, the presence of several excited states in between their first excited states and the emissive \(^2\)LC states opens many channels for nonradiative deactivation other than electron-transfer pathways, explaining why the increase in quantum yield does not inversely correlate with \(k_{et}\). Thus, efficient non-radiative deactivation takes place in both M(II) and M(III) redox states.\(^{68}\) Consistent with previous examples, such as \(15a-b^{n,10}, 17^{n,11}\) or \(18a-b^{n,9}\) the present investigation with \(1a^n, 2a^n\) and \(4a^n (n = 0, 1)\) reveals a poor luminescence quantum yield for the most luminescent Fe(III) parent along with a modest contrast in quantum yield with the other redox parent.

Cubic NLO Properties. As often observed for d\(^6\)-metal alkynyl complexes,\(^{16-17}\) the real part of the cubic molecular polarizability is negative in the visible range and dominates the modulus of \(\gamma\) (Supporting Information). The imaginary part \((\gamma'')\) is usually positive for M(II) complexes and gives rise to “effective” two-photon absorption peaks at wavelengths that coincide with twice their wavelength of 1PA peaks.\(^{24-25}\) In this respect, the new nonlinear absorption measurements on the Ru(II) complexes are far less noisy that the data previously gathered on corresponding Fe(II) alkynyl complexes, which were also much more air-sensitive and prone to undergo photoreactions in the solvent. Based on the new data obtained for the Ru(II) compounds, we can now better analyse the influence of structural changes on the lowest energy 2PA peaks, an important issue given the increasing societal implications of two-photon absorption.\(^{28,69}\)

![Chart 5. Examples of Fluorene-containing Organic Two-photon Absorbers.](image)

20a-c

\((X = \text{NPh}_2, \text{NH}_2, \text{OMe})\)

First of all, and consistent with previous work on these compounds,\(^{24}\) we show here that metallated alkynes such as \(2a-b\) or \(4a-b\) are much better two-photon absorbers than purely organic derivatives of similar structure such as \(20a-c\) (Chart 5), for which much lower 2PA cross-sections have been reported (between 15-80 GM for their lowest energy 2PA peaks).\(^{59}\) Definitive information about the influence of the nature of the organometallic center for similar alkynyl ligands cannot be gained from
Comparison between the data available for 1-2a and 1-2b in CH₂Cl₂, given the photostability problems of the organoiron complexes 1-2a in this solvent. Based on the available measurements made for 1a and 2b in THF,²⁴ slightly more pronounced global nonlinear responses (due to nonlinear refraction) are seen for [Fe(η²-C⁵Me₅)(κ²-dppe)] complexes compared to their trans-[Ru(κ²-dppe)Cl] analogues, while higher apparent 2PA cross-sections are found for the Ru(II) examples. Furthermore, whereas the wavelength of the first 2PA peak is nearly coincident with twice the wavelength of the first MLCT excited state peak for the latter complexes, a sizeable blue-shift between these data is observed for the iron(II) analogues. Such a shift indicates that either (i) a slightly more energetic electronic state that overlaps with the first MLCT 1PA band or (ii) higher vibronic substates of the first MLCT state are populated by two-photon absorption with the Fe(II) complexes. Overlooking the existence of this shift, we have previously considered that the first 2PA peak did correspond to a transition taking place in the fluorenyl-based LC state instead of the MLCT state for 1a-b.²⁴ In the light of the new data obtained for 2b, 4b, 5b and 7 and that previously obtained for their analogues 1b and 3 (Chart 1),²⁵ we are now inclined to consider that the first 2PA peak corresponds to a transition taking place in the first MLCT state, the 2PA maximum being blue shifted relative to the corresponding 1PA peak for Fe(II) complexes; the metal character seems important for boosting 2PA, consistent with independent reports.⁷¹

Comparison of the data obtained for the new mono-alkynyl Ru(II) complexes 2b, 4b and 5b with those previously obtained for the Ru(II) complex 1b indicates a clear increase in the 2PA response upon extension of the π-manifold of the alkynyl ligand, regardless of the connectivity considered (2b or 4b). Thus, the following trends emerge from our data: (i) a gradual increase of the first 2PA peak takes place with the increasing size of the π-manifold of the alkynyl ligand, regardless of the connectivity considered (2b or 4b); (ii) this increase occurs at the expense of some transparency in the visible range; (iii) increasing the number of 2-fluorenyl units in the alkynyl ligand in non-conjugated positions does not significantly improve the magnitude of the 2PA peak (i.e. when progressing from 1b to 2b); (iv) progressing from a purely dipolar mono-alkynyl structure such as 5b to the centrosymmetric trans-bisalkynyl structure 6 results in more than doubling the 2PA without reduction of the transparency window; (v) replacement of the trans-chloride ligand in 4b by a ferrocenylethynyl ligand in 7 improves the cross-section of the first 2PA peak, while opening additional opportunities for redox-control of linear and nonlinear absorption (Figure 5). The merits of the ethynylferrocene-capped bis-alkynyls have been assessed in previous reports and shown to roughly double the cross-section when compared to mono-alkynyl analogues,¹⁶,⁷² the present data are consistent with this.

With respect to our previous contribution,²⁵ DFT calculations with 1-4b indicate that the structural changes leading to augmentation of the 2PA activity induce a bathochromic shift in the first MLCT transition, which does not always correlate to the HOMO-LUMO gap of the complexes (Figure 8). While published data for related complexes indicate that trans-bis(alkynyl) Ru(II) derivatives are usually more 2PA-active than their chloro-mono(alkynyl) Ru(II) counterparts,¹⁶,⁷² for 6 the corresponding improvement over 5b cannot be solely attributed to a reduction of the HOMO-LUMO gap or to a MLCT state at lower energy (compare the data obtained for the bis-alkynyl complexes 3 and 7). This improvement partly originates from the symmetry change, 6 possessing a quadrupolar structure with an inversion center (in its planar conformation) instead of a dipolar (1-4b) or disymmetric dipolar structure (3, 7).²⁸,³⁴ Similar statements have also been previously made for organoiron alkynyl complexes.²⁴

As regards redox-control of the NLO activity, the qualitatively similar linear electrochromism evidenced for all these alkynyl complexes makes them likely to behave as nonlinear electrochromes at the visible-near-IR edge. As previously evidenced with 1a and 2a,²⁴ the good spectral overlap of their first 2PA band of 4a and 5a with the LMCT band of their Fe(III) parents near 700 nm is perfectly suited to impart dramatic redox-induced changes to their third-order NLO response in this spectral range.¹²,⁵⁵ More elaborate (multi-state) switching schemes might equally be observed for 7 in the same spectral range.
CONCLUSION

