A. Hildebrandt, S. Lacorte, and D. Barceló, Occurrence and fate of organochlorinated pesticides and PAH in agricultural soils from the Ebro river basin, Arch. Environ. Contam. Toxicol, vol.57, pp.247-255, 2009.

S. Sura, M. Waiser, V. Tumber, and A. Farenhorst, Effects of herbicide mixture on microbial communities in prairie wetland ecosystems: A whole wetland approach, Sci. Total Environ, pp.34-43, 2012.

A. Serra, D. Alberto, C. Sulmon, G. Gouesbet, and I. Couée, Implications des communautés végétales péri-agricoles dans la dynamique environnementale des pollutions par les pesticides, Rev Ecol-Terre Vie, vol.71, pp.203-221, 2016.

D. Alberto, I. Couée, C. Sulmon, and G. Gouesbet, Root-level exposure reveals multiple physiological toxicity of triazine xenobiotics in Arabidopsis thaliana, J. Plant Physiol, vol.212, pp.105-114, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01507697

N. D. Jablonowski, A. Schäffer, and P. Burauel, Still present after all these years: persistence plus potential toxicity raise questions about the use of atrazine, Environ. Sci. Pollut. Res, vol.18, pp.328-331, 2011.

A. W. Rutherford and A. Krieger-liszkay, Herbicide-induced oxidative stress in photosystem II, Trends Biochem. Sci, vol.26, pp.648-653, 2001.

A. Serra, A. Nuttens, V. Larvor, D. Renault, I. Couée et al., Low environmentally relevant levels of bioactive xenobiotics and associated degradation products cause cryptic perturbations of metabolism and molecular stress responses in Arabidopsis thaliana, J. Exp. Bot, vol.64, pp.2753-2766, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00858016

F. Ramel, C. Sulmon, F. Cabello-hurtado, L. Taconnat, M. Martin-magniette et al., Genome-wide interacting effects of sucrose and herbicide-mediated stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucrose-induced tolerance, BMC Genomics, vol.8, p.450, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00264268

D. C. Boyes, A. M. Zayed, R. Ascenzi, A. J. Mccaskill, N. E. Hoffman et al., Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants, Plant Cell, vol.13, pp.1499-1510, 2001.

C. Lurin, C. Andrés, S. Aubourg, M. Bellaoui, F. Bitton et al., Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis, Plant Cell, vol.16, pp.2089-2103, 2004.

S. Dèrozier, F. Samson, J. Tamby, C. Guichard, V. Brunaud et al., Exploration of plant genomes in the FLAGdb ++ environment, Plant Methods, vol.7, 2011.

Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng et al., Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucleic Acids Res, vol.30, p.15, 2002.

G. K. Smyth, Linear models and empirical Bayes methods for assessing differential expression in microarray experiments, Stat. Appl. Genet. Mol. Biol, vol.3, pp.1-25, 2004.

J. D. Storey and R. Tibshirani, Statistical significance for genome-wide studies, Proc. Natl. Acad. Sci, vol.100, pp.9440-9445, 2003.

. R-core-team, R: A language and environment for statistical computing, reference index version 2.2.1, 2005.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller et al., STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.43, pp.447-452, 2015.

W. G. Brenner and T. Schmülling, Summarizing and exploring data of a decade of cytokininrelated transcriptomics, Front. Plant Sci, vol.6, 2015.

S. Gagnot, J. Tamby, M. Martin-magniette, F. Bitton, L. Taconnat et al., CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform, Nucleic Acids Res, vol.36, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01203869

C. Yang, J. Liu, X. Dong, Z. Cai, W. Tian et al., Short-Term and Continuing Stresses Differentially Interplay with Multiple Hormones to Regulate Plant Survival and Growth, Mol. Plant, vol.7, pp.841-855, 2014.

S. R. Baerson, A. Sánchez-moreiras, N. Pedrol-bonjoch, M. Schulz, I. A. Kagan et al., Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one, J. Biol. Chem, vol.280, pp.21867-21881, 2005.

F. Ramel, C. Sulmon, M. Bogard, I. Couée, and G. Gouesbet, Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets, BMC Plant Biol, vol.9, p.28, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00386161

F. Ramel, C. Sulmon, A. Serra, G. Gouesbet, and I. Couée, Xenobiotic sensing and signalling in higher plants, J. Exp. Bot, vol.63, pp.3999-4014, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00736135

D. Weisman, M. Alkio, and A. Colón-carmona, Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways, BMC Plant Biol, vol.10, p.59, 2010.