We have reported here the synthesis and characterization of a new set of redox-active iron and ruthenium phenylalkynyl complexes featuring 2-fluorenyl extensions. The linear and third-order nonlinear optical properties of these organometallic complexes were studied by spectroelectrochemistry, fluorimetry and Z-scan in their neutral and stable cationic redox states. First, we have shown that these compounds possess very strong linear electrochromism in the visible range with oxidation reducing dramatically their transparency window, due to the appearance of LMCT and LF absorptions in the near-IR/IR range. This oxidation takes place at lower potentials for the Fe(II) compounds. The Fe(III) parents are therefore far less reactive in solution than their Ru(III) counterparts. As a result, Fe(II) complexes are better suited for repetitive redox switching (under inert atmospheres).19 In contrast, the Ru(II) analogues, which also possess the larger transparency windows, are ideal NLO-phores for aerobic uses in their neutral state. Then we have shown that molecular engineering of the alkynyl ligand aimed at slowing down through-ligand electron transfer hardly impacts their luminescence. Regardless of the nature of the metal centre (Fe or Ru) and of its oxidation state, very weakly luminescent complexes are always found. With the help of excited-state theoretical calculations, we have shown that several competitive deactivation mechanisms likely contribute to the non-radiative decay of the photoexcited state(s), in particular via the LF manifold, explaining the poor redox-dependence of luminescence for this class of compounds. Finally, and more importantly, we have shown that the Ru(II) alkynyl complexes exhibit significant NLO responses in the near-IR domain (with dominant negative nonlinear refraction). Interestingly, a large 2PA activity in the 600-800 nm range was also evidenced for these compounds and useful structure-property relationships were determined. Thus, by extending the size of the conjugated π-manifold on the alkynyl ligand, a clear increase in the 2PA response takes place, emphasizing the importance of para- vs. meta- connection of 2-fluorenylethynyl groups on the phenylethynyl spacer. Concomitantly, 2PA is also shifted to slightly lower energies. Upon progressing from mono- (dipolar) to bis-alkynyl (quadrupolar) complexes, a further increase in the 2PA cross-section can be obtained. Furthermore, considering the marked linear electrochromism stated for these complexes, a significant nonlinear electrochromism is also expected in the near-IR range depending on the incident wavelength. This remarkable property will be the subject of future investigations.

EXPERIMENTAL SECTION

General Data. All manipulations were carried out under an inert atmosphere of argon (Fe complexes) or dry nitrogen (Ru complexes).73 Solvents and reagents were used as follows: MeOH, distilled from MgOMe; THF, Et\textsubscript{2}O and n-pentane, distilled from Na/benzophenone; CH\textsubscript{2}Cl\textsubscript{2}, distilled from CaH\textsubscript{2}, purged with Ar, and opened/stored under Ar. High field NMR spectra experiments were performed on multinuclear Bruker 500 MHz, 300 MHz or 200 MHz instruments. Chemical shifts are given in parts per million (ppm) relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra and external H\textsubscript{3}PO\textsubscript{4} for 31P NMR spectra. Experimental details regarding measurements on paramagnetic Fe(III) complexes can be found in previous contributions.44,74 Transmittance-FTIR spectra were recorded using a Bruker IFS28 or Perkin-Elmer System 2000 spectrometers (400-4000 cm-1). Raman spectra of the solid samples were obtained by diffuse scattering on a LabRAM HR 800 Raman micro-spectrometer.
equipped with a confocal microscope and recorded in the 800-2500 cm\(^{-1}\) range (Stokes emission) with a laser excitation source at 785 nm (25 mW). Cyclic voltammograms were recorded with an e-corder 401 potentiostat system from eDaq Pty Ltd. by using a Pt disk as working electrode, a Pt wire as counter electrode and an Ag/AgCl or a SCE reference electrode while spectroelectrochemical experiments were performed using a homemade OTTLE cell, as described below. For the more anodic or cathodic scans another homemade setup made of a Pt disk electrode (diameter 1 mm), a vitreous carbon rod as counter electrode and as reference electrode. The latter was either (i) a silver wire in a 0.1 M AgNO\(_3\) solution in CH\(_3\)CN for the anodic studies or (ii) a Ag/AgI, I\(_2\) in 0.1 M NBu\(_4\)I solution in DMF for the cathodic studies. This three electrode cell was connected to a PAR Model 273 potentiostat/galvanostat (PAR, EG&G, USA) monitored with the ECHEM Software. Activated Al\(_2\)O\(_3\) was added in the electrolytic solution to remove excess moisture. The FeCp\(_2\)\(^{+}\) couple (\(\Delta E_p = 0.09\) V; \(i_{pa}/i_{pc} = 1\)) was used each time as an internal calibrator.\(^{75}\) UV-Visible spectra were recorded using a Cary 5000 spectrometer in the 200-2500 nm range and are reported as \(\lambda_{\text{max}}\) (nm) [\(\epsilon\) (10\(^{4}\) M\(^{-1}\) cm\(^{-1}\))]. Fluorescence spectra were recorded using a Cary 2401 spectrometer in the 200-2500 nm range and are reported as \(\lambda_{\text{max}}\) (nm) [\(\epsilon\) (10\(^{3}\) M\(^{-1}\) cm\(^{-1}\))].

Univalent reagents were of commercial grade. 3,5-Dibromobenzaldehyde,\(^{77}\) 9,9-dibutyl-2-bromofluorene (5),\(^{24}\) and Li\(\text{N}^{+}\)Pr\(_2\) (LDA)\(^{78}\) solutions in THF were prepared as described in the literature and \(n\)-BuLi was titrated with diphenylacetic acid before use.\(^{79}\) The syntheses of the organic alkyne precursors 8, 9 and 10 are given in the Supporting Information. Compound 8 was previously synthesized via another synthetic approach.\(^{24}\) Fe(\(\eta^5\)-C\(_5\)Me\(_3\))(\(\eta^1\)-dppe)\(\text{Cl}\)\(^{80}\) [Ru(\(\eta^2\)-dppe)\(_2\)]\(\text{Cl}\)\(^3\) and ethynyl-ferrocene\(^{82}\) were prepared according to published procedures.