M. Su, G. Huang, Q. Zhang, X. Wang, C. Li et al., The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana, Plant Sci, vol.247, pp.93-103, 2016.

A. L. Saucedo, E. E. Hernández-domínguez, L. A. Luna-valdez, A. A. Guevara-garcía, A. Escobedo-moratilla et al., Insights on structure and function of a late embryogenesis abundant protein from Amaranthus cruentus: an intrinsically disordered protein involved in protection against desiccation, oxidant conditions, and osmotic stress, Front. Plant Sci, vol.8, 2017.

M. Song, W. Xu, Y. Xiang, H. Jia, L. Zhang et al., Association of jacalin-related lectins with wheat responses to stresses revealed by transcriptional profiling, Plant Mol. Biol, vol.84, pp.95-110, 2014.

T. Janowitz, I. Trompetter, and M. Piotrowski, Evolution of nitrilases in glucosinolatecontaining plants, Phytochemistry, vol.70, pp.1680-1686, 2009.

W. R. Chezem and N. K. Clay, Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs, Phytochemistry, vol.131, pp.26-43, 2016.

M. Böhmer and J. I. Schroeder, Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells: ABA-and ROS-regulated expression changes, Plant J, vol.67, pp.105-118, 2011.

S. U. Huh, S. Lee, H. H. Kim, and K. Paek, ATAF2, a NAC transcription factor, binds to the promoter and regulates NIT2 gene expression involved in auxin biosynthesis, Mol. Cells, vol.34, pp.305-313, 2012.

K. Dietrich, F. Weltmeier, A. Ehlert, C. Weiste, M. Stahl et al., Dröge-Laser, Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress, Plant Cell, vol.23, pp.381-395, 2011.

A. Mustroph, S. C. Lee, T. Oosumi, M. E. Zanetti, H. Yang et al., Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses, Plant Physiol, vol.152, pp.1484-1500, 2010.

C. Peng, S. Uygun, S. Shiu, R. Last, and L. , The impact of the branched-chain ketoacid dehydrogenase complex on amino acid homeostasis in Arabidopsis, Plant Physiol, p.461, 2015.

F. Ramel, C. Sulmon, G. Gouesbet, and I. Couée, Regulatory effects of atrazine differentially override sucrose repression of amino acid catabolism, Acta Physiol. Plant, vol.35, pp.2329-2337, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00861007

M. V. Pires, A. A. Pereira-júnior, D. B. Medeiros, D. M. Daloso, P. A. Pham et al., The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis: Influence of the ETF/ETFQO pathway under water stress, Plant Cell Environ, vol.39, pp.1304-1319, 2016.

H. M. Lam, M. H. Hsieh, and G. Coruzzi, Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana, Plant J. Cell Mol. Biol, vol.16, pp.345-353, 1998.

E. Baena-gonzález, F. Rolland, J. M. Thevelein, and J. Sheen, A central integrator of transcription networks in plant stress and energy signalling, Nature, vol.448, pp.938-942, 2007.

P. Coello, S. J. Hey, and N. G. Halford, The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield, J. Exp. Bot, vol.62, pp.883-893, 2011.

R. A. Gutiérrez, T. L. Stokes, K. Thum, X. Xu, M. Obertello et al., Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1, Proc. Natl. Acad. Sci. 105, pp.4939-4944, 2008.

J. Shin, A. Sánchez-villarreal, A. M. Davis, S. Du, K. W. Berendzen et al., The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner, Plant Cell Environ, vol.40, pp.997-1008, 2017.

A. Serra, I. Couée, D. Renault, G. Gouesbet, and C. Sulmon, Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress, J. Exp. Bot, vol.66, pp.1801-1816, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01115654

A. Serra, I. Couée, D. Heijnen, S. Michon-coudouel, C. Sulmon et al., Genome-wide transcriptional profiling and metabolic analysis uncover multiple molecular responses of the grass species Lolium perenne under low-intensity xenobiotic stress, Front. Plant Sci, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01245729

D. G. Hardie, F. A. Ross, and S. A. Hawley, AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nat. Rev. Mol. Cell Biol, vol.13, pp.251-262, 2012.
DOI : 10.1038/nrm3311

URL : http://europepmc.org/articles/pmc5726489?pdf=render

W. Sun, C. Bernard, B. Van-de-cotte, M. Van-montagu, and N. Verbruggen, At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression, Plant J. Cell Mol. Biol, vol.27, pp.407-415, 2001.

H. Magome, S. Yamaguchi, A. Hanada, Y. Kamiya, and K. Oda, The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under highsalinity stress in Arabidopsis, Plant J, vol.56, pp.613-626, 2008.

H. Kang, J. Kim, B. Kim, H. Jeong, S. H. Choi et al., Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana, Plant Sci, vol.180, pp.634-641, 2011.

C. Zhao, Z. Zhang, S. Xie, T. Si, Y. Li et al., Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis, Plant Physiol, p.533, 2016.

M. Zhou, H. Chen, D. Wei, H. Ma, and J. Lin, Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature, Sci. Rep, vol.7, p.39819, 2017.
DOI : 10.1038/srep39819

URL : https://doi.org/10.1038/srep39819

H. Seok, D. Woo, L. V. Nguyen, H. T. Tran, V. N. Tarte et al., Arabidopsis AtNAP functions as a negative regulator via repression of AREB1 in salt stress response, Planta, vol.245, pp.329-341, 2017.

S. Ma and H. J. Bohnert, Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression, Genome Biol, vol.8, p.49, 2007.
DOI : 10.1186/gb-2007-8-4-r49

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2007-8-4-r49

H. Chen, Z. Lai, J. Shi, Y. Xiao, Z. Chen et al., Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress, BMC Plant Biol, vol.10, p.281, 2010.
DOI : 10.1186/1471-2229-10-281

URL : http://doi.org/10.1186/1471-2229-10-281

S. P. Pandey, M. Roccaro, M. Schön, E. Logemann, and I. E. Somssich, Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis: WRKY18/40 in powdery mildew susceptibility, Plant J, vol.64, pp.912-923, 2010.
DOI : 10.1111/j.1365-313x.2010.04387.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2010.04387.x/pdf

A. Hahn, J. Kilian, A. Mohrholz, F. Ladwig, F. Peschke et al., Plant core environmental stress response genes are systemically coordinated during abiotic stresses, Int. J. Mol. Sci, vol.14, pp.7617-7641, 2013.
DOI : 10.3390/ijms14047617

URL : http://www.mdpi.com/1422-0067/14/4/7617/pdf

D. Zhang, H. Ye, H. Guo, A. Johnson, H. Lin et al., Transcription factors involved in brassinosteroid repressed gene expression and their regulation by BIN2 kinase, Plant Signal. Behav, vol.9, p.27849, 2014.
DOI : 10.4161/psb.27849

URL : https://www.tandfonline.com/doi/pdf/10.4161/psb.27849?needAccess=true

N. H. Nguyen, C. Y. Jeong, G. Kang, S. Yoo, S. Hong et al., MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis, Plant J, vol.84, pp.1192-1205, 2015.
DOI : 10.1111/tpj.13077

URL : http://onlinelibrary.wiley.com/doi/10.1111/tpj.13077/pdf

S. Kim, G. Hwang, S. Lee, J. Zhu, I. Paik et al., High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5, Front. Plant Sci, vol.8, 2017.
DOI : 10.3389/fpls.2017.01787

URL : https://www.frontiersin.org/articles/10.3389/fpls.2017.01787/pdf

P. Jacob, H. Hirt, and A. Bendahmane, The heat-shock protein/chaperone network and multiple stress resistance, Plant Biotechnol. J, vol.15, pp.405-414, 2017.
DOI : 10.1111/pbi.12659

URL : https://hal.archives-ouvertes.fr/hal-01602732

A. Nagashima, M. Hanaoka, T. Shikanai, M. Fujiwara, K. Kanamaru et al., The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana, Plant Cell Physiol, vol.45, pp.357-368, 2004.

M. V. Yamburenko, Y. O. Zubo, and T. Börner, Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3?-5?-bisdiphosphate and activation by sigma factor 5, Plant J, vol.82, pp.1030-1041, 2015.

X. Yin, X. Xie, X. Xia, J. Yu, I. B. Ferguson et al., Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening, Plant J, vol.86, pp.403-412, 2016.
DOI : 10.1111/tpj.13178

URL : http://onlinelibrary.wiley.com/doi/10.1111/tpj.13178/pdf

N. H. Davila-olivas, W. Kruijer, G. Gort, C. L. Wijnen, J. J. Van-loon et al., Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana, New Phytol, vol.213, pp.838-851, 2017.