Synthesis of the Fe(II) Alkynyl Complexes

General Procedure. The organic alkyne (0.55 mmol), KPF\(_6\) (0.55 mmol) and the iron precursor Fe(\(\eta^5\)-C\(_5\)Me\(_3\))(\(\eta^1\)-dppe)\(\text{Cl}\) (0.44 mmol) were dissolved in a mixture of THF (10 mL) and MeOH (10 mL) and stirred 12 h at room temperature. The reaction mixture was evaporated in vacuo and extracted with CH\(_2\)Cl\(_2\) (3 × 10 mL) via a filter paper-tipped cannula. The resulting brown solution was concentrated to ca. 2 mL and the vinylidene salt was precipitated by addition of MeOH at 0 °C. The precipitate was then washed with MeOH and elemental analyses were performed at CRMPO or at the Research School of Chemistry, Australian National University. Flash column chromatography\(^{76}\) was performed using silica (Scharlau 60, 230-400 mesh) or basic alumina (Aldrich, Brockman activity I, ca. 150 mesh); 3% Et\(_3\)N was added to the eluent for column chromatography of ruthenium complexes. The size of the column is given as (height) × (diameter) in cm.

(2a)

Fe(\(\eta^5\)-C\(_5\)Me\(_3\))(\(\eta^2\)-dppe){C\(_{10}\)H\(_8\)N\(_2\)C\(_{13}\)H\(_6\)Bu\(_2\)} (2a). From 325 mg of 2a-\(\text{PF}_{6}\) and 118 mg of t-BuOK, 220 mg of 2a were isolated (76%).\(^{24}\)

(4a)

Fe(\(\eta^5\)-C\(_5\)Me\(_3\))(\(\eta^2\)-dppe){C\(_{10}\)H\(_8\)N\(_2\)C\(_{13}\)H\(_6\)Bu\(_2\)} (4a). From 350 mg of 4a-\(\text{PF}_{6}\) and 112 mg of t-BuOK, 200 mg of 4a were isolated (71%). Anal. Calc for C\(_{68}\)H\(_{88}\)FeP\(_2\)_2MeOH: C, 79.83%; H, 7.09%;
found: C, 79.91%; H, 6.77%. MS (ESI) m/z calc. for C_{67}H_{68}FeP_{2} [M^+]: 990.4146; found: 990.4143. IR (KBr, cm⁻¹): ʋ = 2202 (w, C≡C); 2042 (s, Fe-C≡C). Raman (neat, cm⁻¹): ʋ = 2199 (m, C≡C); 2036 (s, Fe-C≡C). 31P{¹H} NMR (121 MHz, CDCl₃): ²δ = 100.1 (s, P_{app}). ¹H NMR (300 MHz, CDCl₃): ²δ = 7.98 (m, 4H, H₂A), 7.68 (d, 3J_{HH} = 8.8 Hz, 2H, H₂B), 7.59-7.03 (m, 25H, H₂A), 2.62 (m, 2H, CH₂/dppe), 1.89 (t, 3J_{HH} = 8.2 Hz, 4H, CH₂/Bu), 1.81 (s, 15H, C₆Me₅), 1.02 (m, 4H, CH₂/Bu), 0.75-0.56 (m, 10H, CH₂/Bu + CH₃/Bu). ¹³C{¹H} NMR (75 MHz, CDCl₃): ²δ = 151.4 & 151.1 (2x, C₆Bu), 141.5 & 141.2 (2x, C₆Bu), 141.3 (t, 2J_{CP} = 39 Hz, FeC≡C), 139.7 & 137.8 (m, C₆H/Bu), 134.5 (m, CH₃/Bu), 133.8, 131.9, 131.3, 130.6 (4s, CH₆/C₆H), 129.3 & 129.1 (2x, CH₂/dppe), 128.6-127.5 (m, CH₂/C₆H/CH₂/Bu), 126.4, 126.2, 123.8, 123.1, 120.5, 120.2 (6x, CH₂/C₆H), 119.9 (s, FeC≡C), 91.5 & 90.3 (2x, C≡C), 88.0 (s, C₅(CH₃)₂), 55.4 (s, C₆Bu), 40.6 (s, CH₂/Bu), 31.1 (m, CH₂/dppe), 26.4 (s, CH₂/Bu), 23.5 (s, CH₂/Bu), 14.0 (s, CH₃/Bu), 10.3 (s, C₅(CH₃)₂).

Fe(η²-C₅Me₅)(X²-dppe){C≡C(1,3,5-C₆H₃)[C≡C(2-C₅H₅-R-Bu)]₃} (5a). From 490 mg of 5a·v[PF₆] and 112 mg of t-BuOK, 330 mg of 5a were isolated (75%). Anal. Calc for C₆₇H₆₈FeP₂·MeOH: C, 82.58%; H, 7.31%; found: C, 82.38%; H, 7.13%. MS (ESI) m/z calc. for C₆₇H₆₈FeP₂ [M⁺]: 1290.6024; found: 1290.6017. IR (KBr, cm⁻¹): ʋ = 2207 (w, C≡C); 2043 (s, Fe-C≡C). Raman (neat, cm⁻¹): ʋ = 2204 (m, C≡C); 2044 (m, Fe-C≡C). 31P{¹H} NMR (121 MHz, CDCl₃): ²δ = 100.2 (s, P_{app}). ¹H NMR (300 MHz, CDCl₃): ²δ = 7.99 (m, 4H, H₂A), 7.75 (s, 1H, H₂B), 7.69 (s, 2H, H₂A), 7.55-7.06 (m, 30H, H₂A), 2.61 (m, 2H, CH₂/dppe), 1.83 (t, 3J_{HH} = 8.1 Hz, 8H, CH₂/Bu), 1.81 (m, 2H, CH₂/dppe), 1.51 (s, 15H, C₆Me₅), 1.04 (m, 8H, CH₂/Bu), 0.74-0.57 (m, 2OH, CH₂/Bu + CH₃/Bu). ¹³C{¹H} NMR (75 MHz, CDCl₃): ²δ = 151.4 & 151.2 (2x, C₆Bu), 144.9 (t, 2J_{CP} = 39 Hz, FeC≡C), 141.7 & 141.3 (2x, C₆Bu), 139.7 & 137.8 (m, C₆H/Bu), 134.4 (m, CH₃/Bu), 133.5, 132.0, 131.4 (3x, CH₂/C₆H), 129.5 & 129.2 (2x, CH₂/Bu), 128.6-127.8 (m, CH₂/C₆H/CH₂/Bu), 126.5, 124.4, 123.2, 122.9, 120.5, 120.2 (6x, CH₂/C₆H), 119.6 (s, FeC≡C), 90.9 & 90.7 (2x, C≡C), 88.1 (s, C₅(CH₃)₂), 55.4 (s, C₆Bu), 40.6 (s, CH₂/Bu), 31.0 (m, CH₂/dppe), 26.4 (s, CH₂/Bu), 23.5 (s, CH₂/Bu), 14.0 (s, CH₃/Bu), 10.5 (s, C₅(CH₃)₂).

Synthesis of the Fe(III) Alkynyl Complexes

General Procedure. The Fe(II) alkynyl precursors (0.1 mmol) and 0.98 eq. of [Fe(η²-C₅Me₅)₂][PF₆] were dissolved in THF (20 mL). The dark orange reaction mixture was stirred for 90 min, becoming dark-green. Solvents and volatiles were removed in vacuo. The residue was taken up in CH₂Cl₂ (2 mL) and precipitated twice from n-pentane (15 mL), affording a green (2a)[PF₆] to dark green powder (4a)[PF₆]. 50 mg of green solid 2a[PFG] were isolated (44%).

[Fe(η²-C₅Me₅)(X²-dppe){C≡C(1,4-C₆H₅)CaC(2-C₅H₅-R-Bu)}₃][PF₆] (2a[PFG]). From 100 mg of 2a and 33 mg of [Fe(η²-C₅Me₅)₂][PF₆], 75 mg of green solid 4a[PFG] were isolated (65%). IR (KBr, cm⁻¹): ʋ = 2203 (w, C≡C); 2005 (s, FeC≡C), 1583 (m, C≡C), 840 (vs, PF₆). 31P{¹H} NMR (121 MHz, CDCl₃): ²δ = -144.4 (sept, 1J_{PF} = 706 Hz), P_{app} not observed. ¹H NMR (200 MHz, CD₃Cl₂): ²δ = 28.3 (s, 1H, CH₃/PH), 8.3, 7.9 (s), 7.5 (s), 7.4 (m), 7.3 (s), 6.9 (s), 6.2 (s), 3.6 (s), 2.0-0.8 (m, CH₂/Bu + CH₂/dppe), -2.8 (s, 2H, CH₂/dppe), -10.5 (s, 15H,
C₅(H₃)₅, -39.8 (broad s, 2H, CH₃), -40.9 (broad s, 1H, CH₃). ESR (THF, 80 K): g₁ = 2.441; g₂ = 2.034; g₃ = 1.976.

\[[\text{Fe}(\eta^5-C₅\text{Me}_3)(\text{X}^2\text{-}dppe)(\text{C}≡\text{C}(1,3,5-\text{C}_6\text{H}_3)(\text{C}≡\text{C}(2\text{-}1\text{H}_3\text{Bu}_3))_2)][\text{PF}_6] \] (5a[PF₆]). From 150 mg of 5a and 37 mg of [Fe(\eta^5-C₅\text{Me}_3)][\text{PF}_6], 100 mg of dark green solid 5a[PF₆] were isolated (60%). IR (KBr, cm⁻¹): ν = 2206 (w, C≡C); 2008 (s, FeC≡C), 1573 (m, C≡C), 840 (vs, PF₆). \(^1^H\) NMR (121 MHz, CDCl₃): \(\delta = 144.4 \) (sept, \(\delta_J = 710 \) Hz), \(\delta_{dppe} \) not observed. \(^1^H\) NMR (200 MHz, CD₂Cl₂): \(\delta = 8.3, 7.9 (s), 7.5 (2 \times s), 7.4 (m), 7.0 (s), 6.2 (s), 3.6 (s), 2.1-0.8 (m, CH₃/CH₂), -2.7 (s, 2H, CH₂/dppe), -10.4 (s, 15H, C₅(CH₃)₅), -37.1 (broad s, 1H, CH₃). ESR (THF, 80 K): g₁ = 2.462; g₂ = 2.030; g₃ = 1.974.

Synthesis of the Ru(II) Mono-alkynyl Complexes

General Procedure. The organic alkyne (0.275 mmol) and the ruthenium precursor [Ru(\(\chi^2\)-dppe)₂(Cl)][PF₆] (0.25 mmol) were dissolved in CH₂Cl₂ (10 mL) and stirred at 40 °C for 4 hours. The reaction mixture was then concentrated to ca. 5 mL under reduced pressure and the vinylidene salt was precipitated by addition of Et₂O. The precipitate was collected on a glass sintered funnel, washed with Et₂O (3 × 40 mL), n-hexane (3 × 40 mL) and dried in vacuo, providing the desired vinylidene complex as a gray powder (75-86% yield; see Supporting Information). This vinylidene complex (0.15 mmol) was then dissolved in CH₂Cl₂ (10 mL) and Et₃N (1.5 mmol) was added. The resulting yellow reaction mixture was stirred for 15 min, filtered through a sintered glass funnel and the solid residue was washed with CH₂Cl₂ (2 × 10 mL). The combined filtrates were concentrated under reduced pressure to ca. 5 mL and purified by column chromatography (basic alumina, 10 × 4 cm) eluting with CH₂Cl₂. The yellow band was collected and concentrated under reduced pressure to ca. 5 mL and CH₂OH was added to precipitate the desired complex. The precipitate was collected on a sintered glass funnel, washed with CH₂OH (3 × 40 mL), n-hexane (3 × 40 mL) and dried in vacuo, providing the corresponding alkylnyl complex as a yellow-orange to orange powder.