Z. Zhang, R. Ji, H. Li, T. Zhao, J. Liu et al., CONSTANS-LIKE 7 (COL7) is involved in phytochrome B (phyB)-mediated light-quality regulation of auxin homeostasis, Mol. Plant, vol.7, pp.1429-1440, 2014.

T. Liu, J. Carlsson, T. Takeuchi, L. Newton, and E. M. Farré, Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7, Plant J, 2013.

E. Kolmos, B. Y. Chow, J. L. Pruneda-paz, and S. A. Kay, HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock, Proc. Natl. Acad. Sci, vol.111, pp.16172-16177, 2014.

D. Gong, C. Zhang, X. Chen, Z. Gong, and J. Zhu, Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase, J. Biol. Chem, vol.277, pp.42088-42096, 2002.

P. Kanwar, S. K. Sanyal, I. Tokas, A. K. Yadav, A. Pandey et al., Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice, Cell Calcium, vol.56, pp.81-95, 2014.

J. W. Walley, D. R. Kelley, G. Nestorova, D. L. Hirschberg, and K. Dehesh, Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses, Plant Physiol, vol.152, pp.866-875, 2010.

S. Bolt, E. Zuther, S. Zintl, D. K. Hincha, and T. Schmülling, ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation: ERF105 and cold stress, Plant Cell Environ, vol.40, pp.108-120, 2017.

M. Matsuo, J. M. Johnson, A. Hieno, M. Tokizawa, M. Nomoto et al., High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana Shoots and Roots, Mol. Plant, vol.8, pp.1253-1273, 2015.

A. Bahieldin, A. Atef, S. Edris, N. O. Gadalla, H. M. Ali et al., Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant, BMC Plant Biol, vol.16, 2016.

C. Gleason, R. C. Foley, and K. B. Singh, Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba, PLoS ONE, vol.6, p.17245, 2011.

M. A. Koini, L. Alvey, T. Allen, C. A. Tilley, N. P. Harberd et al., High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4, Curr. Biol, vol.19, pp.408-413, 2009.

L. Du and B. W. Poovaiah, A novel family of Ca 2+ /calmodulin-binding proteins involved in transcriptional regulation: interaction with fsh/Ring3 class transcription activators, Plant Mol. Biol, vol.54, pp.549-569, 2004.

H. S. Robert, A. Quint, D. Brand, A. Vivian-smith, and R. Offringa, BTB and TAZ domain scaffold proteins perform a crucial function in Arabidopsis development: Arabidopsis BT proteins and gametophyte development, Plant J, vol.58, pp.109-121, 2009.

S. Bogamuwa and J. Jang, The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid-and gibberellic acid-mediated regulation of seed germination: Tandem CCCH zinc finger proteins in seed germination, Plant Cell Environ, vol.36, pp.1507-1519, 2013.

T. H. Tam, B. Catarino, and L. Dolan, Conserved regulatory mechanism controls the development of cells with rooting functions in land plants, Proc. Natl. Acad. Sci, vol.112, pp.3959-3968, 2015.

M. Kamiya, S. Higashio, A. Isomoto, J. Kim, M. Seki et al., Control of root cap maturation and cell detachment by BEARSKIN transcription factors in Arabidopsis, Development, vol.143, pp.4063-4072, 2016.

M. J. Kim, D. Ruzicka, R. Shin, and D. P. Schachtman, The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions, Mol. Plant, vol.5, pp.1042-1057, 2012.

M. Martínez-trujillo, A. Méndez-bravo, R. Ortiz-castro, F. Hernández-madrigal, E. Ibarra-laclette et al., Chromate alters root system architecture and activates expression of genes involved in iron homeostasis and signaling in Arabidopsis thaliana, Plant Mol. Biol, vol.86, pp.35-50, 2014.

J. Jeon, N. Y. Kim, S. Kim, N. Y. Kang, O. Novák et al., A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis, J. Biol. Chem, vol.285, pp.23371-23386, 2010.

P. J. Zwack, I. De-clercq, T. C. Howton, H. T. Hallmark, A. Hurny et al., Cytokinin Response Factor 6 represses cytokinin-associated genes during oxidative stress, Plant Physiol, p.415, 2016.

X. Huang, X. Zhang, Z. Gong, S. Yang, and Y. Shi, ABI4 represses the expression of type-A ARRs to inhibit seed germination in Arabidopsis, Plant J, vol.89, pp.354-365, 2017.