trans-[Ru(\(\chi^2\)-dppe)₂(Cl)(\text{C}≡\text{C}(1,4-\text{C}_6\text{H}_5\text{C}≡\text{C}(2\text{-}1\text{H}_3\text{Bu}_3))_2)] (2b). From 227 mg of 2b-\(\nu\)[PF₆] and 24 mL of NEt₃, 200 mg of 2b were isolated (97%). X-ray quality crystals of this compound were grown from slow diffusion of n-hexane into a benzene solution. Anal. Calcd. for C₃₈H₃₇CIP₆Ru: C, 74.68%; H, 5.81%; found: C, 74.43%; H, 5.72%. HRMS (ESI): m/z calc'd for C₃₈H₃₇NP₆Ru [M−Cl+MeCN]⁻: 1340.4285; found: 1340.4281. IR (KBr, cm⁻¹): ν = 2193 (w, C≡C); 2062 (s, Ru−C≡C). Raman (neat, cm⁻¹): ν = 2192 (m, C≡C); 2062 (s, Ru−C≡C). \(^3^P(\text{H})\) NMR (121 MHz, CDCl₃): \(\delta = 49.1 \) (s, \(\delta_{dppe} \)). \(^1^H\) NMR (300 MHz, CDCl₃): \(\delta = 7.84-7.62 \) (m, 3H, \(H_{Bu} \)), 7.58-7.42 (m, 12H, \(H_{Ar} \)), 7.39-7.29 (m, 12H, \(H_{Ar} \)), 7.24-7.14 (m, 7H, \(H_{Ar} \)), 7.10-6.89 (m, 15H, \(H_{Ar} \)), 6.57 (d, \(\delta_J = 8.4 \) Hz, 2H, \(C≡C(H) \)), 2.70 (m, 8H, \(CH₂/ dppe \)), 1.99 (t, \(\delta_J = 9.0 \) Hz, 4H, \(CH₂/ dppe \)), 1.10 (m, 4H, \(CH₂/ dppe \)), 0.71-0.56 (m, 10H, \(CH₂/ Bu + CH₃/ Bu \)). \(^{13}\text{C}(\text{H})\) NMR (75 MHz, CDCl₃): \(\delta = 150.9 \) & 150.6 (2×s, \(C_{flu} \)), 140.9 & 140.5 (2×s, \(C_{flu} \)), 136.2-134.1 (m, \(C_{Ar/ dppe} \)), 145.2 (quint, \(\delta_J = 16 \) Hz, \(Ru=C≡C \)), 130.8, 130.4, 130.0, 128.9, 127.4, 127.2, 127.0, 126.9, 125.8, 122.9, 122.0, 119.9, 119.6 (m, \(C_{ar} \)), 116.4 & 90.6 (2 × s, C≡C), 114.4 (broad s, Ru=C≡C), 55.0 (s, \(C_{flu} \)), 40.2 (s, \(CH₂/ Bu \)), 30.6 (m, \(CH₂/ dppe \)), 25.9 & 24.1 (2 × s, \(CH₂/ Bu \)), 13.8 (s, \(CH₃/ Bu \)).

trans-[Ru(\(\chi^2\)-dppe)₂(Cl)(\text{C}≡\text{C}(1,3-\text{C}_6\text{H}_3\text{C}≡\text{C}(2\text{-}1\text{H}_3\text{Bu}_3))_2)] (4b). From 227 mg of 4b-\(\nu\)[PF₆] and 24 mL of NEt₃, 180 mg of 4b were isolated (90%). X-ray quality crystals of this compound were grown from
slow diffusion of n-hexane into a 1,2-C_{2}H_{2}Cl_{2} solution. Anal. Calcd. for C_{83}H_{77}ClP_{2}Ru•%C_{2}H_{2}Cl_{2}: C, 72.93%; H, 5.68%; Found: C, 72.97%; H, 5.79%. HRMS (ESI): m/z calcd. for C_{83}H_{78}NP_{4}Ru [M−Cl+MeCN]: 1340.4285; found: 1340.4288. IR (KBr, cm⁻¹): υ = 2204 (w, C≡C); 2051 (s, Ru−C≡C). Raman (neat, cm⁻¹): υ = 2207 (m, C≡C); 2046 (s, Ru−C≡C). \(^{31}\)P{(H)} NMR (121 MHz, CDCl₃): δ = 49.3 (s, P_{dppe}). \(^{1}\)H NMR (300 MHz, CDCl₃): δ = 7.77-7.68 (m, 3H, H₃), 7.59-7.44 (m, 11H, H₅), 7.42-7.32 (m, 11H, H₇), 7.24-7.13 (m, 8H, Hₓ), 7.13-6.93 (m, 16H, H₆), 6.66 (m, 2H, C₉H₃), 2.70 (m, 8H, CH₂(dppe)), 2.01 (t, \(^{3}\)J_{H,H} = 9.0 Hz, 4H, CH₂(hBu₁)). 1.10 (m, 4H, CH₂(hBu₂)), 0.71-0.57 (m, 10H, CH₂(hBu) + CH₃(hBu)). \(^{13}\)C{(H)} NMR (75 MHz, CDCl₃): δ = 151.0 & 150.8 (2 × s, C₉), 141.2 & 140.5 (2 × s, C₁₀), 136.5-135.9 (m, C_{Ar}dppe), 134.5-134.3 (m, C_{Ar}dppe), 130.5, 130.4, 129.8, 128.9, 127.6, 127.5, 127.3, 127.0, 125.9, 125.6, 123.0, 122.3, 122.0, 120.0, 119.7 (s & m, Cₓ & Ru=C=C), 112.8 (broad s, Ru=C=C), 92.2 & 89.5 (2 × s, C≡C), 55.0 (s, C₁₁), 40.2 (s, CH₂(hBu₁)), 30.6 (m, CH₂(dppe)), 25.9 & 23.0 (2 × s, CH₂(hBu₂)), 13.8 (s, CH₃(hBu)).