S. J. Kim and W. T. Kim, Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress, FEBS Lett, vol.587, pp.2584-2590, 2013.
DOI : 10.1016/j.febslet.2013.06.038

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2013.06.038/pdf

J. Y. Suh, S. J. Kim, T. R. Oh, S. K. Cho, S. W. Yang et al., Arabidopsis Tóxicos en Levadura 78 (AtATL78) mediates ABA-dependent ROS signaling in response to drought stress, Biochem. Biophys. Res. Commun, vol.469, pp.8-14, 2016.
DOI : 10.1016/j.bbrc.2015.11.061

P. Ahmad, S. Rasool, A. Gul, S. A. Sheikh, N. A. Akram et al., Jasmonates: multifunctional roles in stress tolerance, Front. Plant Sci, vol.7, 2016.
DOI : 10.3389/fpls.2016.00813

URL : http://journal.frontiersin.org/article/10.3389/fpls.2016.00813/pdf

C. Herve, P. Dabos, C. Bardet, A. Jauneau, M. C. Auriac et al., In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development, Plant Physiol, vol.149, pp.1462-1477, 2009.

M. E. Andriankaja, S. Danisman, L. F. Mignolet-spruyt, H. Claeys, I. Kochanke et al., Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors, Plant Mol. Biol, vol.85, pp.233-245, 2014.
DOI : 10.1007/s11103-014-0180-2

S. Danisman, F. Van-der-wal, S. Dhondt, R. Waites, S. De-folter et al., Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically, Plant Physiol, vol.159, pp.1511-1523, 2012.
DOI : 10.1104/pp.112.200303

URL : http://www.plantphysiol.org/content/plantphysiol/159/4/1511.full.pdf

N. Dhaka, V. Bhardwaj, M. K. Sharma, and R. Sharma, Evolving tale of TCPs: new paradigms and old lacunae, Front. Plant Sci, vol.8, 2017.
DOI : 10.3389/fpls.2017.00479

URL : http://journal.frontiersin.org/article/10.3389/fpls.2017.00479/pdf

M. N. Danilova, N. V. Kudryakova, A. S. Doroshenko, D. A. Zabrodin, Z. F. Rakhmankulova et al., Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence, Plant Mol. Biol, vol.93, pp.533-546, 2017.

C. Merchante, A. N. Stepanova, and J. M. Alonso, Translation regulation in plants: an interesting past, an exciting present and a promising future, Plant J, vol.90, pp.628-653, 2017.
DOI : 10.1111/tpj.13520

URL : http://onlinelibrary.wiley.com/doi/10.1111/tpj.13520/pdf

J. Mizoi, K. Shinozaki, and K. Yamaguchi-shinozaki, AP2/ERF family transcription factors in plant abiotic stress responses, Biochim. Biophys. Acta BBA-Gene Regul. Mech, vol.1819, pp.86-96, 2012.
DOI : 10.1016/j.bbagrm.2011.08.004

S. Kotak, E. Vierling, H. Baumlein, and P. , Koskull-Doring, A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis, Plant Cell Online, vol.19, pp.182-195, 2007.

D. H. Kim, Z. Xu, Y. J. Na, Y. Yoo, J. Lee et al., Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis, Plant Physiol, vol.157, pp.132-146, 2011.

S. Chen, N. He, J. Chen, and F. Guo, Identification of core subunits of photosystem II as action sites of HSP21, which is activated by the GUN5-mediated retrograde pathway in Arabidopsis, Plant J, vol.89, pp.1106-1118, 2017.

J. Wu, H. Tsai, I. Joanito, Y. Wu, C. Chang et al., LWD-TCP complex activates the morning gene CCA1 in Arabidopsis, Nat. Commun, vol.7, p.13181, 2016.
DOI : 10.1038/ncomms13181

URL : http://www.nature.com/articles/ncomms13181.pdf

D. Alberto, A. Serra, C. Sulmon, G. Gouesbet, and I. Couée, Herbicide-related signaling in plants reveals novel insights for herbicide use strategies, environmental risk assessment and global change assessment challenges, Sci. Total Environ, pp.1618-1628, 2016.
DOI : 10.1016/j.scitotenv.2016.06.064

URL : https://hal.archives-ouvertes.fr/hal-01374459

J. Nie, R. Stewart, H. Zhang, J. A. Thomson, F. Ruan et al., TF-Cluster: A pipeline for identifying functionally coordinated transcription factors via network decomposition of the shared coexpression connectivity matrix (SCCM), BMC Syst. Biol, vol.5, p.53, 2011.