trans-[Ru{(κ²-dppe)₂(C≡C(1,3,5-C₆H₃)C≡C(2-C₆H₃)H₄Bu₂)}₂] (5b). From 267 mg of 5b-v[PF₆] and 24 mL of NEt₃, 185 mg of 5b were isolated (71%). X-ray quality crystals of this compound were grown from slow diffusion of n-hexane into a 1,2-dichloroethane solution. Anal. Calcd. for C₂₀₀H₁₃₀Cl₂Ru·: C, 77.85%; H, 6.22%; Found: C, 77.86%, H, 6.34%. HRMS (ESI): m/z calcd. for C₁₀₈H₇₈Cl₂Ru·[M+Cl+MeCN]: 1640.6163; found: 1640.6163. IR (KBr, cm⁻¹): υ = 2199 (w, C≡C); 2059 (s, Ru−C≡C). Raman (neat, cm⁻¹): υ = 2207 (m, C≡C); 2059 (s, Ru−C≡C). \(^{31}\)P{(H)} NMR (121 MHz, CDCl₃): δ = 49.0 (s, P_{dppe}). \(^{1}\)H NMR (300 MHz, CDCl₃): δ = 7.81 – 7.69 (m, 4H, H₉), 7.63-7.55 (m, 4H, H₁₀), 7.50-7.34 (m, 23H, H₁₁), 7.29-7.18 (m, 7H, H₁₂), 7.12-6.97 (m, 17H, H₁₃), 6.68 (d, \(^{4}\)J_{H,H} = 1.5 Hz, 3C₉H₃), 2.72 (m, 8H, CH₂(dppe)), 2.01 (t, \(^{3}\)J_{H,H} = 9.0 Hz, 8H, CH₂(hBu₁)), 1.10 (m, 8H, CH₂(hBu₂)), 0.72-0.57 (m, 20H, CH₂(hBu) + CH₃(hBu)). \(^{13}\)C{(H)} NMR (75 MHz, CDCl₃): δ = 151.0 & 150.8 (2 × s, C₉), 141.4 & 140.4 (2 × s, C₁₀), 136.4-134.1 (m, C_{Ar}dppe), 130.0 (quint, \(^{2}\)J_{C,P} = 15 Hz, Ru=C≡C), 130.5, 129.2, 129.1, 128.5, 127.8, 127.6, 127.3, 127.2, 126.2, 123.2, 122.9, 122.0, 120.2, 119.8 (m, Cₓ), 112.0 (s, Fe=C≡C), 90.0 & 89.5 (2 × s, C≡C), 55.0 (s, C₁₁), 40.2 (s, CH₂(hBu₂)), 30.6 (m, CH₂(dppe)), 25.9 & 23.0 (2 × s, CH₂(hBu₂)), 13.8 (s, CH₃(hBu)).

Synthesis of the Ru(II) Bis-alkynyl Complexes

trans-[Ru{(κ²-dppe)₂(C≡C(1,3,5-C₆H₃)C≡C(2-C₆H₃)H₄Bu₂)}₂] (6). To a solution of the ruthenium precursor [Ru{(κ²-dppe)₂(C≡C)}]PF₆ (0.270 g, 0.25 mmol) and NaPF₆ (0.126 mg, 0.75 mmol) in CH₂Cl₂ (25 mL), Et₃N (0.1 mL, 0.75 mmol) was added. After stirring at room temperature for 24 h, the reaction mixture was filtered through a sintered glass funnel and the residue was washed with CH₂Cl₂ (2 × 10 mL). The combined filtrates were concentrated under reduced pressure to ca. 5 mL and purified by column chromatography (basic alumina, 10 × 4 cm) eluting with CH₂Cl₂. The yellow band was collected and concentrated under reduced pressure to ca. 5 mL. CH₃OH was added to precipitate the bis-alkynyl complex and the precipitate was collected on a sintered glass funnel, washed with CH₃OH (3 × 40 mL) and n-hexane (3 × 40 mL), and dried in vacuo, providing the title complex as an yellow powder (0.52 g, 90%). Anal. Calcd. for C₁₆₀H₁₁₅P₂Ru: C, 83.48%; H, 6.74%; found: C, 83.09%, H, 6.91%. HRMS (ESI): m/z calcd. for C₁₆₀H₁₁₅P₂Ru [M+H⁺]: 2302.0123; found: 2302.0642. IR (KBr, cm⁻¹): υ = 2202 (w, C≡C); 2058 (s, Ru−C≡C). Raman (neat, cm⁻¹): υ = 2202 (m, C≡C); 2058 (s, Ru−C≡C). \(^{31}\)P{(H)} NMR (121 MHz, CDCl₃): δ = 53.3 (s, P_{dppe}). \(^{1}\)H NMR (300 MHz, CDCl₃): δ = 7.79-7.70 (m, 8H, Hₓ), 7.60-7.51 (m, 23H, H₆), 7.45-7.32 (m, 15H, H₅), 7.27 (s, 2H, H₄), 7.26-7.20 (m, 6H, H₃), 7.11-7.00 (m, 16H, H₂), 6.84 (s, \(^{4}\)J_{H,H} = 1.4 Hz, 4H, C₉H₃), 2.69 (m, 8H, CH₂(dppe)), 2.03 (t, \(^{3}\)J_{H,H} = 9.0 Hz, 8H, CH₂(hBu₁)), 1.11 (m, 16H, CH₂(hBu₂)), 0.73-0.56 (m, 40H, CH₂(hBu) + CH₃(hBu)).
13C(1H) NMR (75 MHz, CDCl$_3$): $\delta = 151.0 \ & 150.8 \ (2 \times s, C_{fl})$, 141.4 & 140.4 (2 $\times s$, C$_{fl}$), 136.9-133.2 (m, C$_{ar/dppe}$), 136.1 (quint, $^2J_{C,P}$ = 15 Hz, RuC=C), 130.6, 128.9, 128.7, 127.6, 127.3, 127.0, 126.1, 123.0, 122.9, 121.8, 120.1, 119.7 (m, C$_{ar}$), 115.7 (broad s, RuC=C), 90.0 & 89.5 (2 $\times s$, C=C), 55.0 (s, C$_{fl}$), 40.2 (s, CH$_2$-Bu), 31.4 (m, CH$_2$-dppe), 26.0 & 23.0 (2 $\times s$, CH$_2$/Bu), 13.8 (s, CH$_3$/Bu).

trans-[Ru(1H)-dppe]$_2$(C$_{Fe}$C$_{a}$)[C$_{a}$C[1,3,5-C$_{6}$H$_{3}$]C$_{a}$C[2-C$_{6}$H$_{5}$]-Bu$_2$]] (7). To a solution of 5b (0.445 g, 0.25 mmol), ethynylferrocene (80 mg, 0.375 mmol) and NaPF$_6$ (0.170 g, 1.0 mmol) in CH$_2$Cl$_2$ (25 mL), Et$_3$N (0.11 mL, 1.0 mmol) was added. After stirring at room temperature for 24 h, the reaction mixture was filtered through a sintered glass funnel and the precipitate was washed with CH$_2$Cl$_2$ (2 $\times 10$ mL). The combined filtrates were concentrated under reduced pressure to ca. 5 mL and purified by column chromatography (basic alumina, 10 \times 4 cm), using CH$_2$Cl$_2$ as eluent. The orange band was collected and concentrated under reduced pressure to ca. 5 mL. CH$_2$OH was added to precipitate the bis-alkynyl complex. The precipitate was collected on a sintered glass funnel, washed with CH$_2$Cl$_2$ (3 \times 40 mL), cold n-hexane (1 \times 10 mL), and dried in vacuo, providing the title complex as an orange powder (0.377 g, 84%). Anal. Calcd. for C$_{138}$H$_{222}$N$_{12}$O$_2$P$_{10}$FeRu: C, 78.35%; H, 6.13%; found: C, 78.00%, H, 6.51%. HRMS (ESI): m/z calcd. for C$_{138}$H$_{212}$FeP$_6$Ru [M+H]$^+$: 1809.6029; found: 1809.6064. IR (KBr, cm$^{-1}$): $\overline{\nu}$ = 2204 (w, C=C); 2056 (s, s, Ru-C=C). Raman (neat, cm$^{-1}$): $\overline{\nu}$ = 2208 (m, C=C); 1966 (s, s, Ru-C=C).

31P(1H) NMR (121 MHz, C$_6$D$_6$): $\delta = 53.6$ (s, P$_{dppe}$). 1H NMR (300 MHz, C$_6$D$_6$): $\delta = 8.09$ (s, 8H, H$_{ar}$), 7.95 (s, 3H, H$_{ar}$), 7.82 (m, 2H, H$_{ar}$), 7.73-7.49 (m, 13H, H$_{ar}$), 7.43-7.06 (m, 38H, H$_{ar}$), 4.39, 4.29 & 4.22 (3 $\times s$, 9H, HFC), 2.67 (m, 8H, CH$_2$-dppe), 2.07 (broad t, 8H, CH$_2$/Bu), 1.14 and 0.88 (m, 16H, C$_{2/Bu}$), 0.71 (t, $^2J_{H,H}$ = 7.0 Hz, 12H, CH$_3$/Bu). 13C(1H) NMR (75 MHz, C$_6$D$_6$): $\delta = 151.4 \ & 151.3 \ (2 \times s, C_{Fl})$, 141.9 & 141.0 (2 $\times s$, C$_{Fl}$), 139.0 (quint, $^2J_{C,P}$ = 15 Hz, RuC=C), 138.4-134.0 (m, C$_{ar/dppe}$), 131.6, 131.3, 129.2, 129.0, 127.9, 127.6, 127.5, 126.5, 123.8, 123.2, 122.8 (m, C$_{ar}$), 122.2 (quint, $^2J_{C,P}$ = 15 Hz, RuC=C), 120.5, 120.3 (m, C$_{ar}$), 114.9 & 112.6 (2 \times broad s, RuC=C), 90.9 & 90.7 (2 $\times s$, C=C), 77.1-66.7 (4 $\times s$, C$_{Fl}$), 53.4 (s, C$_{Fl}$), 40.6 (s, CH$_2$/Bu), 31.9 (m, CH$_2$/dppe), 26.4 & 23.5 (2 $\times s$, CH$_2$/Bu), 14.0 (s, CH$_3$/Bu).

Luminescence Measurements. Luminescence measurements in solution were performed in dilute deoxygenated solutions (except in the case of ligands 9 and 10) contained in air-tight quartz cells of 1 cm pathlength (ca. 10$^{-6}$ M, optical density < 0.1) at room temperature (298 K), using an Edinburgh Instruments (FLS920) spectrometer equipped with a 450 W Xenon lamp and a Peltier-cooled Hamamatsu R928P photomultiplier tube in photon-counting mode. Fully corrected excitation and emission spectra were obtained with an optical density at λ_{exc} \leq 0.1 to minimize internal absorption. Luminescence quantum yields were measured according to literature procedures. UV-vis absorption spectra used for the calculation of the luminescence quantum yields were recorded using a double beam Jasco V-570 spectrometer.

Spectroelectrochemistry. Solution UV/Vis/NIR spectra of the oxidized species were obtained at 243 K or 298 K by electrogeneration on a platinum mesh electrode in a 0.05 mm optically transparent thin-layer electrochemical (OTTLE) cell, with a silver wire as pseudo-reference and a platinum wire as counter-electrode. Solutions were made up with [n-Bu$_4$N][PF$_6$] (0.20 M) in dry and deoxygenated CH$_2$Cl$_2$, and were kept under pure nitrogen.

DFT Calculations. Geometry optimizations were performed in vacuum with Orca 3.0 in the restricted (ground states) or unrestricted (triplet and quintet states) formalisms using the B3LYP* functional, the def2-TZVP basis set, and the empirical D3 dispersion correction. Scalar relativistic effects were treated via the Zeroth-Order Regular Approximation (ZORA) method. Minimum energy
crossing points were optimized with Orca 3.0 at the same level of theory. Frequency calculations were performed to ascertain the nature of these points as minima. TD-DFT calculations (TDA) were performed at the same level of theory employing the ground state geometries and 40 roots were computed. Molecular orbitals were viewed and plotted with Gabedit.

Z-scan Measurements. Third-order nonlinear optical properties were investigated as previously described, but with some modifications. The laser system consisted of a Quantronix Integra-C3.5F pumping a Quantronix Palitra-FS optical parametric amplifier, tuned over a wavelength range from 500 nm to 800 nm. The output wavelength was confirmed by use of an Ocean Optics USB2000+ spectrometer. The system delivered 130 fs pulses with a 1 kHz repetition rate. Colored glass filters and a Thorlabs polarizing filter were used to remove unwanted wavelengths and the power adjusted by use of neutral density filters, attenuating it to the µJ/pulse range to obtain nonlinear phase shifts between 0.15 to 1.0 rad. The focal length of the lens used in the experiment was 75 mm, which gave 28-35 µm beam waists resulting in Rayleigh lengths sufficiently longer than that of the sample thickness that a “thin-sample” assumption was justified. Solutions of compounds in “as received” CH₂Cl₂, deoxygenated and distilled CH₂Cl₂, or deoxygenated and distilled THF, of 0.1 w/w% concentration in 1 mm glass cells were analyzed. Samples travelled down the Z-axis on a Thorlabs motorized stage between 5-45 mm. Data were collected by three Thorlabs photodiodes (500-900 nm with Si based detectors). Data from the detectors were fed into three channels of a Tektronix digital oscilloscope, collected with a custom LabVIEW program, and fitted with theoretical traces with a program that used equations derived by Sheik-Bahae et al. A sample of the solvent was run at each wavelength to account for solvent and cell contribution to the Z-scan signals and the light intensity was determined from a Z-scan run on a 3 mm fused silica plate. A solution of each analyte was measured in deoxygenated and distilled CH₂Cl₂ of a concentration range of 0.2-0.5 wt% placed in a 1 mm glass cell; the real and imaginary components of the second hyperpolarizability (γ) of the materials were calculated assuming additivity of the nonlinear contributions of the solvent and the solute and the applicability of the Lorentz local field approximation. The values of the imaginary parts of γ were also converted into values of the two-photon absorption cross-sections σ₂.