O. Van-aken, B. Zhang, S. Law, R. Narsai, and J. Whelan, AtWRKY40 and AtWRKY63 Modulate the Expression of Stress-Responsive Nuclear Genes Encoding Mitochondrial and Chloroplast Proteins, Plant Physiol, vol.162, pp.254-271, 2013.

K. O. Erinle, Z. Jiang, B. Ma, J. Li, Y. Chen et al., Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts, Ecotoxicol. Environ. Saf, vol.132, pp.403-412, 2016.
DOI : 10.1016/j.ecoenv.2016.06.035

K. Shinozaki and K. Yamaguchi-shinozaki, Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways, Curr. Opin. Plant Biol, vol.3, pp.217-223, 2000.
DOI : 10.1016/s1369-5266(00)80068-0

P. J. Zwack and A. M. Rashotte, Interactions between cytokinin signalling and abiotic stress responses, J. Exp. Bot, vol.66, pp.4863-4871, 2015.
DOI : 10.1093/jxb/erv172

URL : https://academic.oup.com/jxb/article-pdf/66/16/4863/18044528/erv172.pdf

C. Sulmon, G. Gouesbet, A. E. Amrani, and I. Couée, Involvement of the ethylene-signalling pathway in sugar-induced tolerance to the herbicide atrazine in Arabidopsis thaliana seedlings, J. Plant Physiol, vol.164, pp.1083-1092, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00094725

I. Couée, A. Serra, F. Ramel, G. Gouesbet, and C. Sulmon, Physiology and toxicology of hormone-disrupting chemicals in higher plants, Plant Cell Rep, vol.32, pp.933-941, 2013.

A. Serra, D. Alberto, F. Ramel, G. Gouesbet, C. Sulmon et al., Perturbation and disruption of plant hormone signalling by organic xenobiotic pollutions, Mech. Plant Horm. Signal. Stress, pp.199-221, 2017.
DOI : 10.1002/9781118889022.ch25

E. Ramireddy, W. G. Brenner, A. Pfeifer, A. Heyl, and T. Schmülling, In Planta Analysis of a cis-Regulatory Cytokinin Response Motif in Arabidopsis and Identification of a Novel Enhancer Sequence, Plant Cell Physiol, vol.54, pp.1079-1092, 2013.

M. Cerný, P. L. Jedelský, J. Novák, A. Schlosser, and B. Brzobohatý, Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis: Cytokinin modulates temperature-shock responses, Plant Cell Environ, vol.37, pp.1641-1655, 2014.

R. A. Montes, G. Coello, K. L. González-aguilera, N. Marsch-martínez, S. De-folter et al., ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks, BMC Plant Biol, vol.14, p.97, 2014.

P. J. Zwack, B. R. Robinson, M. G. Risley, and A. M. Rashotte, Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses, Plant Cell Physiol, vol.54, pp.971-981, 2013.
DOI : 10.1093/pcp/pct049

URL : https://academic.oup.com/pcp/article-pdf/54/6/971/17912316/pct049.pdf

A. Cortleven, I. Marg, M. V. Yamburenko, H. Schlicke, K. Hill et al., Cytokinin regulates the etioplast-chloroplast transition through the twocomponent signaling system and activation of chloroplast-related genes, Plant Physiol, vol.172, pp.464-478, 2016.

A. H. Singh, D. M. Wolf, P. Wang, and A. P. Arkin, Modularity of stress response evolution, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.7500-7505, 2008.
DOI : 10.1073/pnas.0709764105

URL : http://www.pnas.org/content/105/21/7500.full.pdf

I. Hwang, J. Sheen, and B. Müller, Cytokinin signaling networks, Annu. Rev. Plant Biol, vol.63, pp.353-380, 2012.
DOI : 10.1146/annurev-arplant-042811-105503

P. E. Verslues, ABA and cytokinins: challenge and opportunity for plant stress research, Plant Molecular Biology, vol.91, pp.629-640, 2016.
DOI : 10.1007/s11103-016-0458-7

A. Fukudome, E. Aksoy, X. Wu, K. Kumar, I. S. Jeong et al., Arabidopsis CPL4 is an essential C-terminal domain phosphatase that suppresses xenobiotic stress responses, Plant J, vol.80, pp.27-39, 2014.
DOI : 10.1111/tpj.12612

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/tpj.12612

Y. Osakabe, K. Yamaguchi-shinozaki, K. Shinozaki, and L. P. Tran, Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress, J. Exp. Bot, vol.64, pp.445-458, 2013.