Crystallography. Suitable crystals of 2b•C₆H₆•C₆H₁₄, 4b•1,2-C₂H₂Cl₂, 5b and III (Supporting Information) were mounted on fine glass capillaries, and intensity data were collected on a Nonius KAPPA CCD diffractometer at 200 K using graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). N₁ (total) reflections were measured by using psi and omega scans and were reduced to Nₚ unique reflections, with F₀ > 2σ(F₀) being considered to be observed. Semi-empirical absorption corrections based on symmetry-equivalent and repeat reflections were applied. The structures were solved using direct methods and observed reflections were used in least-squares refinement on F², with anisotropic thermal parameters refined for non-hydrogen atoms. Hydrogen atoms were constrained in calculated positions and refined with a riding model. Structure solutions and refinements were performed by using the programs SHELXS-97 and SHELXL-2014 through the graphical interface Olex2. Atomic scattering factors were taken from the literature. Views of 2b, 4b and 5b were generated with ORTEP.

Variata. In 2b; anisotropic displacement parameter constraints were applied to one lattice benzene molecule (atoms C84 – C89), and the geometry was constrained to fit a regular hexagon. In 5b;
anisotropic displacement parameter constraints were applied to several n-butyl groups (C76 – C83 and C99 – C106). Bond distance restraints were also applied to a n-butyl group (C76 – C83). Disordered lattice solvent could not be successfully modelled, and was therefore removed from the refinement using the smtbx_masks function of Olex2.97

Supporting Information. Synthesis and characterization of 8, 9 and 10. Crystallographic, spectroscopic, voltammetric, computational and Z-scan data on selected complexes. 1H NMR and ESR spectra of 4b[P6\textsubscript{6}]\textsubscript{2} and 5b[P6\textsubscript{6}]. CIF files for 2b, 4b, 5b and III have been deposited at the Cambridge Crystallographic Data Center and were allocated the deposition numbers CCDC 1839400-1839403, respectively. Ordering information is given on any current masthead page.

Acknowledgements. The CNRS (PICS program N° 7106 and LIA N° 1194) is acknowledged for financial support. A.T. and G.G. thank the Region Bretagne for a Ph.D. grant. FP thanks Bertrand Lefevre (ISCR) for experimental help in recording the Raman spectra M.G.H. thanks the Australian Research Council (ARC) for financial support and M.P.C. thanks the ARC for an Australian Research Fellowship. We also acknowledge the HPC resources from CALMIP (Toulouse).

REFERENCES

(2) Marques-Gonzalez, S.; Parthey, M.; Yufit, D. S.; Howard, J. A. K.; Kaupp, M.; Low, P. J. Combined Spectroscopic and Quantum Chemical Study of [trans-Ru(CCC\textsubscript{6}H\textsubscript{4}R\textsubscript{14})\textsubscript{2}(dppe)]n+ and [trans-Ru(CCC\textsubscript{6}H\textsubscript{4}R\textsubscript{24})(CCC\textsubscript{6}H\textsubscript{4}R\textsubscript{24})(dppe)]n+ (n = 0, 1) Complexes: Interpretations beyond the Lowest Energy Conformer Paradigm, Organometallics 2014, 33, 4947-4963.

(32) In these equations k_{lum} is the luminescence decay rate, k_{eT} is the electron quenching rate, while k_{NR} corresponds to the decay rate of the other non-radiative processes. ΔG^\ddagger is the activation energy for the redox quenching reaction, which depends on the reorganization energy (λ) and the driving force of the electron transfer process (ΔG_{eT}), while H_{ab} is the electronic coupling between the redox sites, T is the temperature, and k_B is the Boltzmann constant.\(^\text{33}\)

(35) The starting alkyne (9,9-dibutyl-2-Flu)C≡CH was also structurally characterized. It crystallizes in the triclinic system: space group, P-1; a, 12.084(2) Å; b, 13.285(3) Å; c, 13.351(3) Å; α, 74.96(3)$^\circ$; β, 64.76(3)$^\circ$; γ, 81.34(3)$^\circ$; $V = 1870.4(8)$ Å3; Z = 4; $R = 0.0498$ (see Supporting Information).

(41) Paul, F.; Ellis, B. J.; Bruce, M. I.; Toupet, L.; Roisnel, T.; Costuas, K.; Halet, J.-F.; Lapinte, C. Bonding and substituent effects in electron-rich mononuclear ruthenium sigma-arylacetylides of formula \([\eta^2\text{-dppe}](\eta^5\text{-C}_5\text{Me}_5)Ru(CC)-1,4-(C_6H_4)X]PF_6\,(n = 0,1; X = NO_2, CN, F, H, OMe, NH_2), *Organometallics* **2006**, *25*, 649-665.

(50) In this equation, the electron donor (D) is the Fe(II) center and the acceptor (A) the fluorene group, \(e \) is the electron charge, \(\varepsilon_0 \) is the dielectric constant in vacuum, \(\varepsilon \) is the relative dielectric constant and \(d \) is the distance between the positive and negative charges in the CT state. The latter was obtained from the distance between the metal center and the midpoint of the fluorene unit for 2a-b and 4a-b. For 5a-b, 6 and 7, where several fluorenyl units are present, the mean distance was employed. Estimates of these distances were obtained from the available X-ray data for 1a, 2b, 4b and 5b.

(51) In this equation the electron donor (D) is now the fluorene group and the acceptor (A) the Fe(III) center.

(64) Considering the strong luminescence of fluorene-containing organic fluorophores, the assignment of the detected LC-based fluorescence as an artifact originating from traces of organic decomposition products cannot be strictly excluded. However, significant decomposition seems unlikely given the apparent constancy over time of the absorption spectra for both the M(II) (M = Fe, Ru) and Fe(III) complexes during fluorescence measurements. Furthermore, and contrary to Fe(II)
complexes, Ru(II) complexes are perfectly air-stable in their GS and thus not liable to react with adventitious traces of oxygen that might be present in the solvents used.

